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a b s t r a c t

An orthogonal ray graph is an intersection graph of horizontal rays (closed half-lines) and
vertical rays in the plane, which is introduced in connectionwith the defect-tolerant design
of nano-circuits. An orthogonal ray graph is a 3-directional orthogonal ray graph if every
vertical ray has the same direction. A 3-directional orthogonal ray graph is a 2-directional
orthogonal ray graph if every horizontal ray has the same direction. The characterizations
and the complexity of the recognition problem have been open for orthogonal ray
graphs and 3-directional orthogonal ray graphs, while various characterizations with a
quadratic-time recognition algorithm have been known for 2-directional orthogonal ray
graphs. In this paper, we show several characterizations with a linear-time recognition
algorithm for orthogonal ray trees by using the 2-directional orthogonal ray trees. We also
show that a tree is a 3-directional orthogonal ray graph if and only if it is a 2-directional
orthogonal ray graph. Moreover, we show some necessary conditions for orthogonal ray
graphs and 3-directional orthogonal ray graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A graph G is called an intersection graph if there exists a set of objects such that each vertex corresponds to an object and
two vertices are adjacent if and only if the corresponding objects intersect. Such a set of objects is called a representation
of G. Intersection graphs of geometric objects have been extensively investigated, since the representations allow us to
design efficient algorithms. The intersection graphs of geometric objects have many applications in various areas including
integrated circuits, scheduling, and bioinformatics. See [3,11,18,28] for survey.

Segment graphs are the intersection graphs of straight-line segments in the plane, and one of the most natural and well-
studied classes of the intersection graphs [5,16]. The recognition problem for segment graphs is known to be NP-hard [17].
A segment graph is called a grid intersection graph [1,12] if the lines are restricted to being parallel to the x- and y-axes
(horizontal and vertical) such that no two parallel segments intersect. The recognition problem for grid intersection graphs is
also known to beNP-complete [15]. A grid intersection graph is called a unit grid intersection graph [21] if every line segments
have the same (unit) length. Recently, it has been shown in [20] that the recognition problem for unit grid intersection graphs
is NP-complete.

Besides the segment graphs, the intersection graphs of rays (closedhalf-lines) in the planehave been considered [4,14,25].
We focus on the case where every rays are parallel to the x- and y-axes. Such intersection graphs are called orthogonal ray
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graphs [25]. Formally, a bipartite graph G with bipartition (U, V ) is called an orthogonal ray graph (ORG for short) if there
exist a set of disjoint horizontal rays Ru, u ∈ U , in the xy-plane, and a set of disjoint vertical rays Rv , v ∈ V , such that for any
u ∈ U and v ∈ V , (u, v) ∈ E(G) if and only if Ru and Rv intersect. A set R(G) = {Rw | w ∈ V (G)} is called an orthogonal
ray representation of G. The ORGs are introduced in connection with the defect-tolerant design of nano-circuits [24]. An
ORG G with bipartition (U, V ) is called a 3-directional orthogonal ray graph (3-DORG for short) if G has an orthogonal ray
representationR(G) such that every vertical ray Rv ∈ R(G), v ∈ V , has the same direction. An ORGGwith bipartition (U, V )
is called a 2-directional orthogonal ray graph (2-DORG for short) ifGhas an orthogonal ray representationR(G) such that every
horizontal ray Ru ∈ R(G), u ∈ U , has the same direction and every vertical ray Rv ∈ R(G), v ∈ V , has the same direction.

Among the graph classes above, the following relationship has been known [25]: {2-Directional Orthogonal Ray Graphs}
⊂ {Orthogonal Ray Graphs} ⊂ {Unit Grid Intersection Graphs} ⊂ {Grid Intersection Graphs} ⊂ {Bipartite Graphs}, where
X ⊂ Y indicates a set X is a proper subset of Y .

The 2-DORGs have been well investigated [8,22–27,30,31], and various characterizations have been known [25,30]. One
of the characterizations is that 2-DORGs are the complements of circular-arc graphs with clique cover number 2, which is a
well-studied class of graphs [9,13,29,32]. Based on the characterization, 2-DORGs can be recognized in O(n2) time, where n
is the number of vertices in a graph. The 2-DORGs also has a forbidden graph characterization such that a bipartite graph is
a 2-DORG if and only if it contains no induced cycle of length at least 6 or edge-asteroids [9,25].

On the other hand, the characterizations and the complexity of the recognition problem have been open for ORGs and
3-DORGs. As the first step to understand ORGs and 3-DORGs, it is natural to study the case of trees. A tree is called an
orthogonal ray tree (ORT for short) if it is an orthogonal ray graph. An ORT is called a 3-directional orthogonal ray tree (3-DORT
for short) if it is a 3-DORG, and called a 2-directional orthogonal ray tree (2-DORT for short) if it is a 2-DORG. The 2-DORTs
have been investigated, and several characterizations with a linear-time recognition algorithm are known [24,25]. We have
also known that any tree is a unit grid intersection graph [21].

