
Stable Matchings in Trees

Satoshi Tayu(B) and Shuichi Ueno

Department of Information and Communications Engineering,
Tokyo Institute of Technology, S3-57, Tokyo 152-8550, Japan

tayu@eda.ict.e.titech.ac.jp

Abstract. The maximum stable matching problem (Max-SMP) and the
minimum stable matching problem (Min-SMP) have been known to be
NP-hard for subcubic bipartite graphs, while Max-SMP can be solved in
polynomal time for a bipartite graph G with a bipartition (X, Y) such
that degG(v) ≤ 2 for any v ∈ X. This paper shows that both Max-SMP
and Min-SMP can be solved in linear time for trees. This is the first
polynomially solvable case for Min-SMP, as far as the authors know. We
also consider some extensions to the case when G is a general/bipartite
graph with edge weights.

1 Introduction

Let G be a simple bipartite graph (bigraph) with vertex set V (G) and edge
set E(G). For each vertex v ∈ V (G), let IG(v) be the set of all edges incident
with v, and degG(v) = |IG(v)|. For each v ∈ V (G), �v is a total preorder (a
binary relation with transitivity, totality, and hence reflexivity) on I(v), and
�G= {�v| v ∈ V (G)}. A total preorder �v is said to be strict if e �v f and
e �= f imply f ��v e. We say that �G is strict if �v is strict for every v ∈ V (G). It
should be noted that a strict total preorder is just a linear order. A pair (G,�G)
is called a preference system. A preference system (G,�G) is said to be strict if
�G is strict. We say that an edge e dominates f at vertex v if e �v f . A matching
M of G is said to be stable if each edge of G is dominated by some edge in M .
The stable matching problem (SMP) is to find a stable matching of a preference
system (G,�G). It is well-known that any preference system (G,�G) has a sta-
ble matching, and SMP can be solved in linear time by using the Gale/Shapley
algorithm [3]. It is also well-known that every stable matching for a strict pref-
erence system has the same size and spans the same set of vertices, while a
general preference system can have stable matchings of different sizes [3]. This
leads us to the following two problems. The maximum stable matching problem
(Max-SMP) is to find a stable matching with the maximum cardinality, and the
minimum stable matching problem (Min-SMP) is to find a stable matching with
the minimum cardinality. Manlove, Irving, Iwama, Miyazaki, and Morita showed
that Max-SMP and Min-SMP are both NP-hard [9].

Let (X,Y) be a bipartition of a bigraph G. A bigraph G is called a (p, q)-graph
if degx(≤)p for every x ∈ X, and degy(≤)q for every y ∈ Y . Irving, Manlove,
and O’Malley showed that Max-SMP is NP-hard even for (3, 3)-graphs, while
c© Springer International Publishing AG 2017
Y. Cao and J. Chen (Eds.): COCOON 2017, LNCS 10392, pp. 492–503, 2017.
DOI: 10.1007/978-3-319-62389-4 41

Stable Matchings in Trees 493

Max-SMP can be solved in polynomial time for (2,∞)-graphs [7]. Some indepth
consideration on the approximation for both problems can be found in [5].

The purpose of the paper is to show that Max-SMP and Min-SMP can be
solved in linear time if G is a tree. This is the first polynomially solvable case
for Min-SMP, as far as the authors know. We also consider some extensions to
the case when G is a general/bipartite graph with edge weights.

The rest of the paper is organized as follows. Section 2 gives a foundation for
our algorithms. Section 3.1 shows a linear time algorithm based on a dynamic
programming to compute the size of a maximum stable matching in a tree.
Section 3.2 shows a linear time algorithm, a modification of the algorithm in
Sect. 3.1, to compute a maximum stable matching in a tree. Section 3.3 mentions
an extension of the algorithm in Sect. 3.2 to compute a maximum-weight stable
matching in linear time for trees with edge weights. Section 4.1 mentions that
minimum stable matchings can be computed in linear time for trees (with edge
weights) by modifying algorithms in Sect. 3. Section 4.2 mentions some exten-
sions of our results to the case when G is a general graph with edge weights.

