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PAPER
On the Three-Dimensional Channel Routing

Satoshi TAYU†a), Toshihiko TAKAHASHI††, Eita KOBAYASHI†, Members, and Shuichi UENO†, Fellow

SUMMARY The 3-D channel routing is a fundamental problem on the
physical design of 3-D integrated circuits. The 3-D channel is a 3-D grid G
and the terminals are vertices of G located in the top and bottom layers. A
net is a set of terminals to be connected. The objective of the 3-D channel
routing problem is to connect the terminals in each net with a Steiner tree
(wire) in G using as few layers as possible and as short wires as possible in
such a way that wires for distinct nets are disjoint. This paper shows that
the problem is intractable. We also show that a sparse set of ν 2-terminal
nets can be routed in a 3-D channel with O(

√
ν) layers using wires of length

O(
√
ν).
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1. Introduction

The three-dimensional (3-D) integration is an emerging
technology to implement large circuits, and currently being
extensively investigated. (See [2]–[4], [7], [9], [14], [16],
[19], [22] for example.) In this paper, we consider a prob-
lem on the physical design of 3-D integrated circuits.

The 3-D channel routing is a fundamental problem on
the physical design of 3-D integrated circuits. The 3-D
channel is a 3-D grid G consisting of columns, rows, and
layers which are rectilinear grid planes defined by fixing x-,
y-, and z-coordinates at integers, respectively. The numbers
of columns, rows, and layers are called the width, depth,
and height of G, respectively. (See Fig. 1.) G is called a
(W,D,H)-channel if the width is W, depth is D, and height
is H. A vertex of G is a grid point with integer coordinates.
We assume without loss of generality that the vertex set of
a (W,D,H)-channel is {(x, y, z) | x ∈ [W], y ∈ [D], z ∈ [H]},
where [i] = {1, 2, . . . , i} for a positive integer i. Layers de-
fined by z = H and z = 1 are called the top and bottom
layers, respectively.

A terminal is a vertex of G located on the top or bottom
layer. A net is a set of terminals to be connected. A net
containing k terminals is called a k-net. The object of the
3-D channel routing problem is to connect the terminals in
each net with a Steiner tree (wire) in G using as few layers
as possible and as short wires as possible in such a way that
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Fig. 1 3-D channel.

Steiner trees spanning distinct nets are vertex-disjoint. A set
of nets is said to be routable in G if G has vertex-disjoint
Steiner trees spanning the nets.

We first show in Sect. 2 that the 3-D channel routing
problem is intractable. We next show in Sect. 3 that if G is a
(2n, 2n, 3n+1)-channel, the terminals are located on vertices
with odd x- and y-coordinates, and each net has terminals
both on the top and bottom layers, then any set of n2 2-
nets is routable in G. We finally show in Sect. 4 some lower
bounds for the height of a 3-D channel routing for 2-nets. In
particular, we show that there exists a set of n2 such 2-nets
that cannot be routed in a (2n, 2n, n/2 − 1)-channel.

2. Intractability

We consider in this section the complexity of the following
decision problem associated with the 3-D channel routing
problem.

3-D CHANNEL ROUTING

Instance: Positive integers W, D, H, a set of terminals
T ⊆ {(x, y, z) | x ∈ [W], y ∈ [D], z ∈ {1,H}} and a
partition of T into nets N1,N2, . . . ,Nν.

Question: Is a set of nets {N1,N2, . . . ,Nν} routable in a
(W,D,H)-channel?

We have two well-known problems as subproblems of
3-D CHANNEL ROUTING, namely, ONE-ROW CHAN-
NEL ROUTING and TWO-ROW CHANNEL ROUTING.
These problems can be stated as follows.

ONE-ROW CHANNEL ROUTING

Instance: Positive integers W, H, a set of terminals
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T ⊆ {(x, 1, z) | x ∈ [W], z ∈ {1,H}} and a partition
of T into nets N1,N2, . . . ,Nν.

Question: Is a set of nets {N1,N2, . . . ,Nν} routable in a
(W, 1,H)-channel?

TWO-ROW CHANNEL ROUTING

Instance: Positive integers W, H, a set of terminals
T ⊆ {(x, 1, z) | x ∈ [W], z ∈ {1,H}} and a partition
of T into nets N1,N2, . . . ,Nν.

Question: Is a set of nets {N1,N2, . . . ,Nν} routable in a
(W, 2,H)-channel?

It should be noted that TWO-ROW CHANNEL ROUTING
has been known as “UNRESTRICTED” TWO-LAYER
CHANNEL ROUTING in the literature. The complexity of
TWO-ROW CHANNEL ROUTING is a longstanding open
question posed by Johnson [10], while ONE-ROW CHAN-
NEL ROUTING can be solved in polynomial time as shown
by Dolev, Karplus, Siegel, Strong, and Ullman [8].

The purpose of this section is to show the following.

Theorem 1: 3-D CHANNEL ROUTING is NP-hard even
for 2-nets. □

The complexity of TWO-ROW CHANNEL ROUT-
ING is still open. Moreover, the complexity of the following
problem is open for any fixed integer d ≥ 2.