The purpose of the paper is to show several characterizations with a linear-time recognition algorithm for ORTs and
3-DORTs by using the characterizations of 2-DORTs. We also show some necessary conditions for ORGs and 3-DORGs.

We show in Section 2 some characterizations for 2-DORGs and 2-DORTs used in this paper. In Section 3, we introduce a
new forbidden structure, an asteroidal quintuple of edges (A5E for short), and show that any ORG contains no A5Es, which
is also a sufficient condition for ORTs as shown in Section 4. We also show in Section 4 that any ORT is a graph obtained
from two 2-DORTs by identifying a vertex in one 2-DORT with a vertex in the other. Moreover, we show a forbidden minor
characterization with a linear-time recognition algorithm for ORTs. In Section 5, we show that any 3-DORG contains no
edge-asteroids, and hence, a tree is a 3-DORT if and only if it is a 2-DORT.

The characterizations and the complexity of the recognition problem for ORGs and 3-DORGs still remain interesting open
questions.

2. Two-directional orthogonal ray graphs

We show in this section some preliminaries and several characterizations for 2-DORGs and 2-DORTs used in this paper.
See [24,25] for more information.

All graphs considered in this paper are finite, simple, and undirected. For a graph G, let V (G) and E(G) denote the set of
vertices and edges, respectively. The open neighborhood of a vertex v of G is the set NG(v) = {u ∈ V (G) | (u, v) ∈ E(G)}, and
the closed neighborhood of v is the set NG[v] = {v} ∪ NG(v). For an edge e = (u, v) of G, we use NG[e] to denote the set of
vertices adjacent to u or v, that is, NG[e] = NG[u] ∪ NG[v]. If no confusion arises, we will omit the index G.

A bipartite graph is called a chordal bipartite graph if it contains no induced cycles of length at least 6.
Let P be a path of length kwith V (P) = {v0, v1, . . . , vk} and E(P) = {e1, e2, . . . , ek}, where ei = (vi−1, vi), 1 ≤ i ≤ k. We

refer to P as a path from e1 to ek. A set of edges {e0, e1, . . . , e2k} ⊆ E(G), k ≥ 1, of a graph G is called an edge-asteroid of size
2k+1 if for any i, 0 ≤ i ≤ 2k, there exists a path from ei to ei+1 that contains no vertices in N[ei+k+1] (subscripts are modulo
2k + 1). See Fig. 1 for examples of edge-asteroids. Edge-asteroids are introduced in [9], and 2-DORGs can be characterized
as follows.

Theorem A ([9,25]). A bipartite graph is a 2-DORG if and only if it is a chordal bipartite graph and contains no edge-
asteroids. �

The graph obtained from a complete bipartite graph K1,3 (which is also known as a claw) by replacing each edge with a
path of length 3 is called a 3-claw. The 3-claw contains an edge-asteroid as shown in Fig. 1(c). A path P in a tree T is called a
spine of T if every vertex of T is within distance 2 from a vertex on P . It has been known that 2-DORTs can be characterized
as follows.

Theorem B ([24,25]). The following statements are equivalent for a tree T :
(i) T is a 2-DORT;
(ii) T contains no 3-claw as a subtree;
(iii) T has a spine. �

Theorem B implies a linear-time recognition algorithm for 2-DORTs [25], since it suffices to verify whether a longest path
in a given tree is a spine, and a longest path in a tree can be obtained in linear time [7].
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(a) An edge-asteroid of size 5 in C8 . (b) An edge-asteroid of size 3 in C9 . (c) An edge-asteroid of size 3 in a 3-claw.

Fig. 1. Examples of edge-asteroids, denoted by bold lines.

Fig. 2. Examples of A5Es, denoted by bold lines.

3. Orthogonal ray graphs

Although we have no characterizations for orthogonal ray graphs, two necessary conditions have been known. The first
condition is included in [25].

Theorem C ([25]). A cycle C2n of length 2n is an ORG if and only if 2 ≤ n ≤ 6. �

The second condition is a forbidden structure similar to edge-asteroid [9], asteroidal triple of edges [19], and edge-
asteroidal set [6]. The following arguments are appeared in [23]. A set of five edges {e0, e1, . . . , e4} ⊆ E(G) of a graph G
is called an asteroidal quintuple of edges (A5E for short) if for any i, 0 ≤ i ≤ 4, there exists a path from ei to ei+1 that contains
no vertices in N[ei−1] ∪ N[ei+2] (subscripts are modulo 5). Examples of A5Es are shown in Figs. 2 and 5. The following is
immediate from the definition of A5Es.

Lemma D ([23]). If ei and ej are distinct edges in an A5E of a graph, then ei and ej share no common vertex and they are not
joined by an edge. �

The following theorem has also appeared in [23]. We include a proof here.

Theorem E ([23]). Any ORG contains no A5Es. �

Proof. Let G be an ORG with bipartition (U, V ) and an orthogonal ray representation R(G) = {Rw | w ∈ V (G)}. For the
representationR(G), each edge ofG can be classified into four types as up-right, down-right, up-left, or down-left, depending
on the orientations of the horizontal ray (rightward or leftward), and the vertical ray (upward or downward) corresponding
to the end-vertices of the edge.