2 Stable Matchings in Trees

We need preliminaries to describe our algorithms.
Let T be a tree, and (T,�T) be a preference system, which is called a tree

preference system. A stable matching of (T,�T) is called a stable matching of
T , for simplicity. We use the following notations:

– we write u �v w (or w �v u) if (v, u) �v (v, w),
– we write u ≡v w if (v, u) �v (v, w) and (v, w) �v (v, u),
– we write u ≺v w (or w
v u) if u �v w and u �≡v w.

It should be noted that if �v is strict, then u ≡v w if and only if u = w. It
should be also noted that ≡v is an equivalence relation on IG(v).

We consider T as a rooted tree with the root r, which is a leaf (a vertex
of degree one) of T . For each vertex v ∈ V (T) − {r}, p(v) is the parent of v,
and D(v) is the set of descendants of v. For any v ∈ V (T) − {r}, we denote by
T (v) the subtree induced by D(v) ∪ {p(v)}. A matching M of T (v) is said to be
v-stable if every edge of E(T (v)) − {(v, p(v))} is dominated by some edge in M .
A vertex v is said to be matched with u in M if (u, v) ∈ M .

We define five sets of v-stable matchings of T (v) as follows.

– MP
v is the set of v-stable matchings of T (v) in which v is matched with p(v).

– MH
v is the set of v-stable matchings of T (v) in which v is matched with a

child c such that c �v p(v).
– ML

v is the set of v-stable matchings of T (v) in which v is matched with a
child c such that c
v p(v).

– MF
v is the set of v-stable matchings of T (v) in which v is matched with no

other vertices of T (v).
– MP

v is the set of v-stable matchings of T (v) in which v is not matched with
p(v).

494 S. Tayu and S. Ueno

If v(�= r) is a leaf, T (v) is a tree with E(T (v)) = {(v, p(v))}, and we have
E(T (v)) − {(v, p(v))} = ∅. Thus, we have the following.

Lemma 1. If v(�= r) is a leaf, then MP
v = {{(v, p(v))}}, MH

v = ML
v = ∅, and

MP
v = MF

v = ∅. �
It should be noted that for any v ∈ V (T) − {r}, MP

v = MH
v ∪ ML

v ∪ MF
v ,

MP
v ∩ MP

v = ∅, and every v-stable matching of T (v) is in MP
v ∪ MP

v .
Let r′ be the child of r. Since r′ is the only child of r, we obtain the following.

Lemma 2. A set M ⊆ E(T) is a stable matching of T if and only if M ∈
MP

r′ ∪ MH
r′ .

Proof. Suppose M is a stable matching of T = T (r′). Since M is an r′-stable
matching, M ∈ MS

r′ for some S ∈ {P,H,L, F}. If (r′, r) ∈ M then M ∈ MP
r′ .

If (r′, r) �∈ M then (r′, r) must be dominated by an edge in M , and thus, there
is a child c of r′ such that (r′, c) ∈ M and c �r′ r, which means that M ∈ MH

r′ .
Therefore, we conclude that M ∈ MP

r′ ∪ MH
r′ .

Conversely, suppose M ∈ MP
r′ ∪ MH

r′ . Since M is an r′-stable matching of
T = T (r′), every edge in E(T (v)) − {(r′, r)} is dominated by an edge in M .
If M ∈ MP

r′ then (r′, r) ∈ M . If M ∈ MH
r′ , then there exists a child c of r′

such that (r′, c) ∈ M and c �r′ r, which means that (r′, r) is dominated by
(r′, c) ∈ M . Thus, we conclude that M is a stable matching of T , and we have
the lemma. �

For a vertex v ∈ V (T), let C(v) be the set of children of v. For a set M ⊆ E(T)
and v ∈ V (T) − {r}, we define M(v) = E(T (v)) ∩ M .

Lemma 3. If M is a v-stable matching of T (v) then M(c) is a c-stable matching
of T (c) for any c ∈ C(v).

Proof. Since M is a matching of T (v), M(c) is a matching of T (c). Since M is a
v-stable matching of T (v), every edge in E(T (c)) − {(c, v)} is dominated by an
edge in M(c). Thus, M(c) is a c-stable matching of T (c). �
Lemma 4. For any v ∈ V (T) − {r} and set M ⊆ E(T (v)), M ∈ MP

v if and
only if the following conditions are satisfied:

(i) (v, p(v)) ∈ M ,
(ii) M(c) ∈ MP

c for every c ∈ C(v), and
(iii) M(c) ∈ MH

c for every c ∈ C(v) with c ≺v p(v).