2.5-D CHANNEL ROUTING

Instance: Positive integers W, H, a set of terminals
T ⊆ {(x, y, z) | x ∈ [W], y ∈ [d], z ∈ {1,H}} and a
partition of T into nets N1,N2, . . . ,Nν.

Question: Is a set of nets {N1,N2, . . . ,Nν} routable in a
(W, d,H)-channel?

The 3-D channel routing for 2-nets is closely related to
the (n2 − 1)-puzzle defined below.

2.1 (n2 − 1)-Puzzle

The (n2 − 1)-puzzle is a generalization of the well-known
15-puzzle [12]. The (n2 − 1)-puzzle is played on an n × n
board, n ≥ 2. There are n2 distinct tiles on the board: one
blank tile and n2−1 tiles numbered from 1 to n2−1. Each of
the n2 square locations of the board is occupied by exactly
one tile. An instance of (n2−1)-puzzle consists of two board
configurations C (the initial configuration) and C′ (the final
configuration). A move is an exchange of the blank tile with
a nonblank tile located on a horizontally or vertically adja-
cent location. The goal of the puzzle is to find a sequence of
moves that transforms C to C′. The configuration C′ is said
to be reachable from C if there exists such a sequence of
moves. Notice that C′ is reachable from C if and only if C
is reachable from C′. The configurations C and C′ are said
to be reachable with h moves if there exists a sequence of at
most h moves that transforms C to C′. Figure 2 shows two
unreachable configurations of 15-puzzle. This is the origi-
nal 15-puzzle of Loyd [12]. Our problem is to find a shortest

Fig. 2 Unreachable configurations of 15-puzzzle.

sequence of moves that transforms C to C′ if C and C′ are
reachable. The corresponding decision problem is described
as follows.

(n2 − 1)-PUZZLE

Instance: Two n2 board configurations C and C′, and a
positive integer h.

Question: Are C and C′ reachable with h moves?

Ratner and Warmuth [15] showed the following.

Theorem I (n2 − 1)-PUZZLE is NP-complete. □

2.2 Proof of Theorem 1

We reduce (n2−1)-PUZZLE to 3-D CHANNEL ROUTING.
The (n2 − 1)-puzzle is naturally associated with a 3-D chan-
nel routing for 2-nets as follows. The configurations C and
C′ are corresponding to the top and bottom layers. A ter-
minal is corresponding to a location of a nonblank tile on C
or C′. A pair of locations of a nonblank tile on C and C′ is
corresponding to a 2-net.

Lemma 1: Configurations C and C′ of (n2 − 1)-puzzle are
reachable with h moves for h ≥ 2 if and only if the 2-
nets corresponding to the nonblank tiles are routable in an
(n, n, h)-channel.

Proof. Suppose that configurations C and C′ of
(n2 − 1)-puzzle are reachable with h moves for h ≥ 2. For a
sequence of moves that transforms C to C′, locations in the
sequence for a nonblank tile correspond to part of the wire
connecting the terminals of the corresponding 2-net. Since
such wires are vertex-disjoint, the 2-nets corresponding to
the nonblank tiles are routable in an (n, n, h)-channel.

Conversely, suppose that the 2-nets corresponding to
the nonblank tiles are routable in an (n, n, h)-channel with
h ≥ 2. Since the number of 2-nets is n2 − 1, every wire
is descending with respect to the z-coordinate, and for every
layer, at most one edge of the layer is contained in the wires.
Since such an edge corresponds to a move, the correspond-
ing configurations of (n2 − 1)-puzzle are reachable with h
moves. □

Lemma 1 implies a polynomial time reduction from
(n2 − 1)-PUZZLE to 3-D CHANNEL ROUGING. Thus we
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Fig. 3 Initial and final configurations of 15-puzzle.

Fig. 4 Corresponding 2-nets.

conclude that 3-D CHANNEL ROUTING is NP-hard by
Theorem I. This completes the proof of Theorem 1.

Example 1: For initial and final configurations C1 and C2
of 15-puzzle shown in Fig. 3, the corresponding 2-nets are
shown in Fig. 4. A sequence of 3 moves that transforms
C1 to C2, and the corresponding 3-D channel routing with
height 3 are shown in Fig. 5.

3. Sparse Instances

Let G be a (2
√
ν, 2
√
ν,H)-channel with a set

N =
{{

(X⟨H⟩k , Y
⟨H⟩
k ,H), (X⟨1⟩k , Y

⟨1⟩
k , 1)

} ��� X⟨H⟩k , Y
⟨H⟩
k ,

X⟨1⟩k , Y
⟨1⟩
k are odd integers in

[
2
√
ν
]
, k ∈ [ν]

}

of ν 2-nets. N is said to be sparse. The purpose of this
section is to show the following.

Theorem 2: Any sparse N can be routed in a (2
√
ν, 2
√
ν,

3
√
ν+ 1)-channel using wires of length O(

√
ν) in O(ν log ν)

time. □

We need some preliminaries to prove the theorem.