We prove the theorem by contradiction. Suppose that G contains an A5E E5 = {e0, e1, . . . , e4}. We have from Lemma D
that the rays corresponding to the end-vertices of the edges of E5 are distinct and disjoint, except for the intersection
corresponding to the edges of E5. Since |E5| = 5, at least two edges in E5 have the same type. We assume without loss
of generality that edges ei and ej are both of type up-right. For an up-right edge e = (u, v)with u ∈ U and v ∈ V , two rays Ru
andRv divide theplane into two regions.We refer to the region aboveRu andon the right side ofRv as the inner region of e, and
the other as the outer region. We further assume that the rays corresponding to the end-vertices of ei lie in the inner region
of ej, and if E5 has other up-right edges then the rays of the up-right edges lie in the outer region of ej. The rays of the edges
in E5 of the other type lie in the outer region of ej, since they do not intersect with the rays corresponding to the end-vertices
of ej. Hence, any path from ei to another edge in E5 must have a vertex adjacent to at least one of the end-vertices of ej.

We distinguish four cases: (i) If j = i + 1, let k = i − 1, (ii) if j = i − 1, let k = i + 1, (iii) if j = i + 2, let k = i + 1, and
(iv) if j = i − 2, let k = i − 1 (additions and subtractions are modulo 5). In each case, any path from ei to ek must have a
vertex adjacent to the end-vertices of ej, contradicting to the definition of A5Es. Hence, G contains no A5Es. �

From the theorems above, we have the following.

Corollary F ([23]). Any ORG contains no induced cycles of length at least 14 or A5Es. �
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(a) A graph C12_1 . (b) A graph C12_2 . (c) A graph C12_3 .

Fig. 3. Graphs with no induced cycle of length at least 14 or A5Es that is not ORG.

(a) A cycle C12 . (b) The representation of C12 .

Fig. 4. A cycle C12 and its orthogonal ray representation.

In the rest of this section, we show that the necessary condition in Corollary F is not sufficient. The characterization of
ORGs remains an open question.

Theorem 1. Graphs C12_1, C12_2, and C12_3 in Fig. 3 are not ORGs, while they contain no induced cycles of length at least 14 or
A5Es.

Proof. It is not difficult to see from Lemma D that the graphs contain no induced cycles of length at least 14 or A5Es. Now,
we show that the graphs have no orthogonal ray representations. To prove this, we first consider the orthogonal ray repre-
sentation R(C12) of C12, the cycle of length 12. We use the following lemma.

Lemma G ([14]). In an orthogonal ray representation of a cycle, at most three rays have the same direction. �

Hence, R(C12) has exactly three rays with the same direction. Let Ru1 , Ru2 , and Ru3 be the upward rays in R(C12) numbered
from left to right (see Fig. 4(b) for example). Similarly, let Rr1 , Rr2 , and Rr3 be the rightward rays in R(C12) numbered from
top to bottom, let Rd1 , Rd2 , and Rd3 be the downward rays in R(C12) numbered from right to left, and let Rl1 , Rl2 , and Rl3 be
the leftward rays in R(C12) numbered from bottom to top. We number the corresponding vertices of C12 in the same way.

We can easily see that both Ru1 and Ru2 intersect Rl3 and both Ru2 and Ru3 intersect Rr1 . Similarly, both Rr1 and Rr2 inter-
sect Ru3 , both Rr2 and Rr3 intersect Rd1 , both Rd1 and Rd2 intersect Rr3 , both Rd2 and Rd3 intersect Rl1 , both Rl1 and Rl2 intersect
Rd3 , both Rl2 and Rl3 intersect Ru1 . Thus, the vertices in C12 corresponds to the rays as shown in Fig. 4(a) up to rotations and
reflections.

Since Ru2 is in between Ru1 ∪ Rd3 and Ru3 ∪ Rd1 , any ray intersecting Ru2 must intersect at least one of them. Thus, the
graph obtained from C12 by joining a degree-1 vertex to u2 is not an ORG. Similarly, the graph obtained from C12 by joining
a degree-1 vertex to either r2, d2, or l2 is not an ORG. Since the graph C12_1 is obtained from C12 by joining three degree-1
vertices to the consecutive three vertices, one degree-1 vertex must be joined to the vertex v2, v ∈ {u, r, d, l}. Hence, C12_1
is not an ORG. Similarly, since one degree-1 vertex in C12_2 and C12_3 must be joined to v2, v ∈ {u, r, d, l}, C12_2 and C12_3 are
not ORGs. Then, we have the theorem. �

4. Orthogonal ray trees

In the previous section, we show that any ORG contains no A5Es, but this necessary condition is not sufficient to charac-
terize ORGs. In this section, we show that the condition is sufficient for ORTs. We also show other characterizations with a
linear-time recognition algorithm for ORTs.
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(a) Tree F0 . (b) Tree F1 . (c) Tree F2 . (d) Tree F3 .