Proof. Suppose M ∈ MP
v . Then, (i) follows from the definition of MP

v . Since
M is a v-stable matching of T (v), M(c) is a c-stable matching of T (c) for every
c ∈ C(v) by Lemma 3. Since v is matched with p(v), (v, c) �∈ M for any c ∈ C(v),
that is, M(c) ∈ MP

c . Thus, we have (ii). For any c ∈ C(v) with c ≺v p(v),
(v, c) is not dominated by (v, p(v)). Thus, there exists g ∈ C(c) such that (c, g)
dominates (c, v) = (v, c). Since g �c v, M(c) ∈ MH

c , and we have (iii).

Stable Matchings in Trees 495

Conversely, suppose a set M ⊆ E(T (v)) satisfies (i), (ii), and (iii). For any
c ∈ C(v), M(c) is a matching such that v is matched with no other vertex by (ii).
Thus, M is a matching of T (v). For any c ∈ C(v), each edge of E(T (c))−{(v, c)}
is dominated by an edge in M , since M(c) is a c-stable matching by (i), (ii), and
(iii). For any c ∈ C(v), if c �v p(v) then (v, c) is dominated by (v, p(v)), which is
in M by (i). If c ≺v p(v) then (v, c) is dominated by an edge in M by (iii). Thus,
M is a v-stable matching of T (v), and we conclude that M ∈ MP

v by (i). �
Lemma 5. For any v ∈ V (T) − {r} and set M ⊆ E(T (v)), M ∈ MH

v if and
only if the following conditions are satisfied:

(i) (v, p(v)) �∈ M , and
(ii) there exists c′ ∈ C(v) such that the following conditions are satisied:

(ii-1) c′ �v p(v) ,
(ii-2) M(c′) ∈ MP

c′ ,
(ii-3) M(c) ∈ MP

c for every c ∈ C(v) − {c′}, and
(ii-4) M(c) ∈ MH

c for every c ∈ C(v) with c ≺v c′.

Proof. Suppose M ∈ MH
v . Then, (i) and (ii-1) follow from the definition of MH

v .
Since M is a v-stable matching of T (v), M(c) is a c-stable matching of T (c) for
every c ∈ C(v) by Lemma 3. Since M ∈ MH

v , there exists c′ ∈ C(v) such that
(v, c′) ∈ M and c′ �v p(v), that is, M(c′) ∈ MP

c′ . Thus, we have (ii-2). Since
M is a matching and (v, c′) ∈ M , (v, c) �∈ M(c) for every c ∈ C(v) − {c′}. Thus,
M(c) ∈ MP

c for every c ∈ C(v) − {c′}, and we have (ii-3). For any c ∈ C(v) with
c ≺v c′, (v, c) is not dominated by (v, c′). Therefore, there exists g ∈ C(c) such
that (c, g) dominates (c, v). Since g �c v, M(c) ∈ MH

c , and we have (ii-4).
Conversely, suppose a set M ⊆ E(T (v)) satisfies (i) and (ii). For any c ∈

C(v) − {c′}, M(c) is a matching such that v is matched with no other vertex by
(ii-3). Also, M(c′) is a matching by (ii-2). Thus M is a matching of T (v). For
any c ∈ C(v) − {c′}, each edge in E(T (c)) − {(v, c)} is dominated by an edge
in M , since M(c) is a c-stable matching by (ii-3). For any c ∈ C(v), if c �v c′

then (v, c) is dominated by (v, c′), which is in M by (ii-2). If c ≺v c′ then (v, c)
is dominated by an edge in M by (ii-4). Thus, M is a v-stable matching of T (v)
by (i) and (ii), and we conclude that M ∈ MH

v by (ii-1) and (ii-2). �
Lemma 6. For any v ∈ V (T) − {r} and set M ⊆ E(T (v)), M ∈ ML

v if and
only if the following conditions are satisfied:

(i) (v, p(v)) �∈ M , and
(ii) there exists c′ ∈ C(v) such that the following conditions are satisfied:

(ii-1) c′
v p(v),
(ii-2) M(c′) ∈ ML

c′ ,
(ii-3) M(c) ∈ MP

c for every c ∈ C(v) − {c′}, and
(ii-4) M(c) ∈ MH

c for every c ∈ C(v) with c ≺v c′.