3.1 3-D Channels

We consider a 3-D channel of height H = 3
√
ν + 1, which

is a 2
√
ν × 2

√
ν × H 3-D grid. Each grid point is denoted

by (x, y, z) with x, y ∈ [2
√
ν ] and z ∈ [H]. The column,

row, and layer defined by x = X, y = Y , and z = Z are
called the X-column, Y-row, and Z-layer, respectively. The

Fig. 5 Correspondence between 15-puzzle and 3-D channel routing.

H-layer and 1-layer correspond to the top and bottom lay-
ers, respectively. Let N = {Nk | k ∈ [ν]} be a sparse set
of ν 2-nets, and let (X⟨H⟩k , Y

⟨H⟩
k ,H) and (X⟨1⟩k , Y

⟨1⟩
k , 1) be the

terminals of Nk (k ∈ [ν]), such that X⟨H⟩k , Y ⟨H⟩k , X⟨1⟩k , and Y ⟨1⟩k

are odd, and that (X⟨H⟩k , Y
⟨H⟩
k ,H) � (X⟨H⟩k′ , Y

⟨H⟩
k′ ,H) and (X⟨1⟩k ,

Y ⟨1⟩k , 1) � (X⟨1⟩k′ , Y
⟨1⟩
k′ , 1) if k � k′.

3.2 2-Row Channel Routings

We consider in this section the 2-row channel routing which
is used as a subroutine of our 3-D channel routing algorithm.
A 2-row channel of height m + 1 is a 2m × 2 × (m + 1) 3-D
grid G′. Let N ′ = {N′k | k ∈ [m]} be a sparse set of m 2-nets,
and let (X⟨m+1⟩

k , 1,m + 1) and (X⟨1⟩k , 1, 1) be the terminals of
N′k (k ∈ [m]), where X⟨m+1⟩

k and X⟨1⟩k are odd, and X⟨m+1⟩
k �

X⟨m+1⟩
k′ and X⟨1⟩k � X⟨1⟩k′ if k � k′.

Lemma 2: Any sparse N ′ can be routed in G′ so that no
wire passes through the top layer.

Proof. Let p1, p2, . . . , pl be grid points of G′ such that
pi and pi+1 differ in just one coordinate, i ∈ [l − 1]. Then,
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we denote by [p1, p2, . . . , pl] a wire connecting p1 and pl
obtained by connecting pi and pi+1 by an axis-parallel line
segment, i ∈ [l − 1]. If X⟨m+1⟩

k = X⟨1⟩k for all k ∈ [m], the
lemma clearly holds. Suppose without loss of generality that
X⟨m+1⟩

1 = X⟨1⟩2 . Then, if m ≥ 3, N ′ can be routed in G′ using
a wire defined by
[(

X⟨m+1⟩
1 , 1,m + 1

)
,
(
X⟨m+1⟩

1 , 1,m
)
,
(
X⟨m+1⟩

1 + 1, 1,m
)
,

(
X⟨m+1⟩

1 + 1, 1, 1
)
,
(
X⟨m+1⟩

1 + 1, 2, 1
)
,
(
X⟨1⟩1 , 2, 1

)
,

(
X⟨1⟩1 , 1, 1

)]

for N′1, a wire defined by
[(

X⟨m+1⟩
2 , 1,m + 1

)
,
(
X⟨m+1⟩

2 , 1, 2
)
,
(
X⟨m+1⟩

2 , 2, 2
)
,

(
X⟨1⟩2 , 2, 2

)
,
(
X⟨1⟩2 , 1, 2

)
,
(
X⟨1⟩2 , 1, 1

)]

for N′2, and wires defined by
[(

X⟨m+1⟩
k , 1,m + 1

)
,
(
X⟨m+1⟩

k , 1, k
)
,
(
X⟨m+1⟩

k , 2, k
)
,

(
X⟨1⟩k + 1, 2, k

)
,
(
X⟨1⟩k + 1, 1, k

)
,
(
X⟨1⟩k + 1, 1, 1

)
,

(
X⟨1⟩k , 1, 1

)]

for N′k, 3 ≤ k ≤ m. It is easy to see that the wires defined
above are disjoint. If m = 2, N ′ can be routed in G′ as
shown in Fig. 6. In either case, no wire passes through the
top layer.

□
The routing defined in the proof of Lemma 2 is called

a τ-routing for N ′. It is easy to see that a τ-routing for a
sparse set of ν 2-nets can be computed in O(ν) time. An
example of τ-routing is shown in Fig. 7. Now, we are ready
to prove Theorem 2.

Fig. 6 A routing for a set of two 2-nets.

Fig. 7 A τ-routing for a set of six 2-nets.