Fig. 5. The minimal list F of forbidden minors for ORTs. Bold edges denote A5Es.

(a) NY -type. (b) N0-type. (c) N1-type. (d) N2-type. (e) N3-type. (f) N4-type.

Fig. 6. Ni-type trees, i ∈ {Y , 0, 1, . . . , 4}.

4.1. Characterizations

The contraction of an edge e = (u, v) of a graph G is the replacement of u and v with a new vertex w such that w is
adjacent to the vertices in (NG(u)∪NG(v)) \ {u, v}. A graph H is called aminor of a graph G if H is obtained from G by vertex
deletions, edge deletions, and edge contractions.

The identification of a vertex u of a tree T1 with a vertex v of a tree T2 denotes the construction of a tree T from T1 and T2
by replacing u and v with a new vertexw such thatw is adjacent to all the vertices inNT1(u) andNT2(v). The splitting a tree T
at a vertex w of T is the reverse operation of the identification of two vertices, that is, it produces a pair of trees T1 and T2 by
replacing w with a pair of new vertices u ∈ V (T1) and v ∈ V (T2) such that each vertex in NT (w) is adjacent to either u or v.

Let F be the set of trees shown in Fig. 5. We can see from the figures that every tree in F contains an A5E. It turns out in
Theorem 2 that F is the minimal list of forbidden minors for ORTs.

The graph obtained from a complete bipartite graph K1,n by replacing each edgewith a path of length 3 is called an (n, 3)-
spider. The vertex with degree n in an (n, 3)-spider T is called the center of T . Notice that a (3, 3)-spider is a 3-claw, and a
(5, 3)-spider is F0 in Fig. 5.

In this section, we denote a path P of length k as a sequence of vertices (v0, v1, . . . , vk) on P . We say that P is a path
from v0 to vk or a (v0, vk)-path. Two vertices v0 and vk are called the end-vertices of P , and the remaining vertices are called
the internal vertices of P . Notice that in a tree, any two vertices are connected by the unique path (see [2] for example). We
define the following (see Fig. 6).

- A tree is said to beNY -type if it is obtained from two paths of arbitrary lengths by identifying an end-vertex of a path with
an internal vertex of the other path. All the vertices are colored black.

- A tree is said to be N0-type if it is obtained from two paths of arbitrary lengths by identifying an internal vertex of a path
with an internal vertex of the other path. All the vertices are colored black.

- A tree is said to be Ni-type, 1 ≤ i ≤ 4, if it is obtained from a path P of length i together with two paths P1 and P2 of
arbitrary lengths by identifying one end-vertex of P with an internal vertex of P1 and identifying the other end-vertex of P
with an internal vertex of P2. The vertices on P1 and P2 are colored black, and the vertices on P , except for the end-vertices,
are colored white.

A tree T is called an Ni-tree, i ∈ {Y , 0, 1, . . . , 4}, if T contains an Ni-type tree Ti as a subtree such that every vertex of T is
within distance 2 from a black vertex of Ti. Now, we have the following.

Theorem 2. The following statements are equivalent for a tree T :

(i) T is an ORT;
(ii) T contains no A5Es;
(iii) T contains no tree in F as a minor;
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(iv) T is a 2-DORT or Ni-tree for some i ∈ {Y , 0, 1, . . . , 4};
(v) T can be split into two 2-DORTs.

Proof. (i) H⇒ (ii): It is immediate from Theorem E.

(ii) H⇒ (iii): Any tree in F has an A5E as shown in Fig. 5. Thus, if T contains a tree in F as a minor, then T contains an
A5E by the definition of A5Es.

(iii) H⇒ (iv): It suffices to show that if a tree is neither a 2-DORT nor an Ni-tree for any i ∈ {Y , 0, 1, . . . , 4}, it contains a
tree in F as a minor. Let T be such a tree. It follows from Theorem B that T contains at least one (3, 3)-spider as a subtree,
for otherwise T is a 2-DORT. We distinguish three cases.

Case 1 T contains an (n, 3)-spider for some n ≥ 5 as a subtree: Since a (5, 3)-spider is F0, T contains F0 as a minor.

Case 2 T contains a (4, 3)-spider as a subtree but contains no (n, 3)-spiders for any n ≥ 5: Let c1 be the center of the
(4, 3)-spider. T must contain another (3, 3)-spiderwhose center is not c1, for otherwise T is anN0-tree. Let c2 be the center of
another (3, 3)-spider in T . Let T ′ be the tree obtained from T by contracting the edges on the (c1, c2)-path. Since T ′ contains
F0 as a subtree, T contains F0 as a minor.

Case 3 T contains a (3, 3)-spider as a subtree but contains no (n, 3)-spiders for any n ≥ 4: Suppose T contains at least
three (3, 3)-spiders with distinct centers. Let T ′ be the tree obtained from T by contracting the edges on the path from one
of the centers to another center. Since T ′ contains the (4, 3)-spider and the (3, 3)-spider with distinct centers, T ′ contains
F0 as a minor as shown in Case 2. Hence, T contains F0 as a minor.