496 S. Tayu and S. Ueno

Proof. Suppose M ∈ ML
v . Then, (i) and (ii-1) follow from the definition of ML

v .
Since M is a v-stable matching of T (v), M(c) is a c-stable matching of T (c) for
every c ∈ C(v) by Lemma 3. Since M ∈ ML

v , there exists c′ ∈ C(v) such that
(v, c′) ∈ M and c′
v p(v), that is, M(c′) ∈ ML

c′ . Thus, we have (ii-2). Since
M is a matching and (v, c′) ∈ M , (v, c) �∈ M(c) for every c ∈ C(v) − {c′}. Thus,
M(c) ∈ MP

c for every c ∈ C(v) − {c′}, and we have (ii-3). For any c ∈ C(v) with
c ≺v c′, (v, c) is not dominated by (v, c′). Therefore, there exists g ∈ C(c) such
that (c, g) dominates (c, v). Since g �c v, M(c) ∈ MH

c , and we have (ii-4).
Conversely, suppose a set M ⊆ E(T (v)) satisfies (i) and (ii). For any c ∈

C(v) − {c′}, M(c) is a matching such that v is matched with no other vertex by
(ii-3). Also, M(c′) is a matching by (ii-2). Thus M is a matching of T (v). For
any c ∈ C(v) − {c′}, each edge in E(T (c)) − {(v, c)} is dominated by an edge
in M , since M(c) is a c-stable matching by (ii-3). For any c ∈ C(v), if c �v c′

then (v, c) is dominated by (v, c′), which is in M by (ii-2). If c ≺v c′ then (v, c)
is dominated by an edge in M by (ii-4). Thus, M is a v-stable matching of T (v)
by (i) and (ii), and we conclude that M ∈ ML

v by (ii-1) and (ii-2). �
Lemma 7. For any v ∈ V (T) − {r} and set M ⊆ E(T (v)), M ∈ MF

v if and
only if the following conditions are satisfied:

(i) (v, p(v)) �∈ M , and
(ii) M(c) ∈ MH

c for any c ∈ C(v).

Proof. Suppose M ∈ MF
v . Then, (i) follows from the definition of MF

v . Since
M is a v-stable matching of T (v), M(c) is a c-stable matching of T (c) for every
c ∈ C(v) by Lemma 3. Since M ∈ MF

v , for any c ∈ C(v), there exists g ∈ C(c)
such that (c, g) dominates (c, v). Since g �c v, M(c) ∈ MH

c for any c ∈ C(v),
and we have (ii).

Conversely, suppose a set M ⊆ E(T (v)) satisfies (i) and (ii). For any c ∈ C(v),
M(c) is a matching such that v is matched with no other vertex by (ii). Thus,
M is a matching of T (v). For any c ∈ C(v), each edge in E(T (c)) − {(c, v)} is
dominated by an edge in M , since M(c) is a c-stable matching by (ii). For any
c ∈ C(v), (c, v) is dominated by an edge in M by (ii). Thus, M is a v-stable
matching of T (v), and we conclude that M ∈ MF

v by (i). �

3 Linear Time Algorithms for Trees

3.1 Computing the Size of Maximum Stable Matchings

Now, we are ready to show a linear time algorithm to compute the size of a
maximum stable matching for a tree preference system. Our algorithm applies
a dynamic programming scheme based on the results in the previous section.

Let (T,�T) be a tree preference system. We consider T as a rooted tree with
root r, which is a leaf of T . For any v ∈ V (T)−{r} and S ∈ {

P,H,L, F, P
}
, we

define that

μS
v = max

M∈MS
v

|M |. (1)

Stable Matchings in Trees 497

That is, μS
v is the maximum number of edges of a v-stable matching in MS

v . We
define that μS

v = −∞ if MS
v = ∅.