3.3 Proof of Theorem 2

3.3.1 Virtual Terminals

We introduce in this section virtual terminals to compute a
routing for a sparse set

N =
{
Nk =

{
(X⟨3

√
ν+1⟩

k , Y⟨3
√
ν+1⟩

k , 3
√
ν + 1), (X⟨1⟩k , Y

⟨1⟩
k , 1)

}����

X⟨3
√
ν+1⟩

k , Y⟨3
√
ν+1⟩

k , X⟨1⟩k , Y
⟨1⟩
k are odd integers in

[
2
√
ν
]
,

k ∈ [ν] Y ⟨1⟩k

}

of 2-nets in a (2
√
ν, 2
√
ν, 3
√
ν+1)-channel. Let H = 3

√
ν+

1, L = 2
√
ν + 1, and M =

√
ν + 1 for simplicity. By the

definition of N ,

|{k ∈ [ν] | X⟨H⟩k = 2 j − 1}| = √ν and (1)

|{k ∈ [ν] | X⟨1⟩k = 2 j − 1}| = √ν. (2)

We use two virtual terminals (X⟨L⟩k , Y
⟨L⟩
k , L) and (X⟨M⟩k , Y

⟨M⟩
k ,

M) for each net Nk. A set of virtual terminals {(X⟨L⟩k , Y
⟨L⟩
k ,

L), (X⟨M⟩k , Y
⟨M⟩
k ,M) | k ∈ [ν]} is said to be feasible if the

following conditions are satisfied:

(i) X⟨L⟩k = X⟨H⟩k for any k ∈ [ν];
(ii) Y ⟨L⟩k = Y ⟨M⟩k for any k ∈ [ν];
(iii) X⟨M⟩k = X⟨1⟩k for any k ∈ [ν];
(iv) (X⟨L⟩k , Y

⟨L⟩
k , L) � (X⟨L⟩h , Y

⟨L⟩
h , L) if k � h;

(v) (X⟨M⟩k , Y
⟨M⟩
k ,M) � (X⟨M⟩h , Y

⟨M⟩
h ,M) if k � h.

Lemma 3: For any sparse set N of 2-nets, there exists a
feasible set of virtual terminals {(X⟨L⟩k , Y

⟨L⟩
k , L), (X⟨M⟩k , Y

⟨M⟩
k ,

M) | k ∈ [ν]}. Moreover, these virtual terminals can be
computed in O(ν log ν) time.

Proof. For every k ∈ [ν], Y⟨L⟩k = Y ⟨M⟩k is determined as
follows. Let B be a bipartite multigraph defined as follows:

V(B) = {(2 j − 1, z) | j ∈ [
√
ν ], z ∈ {1,H}};

E(B) =
{ (

(X⟨H⟩k ,H), (X⟨1⟩k , 1)
) ����

{(X⟨H⟩k , Y
⟨H⟩
k ,H), (X⟨1⟩k , Y

⟨1⟩
k , 1)} ∈ N

}
.

For each j ∈ [
√
ν ], there exist exactly

√
ν 2-nets

{(X⟨H⟩k , Y
⟨H⟩
k ,H), (X⟨1⟩k , Y

⟨1⟩
k , 1)}

such that X⟨H⟩k = 2 j − 1 by (1), and exactly
√
ν 2-nets

{(X⟨H⟩k , Y
⟨H⟩
k ,H), (X⟨1⟩k , Y

⟨1⟩
k , 1)}

such that X⟨1⟩k = 2 j−1 by (2). Therefore, B is
√
ν-regular. A√

ν-regular bipartite multigraph has a
√
ν-edge-coloring by

König’s theorem [11]. Moreover, such a
√
ν-edge-coloring

can be computed in O(|E(B)| log |E(B)|) = O(ν log ν) time
[1], [5], [6]. Let c : E(B)→ [

√
ν ] be such an edge-coloring.

If ck is the color assigned to edge
(
(X⟨H⟩k ,H), (X⟨1⟩k , 1)

)
, we
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Fig. 8 An example of a (10, 10, 16)-grid G and its subgrids.

define Y ⟨L⟩k = Y ⟨M⟩k = 2ck − 1. We also define X⟨L⟩k = X⟨H⟩k

and X⟨M⟩k = X⟨1⟩k for every k ∈ [ν]. Then, the following set

V =
{
(X⟨L⟩k , Y

⟨L⟩
k , L), (X⟨M⟩k , Y

⟨M⟩
k ,M)

��� k ∈ [ν]
}

is a feasible set of virtual terminals for N . By definition,V
satisfies (i), (ii), and (iii). If X⟨L⟩k = X⟨L⟩h then X⟨H⟩k = X⟨H⟩h .
Thus, edges

(
(X⟨H⟩k ,H), (X⟨1⟩k , 1)

)
and
(
(X⟨H⟩h ,H), (X⟨1⟩h , 1)

)
of

B have different colors, and we have Y⟨L⟩k � Y⟨L⟩h . Thus V
satisfies (iv). If X⟨M⟩k = X⟨M⟩h then X⟨1⟩k = X⟨1⟩h . Thus, edges(
(X⟨H⟩k ,H), (X⟨1⟩k , 1)

)
and
(
(X⟨H⟩h ,H), (X⟨1⟩h , 1)

)
of B have dif-

ferent colors, and we have Y ⟨M⟩k � Y ⟨M⟩h . Thus V satisfies
(v), and we conclude thatV is feasible.