Now,we assume that T contains atmost two (3, 3)-spiderswith distinct centers. Then, T must contain two (3, 3)-spiders,
for otherwise T is a 2-DORG or an NY -tree. Let c1 and c2 be the centers of the (3, 3)-spiders, let P be the (c1, c2)-path, and
let dist(c1, c2) be the length of P . We further distinguish five cases.

Case 3-1 dist(c1, c2) = 1 (see Fig. 6(c)): T is an N1-tree, a contradiction.

Case 3-2 dist(c1, c2) = 2 (see Fig. 6(d)): Let P = (c1, u1, c2). T must have two vertices v1 and v2 together with two edges
(u1, v1) and (v1, v2), for otherwise T is an N2-tree. Then, T contains F1 as a minor.

Case 3-3 dist(c1, c2) = 3 (see Fig. 6(e)): Let P = (c1, u1, u2, c2). T must have two vertices v1 and v2 together with two
edges (ui, v1) and (v1, v2), i ∈ {1, 2}, for otherwise T is an N3-tree. Then, T contains F1 as a minor.

Case 3-4 dist(c1, c2) = 4 (see Fig. 6(f)): Let P = (c1, u1, u2, u3, c2). T must have a vertex v1 togetherwith an edge (u2, v1),
or two vertices v1 and v2 together with two edges (ui, v1) and (v1, v2), i ∈ {1, 3}, for otherwise T is an N4-tree. If T has a
vertex v1 together with an edge (u2, v1), T contains F2 as a minor. If T has two vertices v1 and v2 together with two edges
(ui, v1) and (v1, v2), i ∈ {1, 3}, T contains F1 as a minor.

Case 3-5 dist(c1, c2) ≥ 5: T contains F3 as a minor.

(iv) H⇒ (v): We can see from Theorem B that if we split an Ni-tree (i ∈ {Y , 0, 1, 2}) at c1, then we obtain two 2-DORTs.
Similarly, if we split an Ni-tree (i ∈ {3, 4}) at u2, then we obtain two 2-DORTs.

(v)H⇒ (i): Suppose T can be split into two 2-DORTs, that is, T can be obtained from two 2-DORTs T1 and T2 by identifying
a vertex u ∈ V (T1) with v ∈ V (T2). Let Pi be the spine (longest path) of Ti for each i ∈ {1, 2}. Let V1(Ti) be the set of vertices
with distance 1 from the vertices of Pi for each i ∈ {1, 2}, and let V2(Ti) be the set of vertices with distance 2 from the
vertices of Pi. Let P1 = (u0, u1, . . . , up), and P2 = (v0, v1, . . . , vq). We distinguish six cases and construct an orthogonal ray
representation of T for each of them.

Case 1 u ∈ V (P1) and v ∈ V (P2): Let u = ui ∈ V (P1) and v = vj ∈ V (P2). For the vertices ui+k ∈ V (P1), −i ≤ k ≤ p − i,
define the corresponding rays as follows (see Fig. 7):

- let Rui be the rightward ray with endpoint (−2, 0);
- let Rui+k be the upward ray with endpoint (k, k − 1) if k is positive and odd;
- let Rui+k be the rightward ray with endpoint (k − 1, k) if k is positive and even;
- let Rui+k be the upward ray with endpoint (k − 1, −k − 1) if k is negative and odd; and
- let Rui+k be the leftward ray with endpoint (k, −k) if k is negative and even.

For the vertices vj+k ∈ V (P2), −j ≤ k ≤ q − j, define the corresponding rays as follows:

- let Rvj+k be the downward ray with endpoint (k + 1, −k + 1) if k is positive and odd;
- let Rvj+k be the rightward ray with endpoint (k, −k) if k is positive and even;
- let Rvj−1 be the downward ray with endpoint (0, 0);
- let Rvj+k be the downward ray with endpoint (k + 1, k) if k ≤ −3 and odd; and
- let Rvj+k be the leftward ray with endpoint (k + 2, k − 1) if k is negative and even.

The rays corresponding to the remaining vertices of T can be added to the specified regions shown in Fig. 7.
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Fig. 7. An orthogonal ray representation of T when u ∈ V (P1) and v ∈ V (P2) (Case 1).

Fig. 8. An orthogonal ray representation of T when u ∈ V (P1) and v ∈ V1(T2) (Case 2).

Case 2 u ∈ V (P1) and v ∈ V1(T2): Let u = ui ∈ V (P1), and let vj ∈ V (P2) be the vertex on P2 adjacent to v. For the
vertices of V (P1), define the corresponding rays as shown in Case 1. For the vertices vj+k ∈ V (P2), −j ≤ k ≤ q − j, define
the corresponding rays as follows (see Fig. 8):

- let Rvj be the downward ray with endpoint (2, 0);
- let Rvj+k be the rightward ray with endpoint (k + 1, −k − 3) if k is positive and odd;
- let Rvj+k be the downward ray with endpoint (k + 2, −k − 2) if k is positive and even;
- let Rvj−1 be the leftward ray with endpoint (2, −2);
- let Rvj+k be the leftward ray with endpoint (k + 2, k − 1) if k ≤ −3 and odd; and
- let Rvj+k be the downward ray with endpoint (k + 1, k) if k is negative and even.