From Lemma 1, we have the following.

Lemma 8. If v(�= r) is a leaf of T ,

μH
v = μL

v = −∞, (2)
μP

v = 1, and (3)
μF

v = 0. �

Define that for any v ∈ V (T) − {r} and c ∈ C(v),

μv,c = μP
c +

∑

c∈C(v), c′≺vc

μH
c′ +

∑

c∈C(v), c′�vc, c′ �=c

μP
c′ . (4)

From Lemmas 4 –7, we have the following.

Lemma 9. For any v ∈ V (T) − {r},

μP
v =

∑

c∈C(v), c≺vp(v)

μH
c +

∑

c∈C(v), c�vp(v)

μP
c + 1, (5)

μH
v = max{μv,c | c ∈ C(v), c �v p(v)}, (6)

μL
v = max{μv,c | c ∈ C(v), c
v p(v)}, (7)

μF
v =

∑

c∈C(v)
μH

c , and (8)

μP
v = max{μH

v , μL
v , μF

v }. (9)

�

From Lemmas 8 and 9, we have the following.

Lemma 10. Procedure Comp μ(v) shown in Fig. 1 computes μS
v for all v ∈

V (T) − {r} and S ∈ {P,H,L, F, P}. �
Now, we are ready to show the following.

Theorem 1. Algorithm Max-SIZE(T,�T , r) shown in Fig. 2 solves Max-SMP
for a tree preference system (T,�T) in linear time.

Proof. The validity of the algorithm follows from Lemmas 2 and 10. We shall
show that the time complexity of the algorithm is O(n), where n = |V (T)|.
Lemma 11. Given μS

c for every c ∈ C(v) and S ∈ {
P,H,L, F, P

}
, {μv,c | c ∈

C(v)} can be computed in O(|C(v)|) time,

498 S. Tayu and S. Ueno

Fig. 1. Procedure Comp μ(v).

Proof of Lemma 11. If v is a leaf, {μv,c | c ∈ C(v)} can be computed in O(1)
time, by definition. Let v ∈ V (T) be a vertex of degree at least 2, δ = |C(v)|,
and c1, c2, . . . , cδ be a sequence of the children of v such that ci �v ci+1 for any
i ∈ [δ − 1], where c1, c2, . . . , cδ are sorted in the problem instance. Define that
for any v ∈ V (T) − {r} and c ∈ C(v),

[c]v = {c′ | c′ ≡v c},

which is an equivalence class for an equivalence relation ≡v on IG(v). Then, C(v)
is partitioned into equivalence classes for ≡v. Let x ≥ 2. If cx ≡v cx−1 then

μv,cx = μv,cx−1 − (μP
cx−1

+ μP
cx) + (μP

cx−1
+ μP

cx).

Thus, by (4), μv,cx can be computed in O(1) time by using μv,cx−1 . If cx−1 ≺v cx,
let y be the integer satisfying

[cx−1]v = {cy, cy+1, . . . , cx−1}.

Since cx−1 �≡v cx, cx−1 and cx are contained in different equivalnce classes
for ≡v. Thus from (4), we have

μv,cx = μv,cx−1 −
⎛

⎝
x−2∑

i=y

μP
ci + μP

cx−1
+ μP

cx

⎞

⎠ +

⎛

⎝
x−1∑

i=y

μH
ci + μP

cx

⎞

⎠ . (10)

Stable Matchings in Trees 499

Therefore, μv,cx can be computed in O(|[cx−1]v|) time by using μv,cx−1 .
Thus, {μv,c | c ∈ C(v)} can be computed in O(|C(v)|) time, since the compu-

tation shown in (10) is executed once for each x with cx
v cx−1.

Once μv,c are obtained for every c ∈ C(v),
{
μS

v | S ∈ {H,L, P, F, P}}
can be computed in O(|C(v)|) = O(deg Tv) time, by Eqs. (5)–(9). From
Lemma 10, except for the recursive calls, Comp μ(v) for each vertex v can be
done in O(deg Tv) time. Moreover, in the execution of Max-SIZE(T,�T , r)
shown in Fig. 2, Comp μ(v) is called once for every v ∈ V (T), and thus,
Max-SIZE(T,�T , r) can be executed in

∑
v∈V (T) deg Tv = O(|V (T)|) time.