Since the construction of B takes O(ν) time and com-
putation of c takes O(ν log ν) time, we have the lemma. □

3.3.2 Polynomial Time Algorithm

Let G⟨r⟩∗ j be a 2 × 2
√
ν × (

√
ν + 1)-subgrid induced by a set

of grid points:
{
(x, y, z) | x ∈ {2 j − 1, 2 j}, y ∈

[
2
√
ν
]
, r ≤ z ≤ r +

√
ν
}
,

and G⟨r⟩i∗ be a subgrid induced by a set of grid points:
{
(x, y, z) | x ∈

[
2
√
ν
]
, y ∈ {2i − 1, 2i}, r ≤ z ≤ r +

√
ν
}
.

We decompose the 3-D grid into 3
√
ν subgrids G⟨L⟩∗ j for j ∈

[
√
ν ], G⟨M⟩i∗ for i ∈ [

√
ν ], and G⟨1⟩∗ j for j ∈ [

√
ν ], as shown

in Fig. 8. By Lemma 3, we have a feasible set of virtual
terminals:

V = {(X⟨L⟩k , Y
⟨L⟩
k , L), (X⟨M⟩k , Y

⟨M⟩
k ,M) | k ∈ [ν]}.

We define three sets of 2-nets as follows:

N ⟨L⟩∗ j = {N⟨H,L⟩k = {(X⟨H⟩k , Y
⟨H⟩
k ,H), (X⟨L⟩k , Y

⟨L⟩
k , L)} |

X⟨H⟩k = 2 j − 1},
N ⟨M⟩i∗ = {N⟨L,M⟩k = {(X⟨L⟩k , Y

⟨L⟩
k , L), (X⟨M⟩k , Y

⟨M⟩
k ,M)} |

Input N = {Nk | k ∈ [ν]} with terminals (X⟨1⟩k , Y
⟨1⟩
k , 1) and

(X⟨H⟩k , Y
⟨H⟩
k ,H) for ∀k ∈ [ν].

Output Routing for N .
Step 0 for ∀k ∈ [ν],

Compute virtual terminals (X⟨L⟩k , Y
⟨L⟩
k , L) and (X⟨M⟩k ,

Y⟨M⟩k ,M).

Step 1 for ∀ j ∈ [
√
ν ],

Apply τ-routing to connect (X⟨H⟩k , Y
⟨H⟩
k ,H) and (X⟨L⟩k ,

Y⟨L⟩k , L) with X⟨H⟩k = X⟨L⟩k = 2 j − 1 in GL
∗ j.

Step 2 for ∀i ∈ [
√
ν ],

Apply τ-routing to connect (X⟨L⟩k , Y
⟨L⟩
k , L) and (X⟨M⟩k ,

Y⟨M⟩k ,M) with Y⟨L⟩k = Y⟨M⟩k = 2i − 1 in GM
i∗ .

Step 3 for ∀ j ∈ [
√
ν ],

Apply τ-routing to connect (X⟨M⟩k , Y⟨M⟩k ,M) and (X⟨1⟩k ,

Y⟨1⟩k , 1) with X⟨M⟩k = X⟨1⟩k = 2 j − 1 in G1
∗ j.

Step 4 for ∀k ∈ [ν],
Output a wire for Nk by concatenating three wires for Nk
above.

Fig. 9 3-D channel routing algorithm.

Y ⟨L⟩k = 2i − 1}, and

N ⟨1⟩∗ j = {N⟨M,1⟩k = {(X⟨M⟩k , Y
⟨M⟩
k ,M), (X⟨1⟩k , Y

⟨1⟩
k , 1)} |

X⟨1⟩k = 2 j − 1}.

SinceV is feasible, the terminals of 2-nets in N ⟨L⟩∗ j are con-

tained in G⟨L⟩∗ j , and so N ⟨L⟩∗ j is routable in G⟨L⟩∗ j by using τ-

routing for each j ∈ [
√
ν ]. Similarly, N ⟨M⟩i∗ is routable in

G⟨M⟩i∗ by using τ-routing for each i ∈ [
√
ν ], and N ⟨1⟩∗ j is

routable in G⟨1⟩∗ j by using τ-routing for each j ∈ [
√
ν ].

A wire for each 2-net Nk in N is obtained by concate-
nating three wires N⟨H,L⟩k , N⟨L,M⟩k , and N⟨M,1⟩k .

Our 3-D channel routing algorithm is shown in Fig. 9.
It is straightforward that N is routed in a 3-D channel of
height 3

√
ν+1. Since the length of every wire of a τ-routing

is at most 3
√
ν + 4, the maximum wire length of our 3-D

channel routing algorithm is at most 9
√
ν + 12.

It should be noted that the time complexity of our 3-
D channel routing algorithm is O(ν log ν), since Step 0 takes
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O(ν log ν) time, and other steps take O(ν) time as easily seen.
This completes the proof of Theorem 2.