The rays corresponding to the remaining vertices of T can be added to the specified regions shown in Fig. 8.

Case 3 u ∈ V (P1) and v ∈ V2(T2): Let u = ui ∈ V (P1), let v′
∈ V1(T2) be the vertex of V1(T2) adjacent to v, and let

vj ∈ V (P2) be the vertex on P2 adjacent to v′. For the vertices of V (P1), define the corresponding rays as shown in Case 1.
For the vertex v′ and the vertices vj+k ∈ V (P2), −j ≤ k ≤ q − j, define the corresponding rays as follows (see Fig. 9):

- let Rv′ be the downward ray with endpoint (2, 0);
- let Rvj be the leftward ray with endpoint (4, −2);
- let Rvj+k be the downward ray with endpoint (k + 3, −k − 1) if k is positive and odd;
- let Rvj+k be the rightward ray with endpoint (k + 2, −k − 2) if k is positive and even;
- let Rvj+k be the downward ray with endpoint (k + 1, k − 1) if k is negative and odd; and
- let Rvj+k be the leftward ray with endpoint (k + 2, k − 2) if k is negative and even.

The rays corresponding to the remaining vertices of T can be added to the specified regions shown in Fig. 9.
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Fig. 9. An orthogonal ray representation of T when u ∈ V (P1) and v ∈ V2(T2) (Case 3).

Fig. 10. An orthogonal ray representation of T when u ∈ V1(T1) and v ∈ V2(T2) (Case 5).

Case 4 u ∈ V1(T1) and v ∈ V1(T2): Let ui be the vertex on P1 adjacent to u. Since T can be split at ui into two 2-DORTs
(see Fig. 6(d)), T has an orthogonal ray representation as shown in Case 3.

Case 5 u ∈ V1(T1) and v ∈ V2(T2): Let ui ∈ V (P1) be the vertex on P1 adjacent to u, let v′
∈ V1(T2) be the vertex of

V1(T2) adjacent to v, and let vj ∈ V (P2) be the vertex on P2 adjacent to v′. For the vertex v′ and the vertices of V (P2), define
the corresponding rays as shown in Case 3. For the vertex u and the vertices ui+k ∈ V (P1), −i ≤ k ≤ p − i, define the
corresponding rays as follows (see Fig. 10):

- let Ru be the rightward ray with endpoint (−1, 0);
- let Rui be the upward ray with endpoint (1, −1);
- let Rui+k be the rightward ray with endpoint (k, k + 1) if k is positive and odd;
- let Rui+k be the upward ray with endpoint (k + 1, k) if k is positive and even;
- let Rui−1 be the leftward ray with endpoint (1, −1);
- let Rui+k be the leftward ray with endpoint (k, −k − 2) if k ≤ −3 and odd; and
- let Rui+k be the upward ray with endpoint (k − 1, −k − 3) if k is negative and even.

The rays corresponding to the remaining vertices of T can be added to the specified regions shown in Fig. 10.

Case 6 u ∈ V2(T1) and v ∈ V2(T2): Let u′
∈ V1(T1) be the vertex of V1(T1) adjacent to u, and let ui ∈ V (P1) be the vertex

on P1 adjacent to u′. Let v′
∈ V1(T2) be the vertex of V1(T2) adjacent to v, and let vj ∈ V (P2) be the vertex on P2 adjacent to

v′. For the vertex v′ and the vertices of V (P2), define the corresponding rays as shown in Case 3. For the vertices u, u′, and
ui+k ∈ V (P1), −i ≤ k ≤ p − i, define the corresponding rays as follows (see Fig. 11):

- let Ru be the rightward ray with endpoint (1, 0);
- let Ru′ be the upward ray with endpoint (1, 0);
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Fig. 11. An orthogonal ray representation of T when u ∈ V2(T1) and v ∈ V2(T2) (Case 6).

Fig. 12. Algorithm 1.

- Let Rui be the rightward ray with endpoint (−2, 1);
- let Rui+k be the upward ray with endpoint (k + 1, k) if k is positive and odd;
- let Rui+k be the rightward ray with endpoint (k, k + 1) if k is positive and even;
- let Rui+k be the upward ray with endpoint (k − 1, −k) if k is negative and odd; and
- let Rui+k be the leftward ray with endpoint (k, −k + 1) if k is negative and even.

The rays corresponding to the remaining vertices of T can be added to the specified regions shown in Fig. 11. �

4.2. A linear-time recognition algorithm

We show in Fig. 12 a linear-time algorithm to recognize ORTs. Our algorithm is based on Theorem 2 (iv). Since all the
steps can be done in linear time, we have the following.

Theorem 3. Algorithm 1 solves the recognition problem for ORTs in linear time. �

5. Three-directional orthogonal ray graphs

We first show a necessary condition for 3-DORGs. To prove the condition, we use the following.