Since Max-SIZE(T,�T , r) computes max{μH
r′ , μP

r′}, we have the theorem, by
Lemma 2. �

Fig. 2. Algorithm Max-SIZE(T, �T , r).

3.2 Computing Maximum Stable Matchings

Before describing an algorithm for computing a maximum stable matching, we
modify Comp μ(v) to store an edge (u, v) in a matching with μS

v edges for any
S ∈ {H,P} when μS

v is computed. We use two variables γ(H, v) and γ(P , v) to
store a child c of v. γ(H, v) stores a child c with (c, v) ∈ M for any M ∈ MH

v

corresponding to μH
v . γ(P , v) stores a child c with (c, v) ∈ M for any M ∈ MH

v

corresponding to μP
v .

Figure 3 shows a recursive procedure Comp γ(v), which is obtained from
Comp μ(v) shown in Fig. 1 by adding some instructions for γ(S, v).

Lemma 12. For any S ∈ {H,P} and v ∈ V (T) − {r}, γ(S, v) stores the edge
of M incident with v such that M ∈ MS

v with |M | = μS
v , if any. �

We show an algorithm for computing a maximum stable matching of a tree
preference system (T,�T) in Fig. 4, where Procedure Add Edges(v, S,M) is
shown in Fig. 5.

Procedure Add Edges(v, S,M) traverses vertices of T in DFS order, and
we have the following.

Lemma 13. For any S ∈ {P,H,P} and M ⊆ E(T) with M ∩ E(T (v)) = ∅,
Add Edges(v, S,M) adds edges in M ′ to M for some M ′ ∈ MS

v satisfying
|M ′| = μS

v . �

500 S. Tayu and S. Ueno

Fig. 3. Procedure Comp γ(S, v).

From Lemmas 12 and 13, we have the following.

Theorem 2. Algorithm Max-SMP(T,�T , r) solves Max-SMP in linear time
for a tree preference system (T,�T). �

3.3 Computing Maximum-Weight Stable Matchings

A weighted preference system (G,�G, w) is a preference system (G,�G) with a
weight function w : E(G) → Z

+. For a matching M of G, w(M) =
∑

e∈M w(e) is
a weight of M . The maximum-weight stable matching problem (Max-WSMP) is
to find a stable matching with maximum weight for a weighted preference system.
It is easy to see that we can solve Max-WSMP for weighted tree preference
systems by the algorithm in Sect. 3.2 with a slight modification of μS

v . For any

Stable Matchings in Trees 501

Fig. 4. Algorithm Max-SMP(T, �T , r).

S ∈ {H,L, P, F, P}, we define that

μS
v = max

M∈MS
v

w(M) (11)

instead of (1). We also replace (3) and (5) with

μP
v = w(v, p(v)) and (12)

μP
v =

∑

c∈C(v), c≺vp(v)

μH
c +

∑

c∈C(v), c�vp(v)

μP
c + w(v, p(v)), (13)

respectively, and let Max-WSMP(T,�T , r, w) be the algorithm obtained by the
modifications above. Thus, we have the following.

Theorem 3. Algorithm Max-WSMP(T,�T , r, w) solves Max-WSMP in linear
time for a weighted tree preference system (T,�T , w). �

4 Concluding Remarks

4.1 Min-SMP and Min-WSMP

The minimum-weight stable matching problem (Min-WSMP) is to find a stable
matching with minimum weight for a weighted preference system. We can com-
pute minimum stable matchings in a similar way. We define μS

v = +∞ if MS
v = ∅.

Let Min-SMP(T,�T , r) be the algorithm obtained from Max-SMP(T,�T , r)
by replacing (2), (6), (7), and (9) with

μH
v = μL

v = +∞
μH

v = min{μv,c | c ∈ C(v), c �v p(v), c′ �= p(v)},

μL
v = min{c ∈ C(v), μv,c | c
v p(v)}, and

μP
v = min{μH

v , μL
v , μF

v },

502 S. Tayu and S. Ueno

Fig. 5. Procedure Add Edges(v, S, M).

respectively. Then, we have the following.