4. Lower Bounds

We investigate in this section some lower bounds for the
height of 3-D channel routing. We assume for simplicity
that G is an (S , S ,H)-channel, and

N = {Nk = {(xt
k, y

t
k,H), (xb

k , y
b
k , 1)} | k ∈ [ν]}

is a set of ν 2-nets, where ν < S 2, and H ≥ 2.

4.1 Densities

Our first lower bound is the layer density ∆lay(N) which is
defined as follows:

∆lay(N) =

∑ν
k=1

(
|xt

k − xb
k | + |yt

k − yb
k |
)

S 2 − ν .

Theorem 3: If N is routable in G then H ≥ ⌈∆lay(N)⌉.
Proof. Since the length of a shortest path connecting ter-
minals of Nk is |xt

k − xb
k | + |yt

k − yb
k | + H − 1, any routing of

Nk in G contains |xt
k − xb

k | + |yt
k − yb

k | + H grid points. Thus,

ν∑

k=1

(
|xt

k − xb
k | + |yt

k − yb
k | + H

)
≤ S 2H,

and we have H ≥ ∆lay(N). Since H is an integer, H ≥
⌈∆lay(N)⌉ and we have the theorem. □

In Figs. 10 and 11, terminals of a net Nk are denoted by
k. It is easy to see that ∆lay(Na) = 28, and ∆lay(Nb) = 3/5.

Our second lower bound is the global density ∆glo(N)

Fig. 10 Na such that ∆lay(Na) dominates ∆glo(Na) and ∆loc(Na).

Fig. 11 Nb such that ∆glo(Nb) dominates ∆lay(Nb) and ∆loc(Nb).

which is defined as follows. Let R1,R2, . . . ,RS be the rows
of G, and C1,C2, . . . ,CS be the columns of G (See Figs. 10
and 11). For any i, j ∈ [ν], let

T t(Ri) = {(xt
k, y

t
k,H) | k ∈ [ν], yt

k = i},
T b(Ri) = {(xb

k , y
b
k , 1) | k ∈ [ν], yb

k = i},
N(Ri) = {Nk | k ∈ [ν], (yt

k − i)(yb
k − i) < 0},

T t(C j) = {(xt
k, y

t
k,H) | k ∈ [ν], xt

k = j},
T b(C j) = {(xb

k , y
b
k , 1) | k ∈ [ν], xb

k = j}, and

N(C j) = {Nk | k ∈ [ν], (xt
k − j)(xb

k − j) < 0}.
The following is immediate.

Lemma 4: A wire of any net in N(Ri) [N(C j)] contains a
vertex of Ri [C j]. □

Let d(Ri) [d(C j)] be the sum of the number of terminals on
Ri [C j] and the number of 2-nets which have a terminal on
both sides of Ri [C j], that is,

d(Ri) = |T t(Ri)| + |T b(Ri)| + |N(Ri)|, and (3)
d(C j) = |T t(C j)| + |T b(C j)| + |N(C j)|. (4)

Notice that

T t(Ri) ∪ T b(Ri) ⊆ V(Ri), and (5)
T t(C j) ∪ T b(C j) ⊆ V(C j). (6)

We define that:

∆glo(N) =

max


max {d(Ri) | i ∈ [S ]}

S
,

max
{
d(C j) | j ∈ [S ]

}

S


.

Theorem 4: If N is routable in G then H ≥ ⌈∆glo(N)⌉.
Proof. From Lemma 4, (3), and (5), we have d(Ri) ≤
|V(Ri)| = S H for any i ∈ [ν], since wires are vertex-disjoint.
Similarly, we have d(C j) ≤ S H for any j ∈ [ν]. Thus, we
have

H ≥ d(Ri)
S
,

d(C j)
S

for any i, j ∈ [S ], and we have the theorem. □
In Figs. 10 and 11, let tk and bk be the terminals of

Nk on the top and bottom layers, respectively. In Fig. 10,
{t9, t10, t13, t14, b5, b6, b1, b2} ⊆ V(R2), and for each k ∈
{3, 4, 7, 8, 11, 12}, tk and bk are on different sides of R2.
Therefore, we have d(R2) = 14. Since

max
{
max{d(C j) | j ∈ [S ]},max{d(Ri) | i ∈ [S ]}}

= d(R2)
= 14,

we have ∆glo(Na) = 14/4. In Fig. 11, terminals tk and bk for
each k ∈ {1, 2, 3, 4} are on C2, and terminals tk and bk for
each k ∈ {5, 6} are on different sides of C2. Therefore,

d(C2) = |{tk, bk | k ∈ {1, 2, 3, 4}} ∪ {N5,N6}| = 10,
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and we have ∆glo(Nb) ≥ 10/4.
Our final lower bound is the local density ∆loc(N)

which is defined as follows. Let Q be a cycle on top layer Lt,
Q′ be the corresponding cycle on bottom layer Lb, and Qi be
the corresponding cycle on the i-th layer defined by z = i.
Notice that V(Qi) = {(x, y, i) | (x, y,H) ∈ V(Q)}, QH = Q,
and Q1 = Q′. Let T (Q) be the set of terminals on Q, T (Q′)
be the set of terminals on Q′, NQ be the set of nets which
have a terminal inside of Q on Lt and a terminal outside of
Q′ on Lb, andN(Q′) be the set of nets which have a terminal
outside of Q on Lt and a terminal inside of Q′ on Lb. The
following is immediate.