Lemma 4. For any permutation π on {0, 1, . . . , 2k}, k ≥ 1, there exists an integer i, 0 ≤ i ≤ 2k, such that πi < πi+k+1 < πi+1
or πi > πi+k+1 > πi+1 (subscripts are modulo 2k + 1).



210 I. Mustaţă et al. / Discrete Applied Mathematics 201 (2016) 201–212

(a) A cycle C6 . (b) The representation of C6 .

Fig. 13. A cycle C6 and its orthogonal ray representation.

Proof. It suffices to show that there exists an integer i, 0 ≤ i ≤ 2k, such that (πi − πi+k+1)(πi+k+1 − πi+1) > 0. Suppose
contrary that (πi − πi+k+1)(πi+k+1 − πi+1) < 0 for any i, 0 ≤ i ≤ 2k. Then, we have that

0 >

2k
i=0

(πi − πi+k+1)(πi+k+1 − πi+1) =

2k
i=0

(πi − πi+k+1)
2 > 0,

a contradiction. Thus, we have the lemma. �

The following shows the necessary condition for 3-DORGs.

Theorem 5. Any 3-DORG contains no edge-asteroids.

Proof. Let G be a 3-DORG with bipartition (U, V ) and an orthogonal ray representation R(G) = {Rw | w ∈ V (G)}. We
assume without loss of generality that every Rv , v ∈ V , is an upward ray. Let (xw, yw) be the endpoint of Rw ∈ R(G),
w ∈ V (G). Since the vertical rays in R(G) are disjoint, every xv , v ∈ V , is distinct.

We prove the theorem by contradiction. Suppose thatG has an edge-asteroid {e0, e1, . . . , e2k} of size 2k+1, k ≥ 1, where
ei = (ui, vi) with ui ∈ U and vi ∈ V for any i, 0 ≤ i ≤ 2k. Notice that two edges in an edge-asteroid may share a common
vertex as shown in Fig. 1(a). Thus, it is possible that ei ≠ ej but vi = vj. However, we can see that for any i, ei and ei+k+1 share
no common vertex and have no edge joining them, for otherwise it contradicts the definition of edge-asteroids. Similarly,
ei+1 and ei+k+1 share no common vertex and have no edge joining them.

Now, we consider the upward rays Rvi , 0 ≤ i ≤ 2k, corresponding to the end-vertices of the edges in the edge-asteroid.
Let πi be the position of Rvi among the upward rays numbered from left to right, that is, we define the permutation π on
{0, 1, . . . , 2k} such that πi < πj if and only if xvi ≤ xvj for any i and j (Tie breaking arbitrarily). We have from Lemma 4 that
there exists an integer i such that πi < πi+k+1 < πi+1 or πi > πi+k+1 > πi+1 (subscripts are modulo 2k + 1), that means
the upward ray Rvi+k+1 is in between Rvi and Rvi+1 . Two rays Rui+k+1 and Rvi+k+1 divide the plane into two regions, and Rvi
and Rvi+1 are in the different regions since Rvi and Rvi+1 are upward rays. Hence, any path from ei to ei+1 must have a vertex
adjacent to ui+k+1 or vi+k+1, contradicting the definition of edge-asteroids. Thus, G contains no edge-asteroids. �

We have the following from Theorem 5.

Corollary 6. A cycle C2n of length 2n is a 3-DORG if and only if 2 ≤ n ≤ 3.

Proof. We can see that C2n is a 3-DORG if 2 ≤ n ≤ 3 (see Fig. 13 for a cycle of length 6). A cycle of length 8 has an edge-
asteroid as shown in Fig. 1(a). It follows that any cycle of length at least 8 has an edge-asteroid, and it is not a 3-DORG by
Theorem 5. Thus, we have the corollary. �

In Section 1, we include the hierarchy of graph classes related to ORGs [25], but it does not mention anything about
3-DORGs. Now, we have the following.

Corollary 7. {2-Directional Orthogonal Ray Graphs} ⊂ {3-Directional Orthogonal Ray Graphs} ⊂ {Orthogonal Ray Graphs},
where X ⊂ Y indicates a set X is a proper subset of Y .

Proof. Since the inclusions are trivial by the definitions, we show some separating examples for these classes. A cycle of
length 6 is a 3-DORG by Corollary 6, but not a 2-DORG by Theorem A. Thus, the class of 2-DORGs is a proper subset of the
class of 3-DORGs. Also, cycles of length 8, 10, and 12 are ORGs by Theorem C, but not 3-DORGs by Corollary 6. Thus, the class
of 3-DORGs is a proper subset of the class of ORGs, and we have the corollary. �

It is also shown in [25] that the class of 2-DORGs is a proper subset of the class of chordal bipartite graphs, but the classes
of ORGs and chordal bipartite graphs are incomparable. We have the following.

Corollary 8. The classes of 3-DORGs and chordal bipartite graphs are incomparable.



I. Mustaţă et al. / Discrete Applied Mathematics 201 (2016) 201–212 211

Fig. 14. The 3-dimensional hypercube Q3 . Bold edges denote a cycle of length 6.