Theorem 4. Algorithm Min-SMP(T,�T , r) solves Min-WSMP in linear time
for a tree preference system (T,�T). �
Moreover, we can also compute the size of a minimum weighted stable matching
for a weighted preference system by replacing (3) and (5) with (12) and (13),
respectively. Let Min-WSMP(T,�T , r, w) be the algorithm obtained from Min-
SMP(T,�T , r) by the modifications. Then, we have the following.

Theorem 5. Algorithm Min-WSMP(T,�T , r, w) solves Min-WSMP in linear
time for a weighted tree preference system (T,�T , w). �

4.2 Extensions

The (weighted) preference system can be defined for general graphs without any
modification. The general stable matching problem (GSMP) is to find a stable
matching of a general preference system (G,�G), where G is a general graph.
It has been known that there exists a general preference system which has no
stable matching, and GSMP is NP-hard [6,10]. If G is a bipartite graph, (G,�G)
is referred to as a bipartite preference system in this section.

The maximum-weight general stable matching problem (Max-WGSMP) is to
find a stable matching with maximum weight for a weighted general preference
system. The minimum-weight general stable matching problem (Min-WGSMP)

Stable Matchings in Trees 503

is to find a stable matching with minimum weight for a weighted general pref-
erence system.

It has been known that both Max-WGSMP and Min-WGSMP are NP-hard
even for weighted strict general preference systems [2]. It is also known that
both problems are sovable in O(m2 log m) time for a weighted strict bipartite
preference system (G,�G, w), where m = |E(G)| [1,4,8]. An extension can be
found in [1].

It is interesting to note that both Max-WGSMP and Min-WGSMP can be
solved in plynomial time if the treewidth of G is bounded by a constant. We
can prove the following by extending our resutlts on trees, although the proof is
complicated.

Theorem 6. Both Max-WGSMP and Min-WGSMP can be solved in O(nΔk+1)
time if the treewidth of G is bounded by k, where n = |V (G)|, and Δ is the
maximum degree of a vertex of G. �

It should be noted that if k = 1, both problems can be solved in linear time
as shown in Theorems 3 and 5.

Acknowledgements. The research was partially supported by JSPS KAKENHI
Grant Number 26330007.

References

1. Chen, X., Ding, G., Hu, X., Zang, W.: The maximum-weight stable matching
problem: duality and efficiency. SIAM J. Discret. Math. 26, 1346–1360 (2012)

2. Feder, T.: A new fixed point approach for stable networks and stable marriages.
J. Comput. Syst. Sci. 45, 233–284 (1992)

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69, 9–15 (1962)

4. Gusfield, D., Irving, R.W.: The Stable Marriage Problem - Structure and Algo-
rithms. Foundations of computing series. MIT Press, Cambridge (1989)

5. Halldórsson, M., Irving, R., Iwama, K., Manlove, D., Miyazaki, S., Morita, Y.,
Scott, S.: Approximability results for stable marriage problems with ties. Theor.
Comput. Sci. 306, 431–447 (2003)

6. Irving, R.W., Manlove, D.: The stable roommates problem with ties. J. Algorithms
43, 85–105 (2002)

7. Irving, R.W., Manlove, D., O’Malley, G.: Stable marriage with ties and bounded
length preference lists. J. Discret. Algorithms 1, 213–219 (2009)

8. Király, T., Pap, J.: Total dual integrality of rothblum’s description of the stable-
marriage polyhedron. Math. Oper. Res. 33, 283–290 (2008)

9. Manlove, D., Irving, R., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of
stable marriage. Theor. Comput. Sci. 276, 261–279 (2002)

10. Ronn, E.: NP-complete stable matching problems. J. Algorithms 11, 285–304
(1990)

	Stable Matchings in Trees
	1 Introduction
	2 Stable Matchings in Trees
	3 Linear Time Algorithms for Trees
	3.1 Computing the Size of Maximum Stable Matchings
	3.2 Computing Maximum Stable Matchings
	3.3 Computing Maximum-Weight Stable Matchings

	4 Concluding Remarks
	4.1 Min-SMP and Min-WSMP
	4.2 Extensions

	References