Lemma 5: A wire of any net in NQ [Q′] contains a vertex
of
∪H

i=1 V(Qi). □

Let d(Q) [d(Q′)] be the sum of the number of terminals on Q
[Q′] and the number of 2-nets which have a terminal inside
of Q [Q′] on Lt [Lb], and a terminal outside of Q′ [Q] on Lb
[Lt], that is,

d(Q) = |N(Q)| + |T (Q)|, and (7)
d(Q′) = |N(Q′)| + |T (Q′)|. (8)

Notice that

T (Q) ⊆ V(Q), and (9)
T (Q′) ⊆ V(Q′). (10)

We define that:

∆loc(N) = max
{

d(Q) + d(Q′)
|V(Q)|

�����Q : a cycle on Lt

}
.

Theorem 5: If N is routable in G then H ≥ ⌈∆loc(N)⌉.
Proof. From Lemma 5, (7), (8), (9), and (10), we have

d(Q) + d(Q′) ≤
�������

H∪

i=1

V(Qi)

�������
= H|V(Q)|,

since wires are vertex-disjoint. Thus, we have

H ≥ d(Q) + d(Q′)
|V(Q)|

for any cycle Q on the top layer, and we have the theorem.
□

In Fig. 10, if I(Q) is the set of inner vertices of Q on
Lt, we have |I(Q)| < |V(Q)|/2, since S = 4. Therefore,
d(Q) ≤ |V(Q)| + |I(Q)| < 3|V(Q)|/2. Similarly, we have
d(Q′) < 3|V(Q′)|/2. Thus, we have ∆loc(Na) < 3/2 + 3/2 =
3. In Fig. 11, we have d(Q) < |V(Q)| and d(Q′) < |V(Q′)| for
any cycle Q and Q′ on Lt and Lb, respectively. Therefore,
∆loc(Nb) < 2.

4.2 Comparisons

We can show that there are instances Nlay, Nglo,
and Nloc such that ∆lay(Nlay) dominates ∆glo(Nlay) and
∆loc(Nlay), ∆glo(Nglo) dominates ∆lay(Nglo) and ∆loc(Nglo),

and ∆loc(Nloc) dominates ∆lay(Nloc) and ∆loc(Nloc).
For Na in Fig. 10, ∆lay(Na) dominates ∆glo(Na) and

∆loc(Na), since ∆lay(Na) = 28, ∆glo(Na) = 14/4, and
∆loc(Na) < 3 as we have calculated. For Nb in Fig. 11,
∆glo(Nb) dominates ∆lay(Nb) and ∆loc(Nb), since ∆glo(Nb) ≥
10/4, ∆lay(Nb) ≤ 1, and ∆loc(Nb) < 2 as we have calculated.

The proof of Theorem 8 shown in the next section pro-
vides a set of nets N such that ∆loc(N) dominates ∆glo(N)
and ∆lay(N) if ν is sufficiently large.

It is interesting to note that ∆loc(N) asymptotically
dominates ∆glo(N) for any N as shown in the following.

Theorem 6: ∆glo(N) = O(∆loc(N)) for any instance if the
layer is square.

Proof. For any x, y ∈ [S ], let Xx,h and Yy,h be cycles in-
duced by vertex sets

V(Xx,h)
= {( j, 1, h) | 1 ≤ j ≤ x} ∪ {( j, S , h) | 1 ≤ j ≤ x} ∪
{(1, i, h) | 1 ≤ i ≤ S } ∪ {(x, i, h) | 1 ≤ i ≤ S }, and

V(Yy,h)
= {(1, i, h) | 1 ≤ i ≤ y} ∪ {(S , i, h) | 1 ≤ i ≤ y} ∪
{( j, 1, h) | 1 ≤ j ≤ S } ∪ {( j, y, h) | 1 ≤ j ≤ S },

respectively. By definition, we have

d(Xx,h) ≥ d(Cx), d(Yy,h) ≥ d(Ry), and
|V(Xx,h)|, |V(Yy,h)| ≤ 4S .