(a) Case 1: xu < xv and yu < yv . (b) Case 2: xv < xu and yu < yv . (c) Case 3: xv < xu and yv < yu .

Fig. 15. The three cases of the relative position of the rays corresponding to u and v.

Proof. The class of 3-DORGs is not a subset of chordal bipartite graphs, since a cycle of length 6 is a 3-DORG by Corollary 6,
while it is not a chordal bipartite graph by the definition. On the other hand, chordal bipartite graphs having edge-asteroids
are shown in [25]. Since these graphs are not 3-DORGs by Theorem 5, the class of chordal bipartite graphs is not a subset of
the class of 3-DORGs. Thus, we have the corollary. �

Moreover, the following can be obtained from Theorems 5 and A.

Corollary 9. A 3-DORG is a 2-DORG if and only if it is a chordal bipartite graph. �

We also have the following from Corollary 9, since any tree is a chordal bipartite graph.

Corollary 10. A tree is a 3-DORT if and only if it is a 2-DORT. �

Note that Corollary 10 implies a linear-time recognition algorithm for 3-DORTs as shown in Section 2.
In the rest of this section, we show that the 3-dimensional hypercube Q3 (see Fig. 14) is not a 3-DORGs, while it contains

no edge-asteroids. It follows that the necessary condition in Theorem 5 is not sufficient to characterize 3-DORGs. The
characterization of 3-DORGs remains an open question. We first show the following.

Lemma 11. If G is a 3-DORG with bipartition (U, V ) and two vertices u ∈ U and v ∈ V are not adjacent, then the subgraph of
G induced by N(u) ∪ N(v) is a 2-DORG.

Proof. Let R(G) = {Rw | w ∈ V (G)} be an orthogonal ray representation of G. We assume without loss of generality that
every Rv′ , v′

∈ V , is an upward ray. We further assume that Ru is a rightward ray. Let Guv be the subgraph of G induced by
N(u) ∪ N(v), and let R(Guv) be the restriction of R(G) to the rays corresponding to the vertices of Guv . Let (xw, yw) be the
endpoint ofRw ∈ R(G),w ∈ V (G).Wedistinguish three cases according to the relative position of the endpoints ofRu andRv .

Case 1 xu < xv and yu < yv (see Fig. 15(a)): A bipartite graph G′ with bipartition (U ′, V ′) is called a convex graph [10]
if there exists a total ordering of the vertices in V ′ such that for any u′

∈ U ′, the vertices in N(u′) occur consecutively in
the ordering. It is known that any convex graph is a 2-DORG [25]. We show in this case that Guv is a convex graph. Let
(v1, v2, . . . , vp) be the total ordering of N(u) such that for any vi and vj, i < j if and only if xvi < xvj . Since yu < yv , we can
see that for any u′

∈ N(v), N(u′) occur consecutively in such ordering. Thus, Guv is a convex graph.

Case 2 xv < xu and yu < yv (see Fig. 15(b)): We have xv < xu < xv′ for every v′
∈ N(u). Thus, we obtain the orthogonal

ray representation of Guv from R(Guv) by replacing each rightward ray with a leftward ray having the same y-coordinate
whose endpoint is on the right of all the vertical rays intersecting Ru. It follows that Guv is a 2-DORG.

Case 3 xv < xu and yv < yu (see Fig. 15(c)): The proof is similar to that in Case 2, and is omitted. �

Let G be a bipartite graph with bipartition (U, V ) that is not a 2-DORG, and let G′ be the graph obtained from G by adding
two non-adjacent vertices u and v to G such that u is adjacent to every vertex in V and v is adjacent to every vertex in U . In
other words, V (G′) = V (G) ∪ {u, v} and E(G′) = E(G) ∪ {(u, z) | z ∈ V } ∪ {(w, v) | w ∈ U}. Then, G′ is not a 3-DORG by
Lemma 11. Now, we have the following.



212 I. Mustaţă et al. / Discrete Applied Mathematics 201 (2016) 201–212

Theorem 12. The 3-dimensional hypercube Q3 is not a 3-DORG, while it contains no edge-asteroids.

Proof. Notice that Q3 is obtained from C6 (the cycle of length 6) together with two non-adjacent vertices u and v by joining
u to the vertices in one color class of C6 and joining v to the vertices in the other color class of C6 (see Fig. 14). Since C6 is not
a 2-DORG by Theorem A, Q3 is not a 3-DORG.

It remains to show that Q3 contains no edge-asteroids. A set of edges {e0, e1, . . . , e2k} ⊆ E(G), k ≥ 1, of a graph G is
an edge-asteroid if and only if for any i, 0 ≤ i ≤ 2k, two edges ei and ei+1 are in the same connected component of the
subgraph of G obtained by deleting all the vertices adjacent to the end-vertices of ei+k+1 (subscripts are modulo 2k+ 1). We
can observe that for any edge e of Q3, only one edge remains after deleting all the vertices adjacent to the end-vertices of e.
Thus, Q3 contains no edge-asteroids, and we have the theorem. �
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