Therefore, we have

∆glo(N)

= max


max {d(Ri) | i ∈ [S ]}

S
,

max
{
d(C j) | j ∈ [S ]

}

S



≤ max
{

max
{

d(Xx,H) + d(Xx,1)
|V(Xx,H)|/4

������ x ∈ [S ]
}
,

max
{

d(Yy,H) + d(Yy,1)
|V(Yy,H)|/4

������ y ∈ [S ]
}}

≤ max
{

d(Q) + d(Q′)
|V(Q)|/4

�����Q : a cycle on Lt.
}

= 4∆loc(N),

and we obtain the theorem. □

4.3 Sparse Instances

Suppose that G is a (2
√
ν, 2
√
ν,H)-channel with a sparse

set N = {Nk | i ∈ [ν]} of 2-nets, and Nk =

{(xt
k, y

t
k,H), (xb

k , y
b
k , 1)}, where xt

k, yt
k, xb

k , and yb
k are odd in-

tegers. We have shown in Sect. 3 that any sparse instanceN
is routable in G if H ≥ 3

√
ν + 1.

It follows from Theorem 6 above and Theorem 7 below
that ∆loc(N) asymptotically dominates ∆lay(N) and ∆glo(N)
for sparse instances.
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Theorem 7: ∆lay(N) = O(∆glo(N)) for any sparse in-
stance.

Proof. It is easy to see the following.

3ν∆lay(N) =
ν∑

k=1

(
|xt

k − xb
k | + |yt

k − yb
k |
)

≤
2
√
ν∑

j=1

d(C j) +
2
√
ν∑

i=1

d(Ri)

≤ 2
2
√
ν∑

i=1

2
√
ν∆glo(N)

= 8ν∆glo(N).

It follows that ∆lay(N) ≤ 8
3∆glo(N), and we have the theo-

rem. □
On the other hand, there are sparse instances N such
that neither ∆lay(N) nor ∆glo(N) asymptotically dominates
∆loc(N) as shown below.

Theorem 8: There exist sparse instances such that
∆loc(N) = ω(∆glo(N)).

Proof. Let Q1 and Q2 be disjoint square cycles on Lt such
that neither is inside of the other, and |V(Q1)| = |V(Q2)| =
8⌊ 4
√
ν⌋ − 4. (See Fig. 12.) Suppose that each 2-net with a

terminal inside Q1 [Q2] on Lt has the other inside Q′2 [Q′1]
on Lb, and for every other 2-net, the terminals on Lt and Lb
have the same x- and y-coordinates. Since d(Q1) = d(Q2) =
⌊ 4
√
ν⌋2 + 2⌊ 4

√
ν⌋ − 1, ∆loc(N) = Ω(⌊ 4

√
ν⌋). On the other hand,

∆glo(N) ≤ 2 as easily seen, and we have the theorem. □
Finally, we show the following which complements

Theorem 2.

Theorem 9: There exists a sparse set of 2-netsN that can-
not be routed in a (2

√
ν, 2
√
ν, 2
√
ν/3 − 1)-channel.

Proof. For i ∈ [
√
ν ], j ∈ [

√
ν ], and k = ( j − 1)

√
ν + i,

define that

X⟨1⟩k = 2 j − 1,

X⟨H⟩k =

{
2 j +

√
ν − 1 if j ≤ √ν

2 j − √ν − 1 if j ≥ √ν + 1,

Y ⟨1⟩k = 2i − 1,

Fig. 12 An example of a setN such that ∆loc(N) dominates ∆glo(N) and
∆lay(N).

Y ⟨H⟩k =

{
2i +

√
ν − 1 if i ≤ √ν, and

2i − √ν − 1 if i ≥ √ν + 1.

By the definitions of X⟨1⟩k , X⟨H⟩k , Y⟨1⟩k , and Y ⟨H⟩k , we have
���X⟨1⟩k − X⟨H⟩k

��� =
√
ν, and

���Y ⟨1⟩k − Y ⟨H⟩k

��� =
√
ν,

i.e.,
ν∑

k=1

( ���X⟨1⟩k − X⟨H⟩k

��� +
���Y ⟨1⟩k − Y ⟨H⟩k

���
)
= 2ν

√
ν. (11)

Let N = {Nk | k ∈ [ν]} be a set of ν 2-nets such that Nk =

{(X⟨H⟩k , Y
⟨H⟩
k ,H), (X⟨1⟩k , Y

⟨1⟩
k , 1)}. From (11), we have

∆lay(N) =
2ν
√
ν

4ν − ν =
2
√
ν

3
.

Thus, N cannot be routed in a (2
√
ν, 2
√
ν, 2
√
ν/3 − 1)-

channel, and we have the theorem. □

5. Concluding Remarks

We have shown that 3-D CHANNEL ROUTING is NP-
hard. In fact, we can show that 3-D CHANNEL ROUTING
is NP-complete. It is shown in [20], [21] that 3-D channel
routing is indeed in NP.

The Manhattan model is one of the most popular 2-D
channel routing models for practitioners. Szymanski [18]
proved that the corresponding decision problem is NP-hard,
while the complexity of the problem for 2-nets has been
open as mentioned in [13]. The knock-knee model is an-
other popular 2-D channel routing model. Sarrafzardeah
[17] proved that the corresponding decision problem is NP-
hard, while the complexity of the problem for 2-nets is also
open. It is interesting to note that 3-D CHANNEL ROUT-
ING is NP-hard even for 2-nets as we have shown in this
paper.
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