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Abstract

We introduce a clock schedule algorithm to obtain a
clock schedule that achieves a shorter clock period and that
can be realized by a light clock tree. A shorter clock pe-
riod can be achieved by controlling the clock input timing
of each register, but the required wire length and power
consumption of a clock tree tends to be large if clock in-
put timings are determined without considering the loca-
tions of registers. To overcome the drawback, our algorithm
constructs a cluster that consists of registers with the same
clock input timing located in a close area. In our algo-
rithm, first registers are partitioned into clusters by their
locations, and clusters are modified to improve the clock
period while maintaining the radius of each cluster small.
In our experiments for an industrial data of 888 registers,
the clock period achieved is 27% shorter than that achieved
by a zero-skew clock tree, and 1% longer than the theoreti-
cal minimum. The computational time is about 24.9 seconds
and the wire length and power consumption of the clock tree
is comparable to these of a zero skew tree.

1. Introduction

A semi-synchronous circuit is a circuit in which the clock
is assumed to be distributed periodically to each individual
register, though not necessarily to all registers simultane-
ously. Among various objectives in the synthesis of high-
performance circuits, the clock period minimization is the
primal subject. For a given circuit with fixed signal propa-
gation delays between registers, there exists a lower bound
of the clock period in semi-synchronous framework which
is usually smaller than the maximum signal delay between
registers. This lower bound is achieved if the clock is dis-
tributed to each register at proper timing [11, 8, 19].

The clock timing of register is the difference in clock ar-
rival time between the register and an arbitrary chosen (per-
haps hypothetical) reference register. The set of clock tim-
ings is called a clock schedule.

It is shown that an arbitrary clock schedule can be real-
ized by constructing a clock tree [18]. However the total
wire length of a clock tree that realizes a clock schedule
depends on the clock schedule. The required wire length
for a clock schedule tends to be large if it is determined

without considering the locations of registers. It is experi-
mentally shown that the required wire length for a random
clock schedule is larger than that for a gentle clock schedule
(A clock schedule is said to be gentle if the clock-timings
of registers are set to near when their locations are close
to each other) [13]. In practice, the allowable wire length
and power consumption of a clock tree would be those of a
zero-skew clock tree. Thus our problem is to find a clock
schedule that achieves a smaller clock period and that can
be realized with the wire length at least comparable to or
smaller than that of a zero-skew clock tree.

Many clock tree algorithms have been proposed to re-
duce the wire length and power consumption under the
framework of zero skew [2, 3, 4, 9, 10], bounded skew
[6, 7, 12], useful skew [21, 22], and associative skew [5].
However, they did not fully utilize the flexibility of clock
schedule.

The flexibility is utilized to improve the circuit perfor-
mance by combining the retiming in [16], and to improve
the circuit reliability in [14]. However, the realization of a
clock schedule is not considered at all. In [20], a practi-
cal clock tree algorithm was introduced in which a discrete
clock timing is assigned to each register. It is experimen-
tally shown that the clock period of a circuit is improved
about 10% compared against the circuit with a zero skew
clock tree, and the wire length of the clock tree is com-
parable to the zero skew clock tree. By simulations using
vender tools, the circuits obtained are proved stable under
various practical conditions. However, it takes more than
one hour to determine a clock schedule for a problem of
about one thousand registers, since the clock schedule algo-
rithm is based on a simulated annealing.

In this paper, we propose a fast clock schedule algorithm
that achieves a shorter clock period and that takes the real-
ization cost of a clock tree into account. In the algorithm, a
cluster of registers with the same clock input timing located
in a close area is constructed. The registers in each clus-
ter are connected by a Steiner tree and driven by a buffer.
To make the lengths of the intra-cluster wire and the inter-
cluster wire small, the number of clusters and the radius of
each cluster should be small in addition to achieve a shorter
clock period. In order to get such a desirable clustering, the
algorithm first partitions registers into clusters by their lo-
cations, and modifies clusters to improve the clock period
while maintaining the number of clusters and the radius of
each cluster small. In each repetition of modification, a set



of critical registers with respect to the clock period is se-
lected. Each register in the set is moved to a near or a new
cluster in order to relax the timing constraints.

In experiments, the algorithm is applied to an industrial
data of 888 registers. The computational time to obtain the
clock schedule is about 24.9 seconds by PentiumII 450Mhz.
The clock period achieved is 27% shorter than that achieved
by a zero-skew clock tree, and 1% longer than the theoret-
ical minimum without considering the realization of clock
schedule. To confirm the realization cost of the obtained
clock schedule, a clock tree that realizes the clock schedule
is constructed by the algorithm proposed in [1]. The clock
tree algorithm consists of two phases, intra-cluster routing
and inter-cluster routing. A procedure based on the cost-
radius balanced Steiner tree algorithm (CRBST) [17] and
that based on the schedule clock tree algorithm (SC) [13]
are used in intra-cluster routing and in inter-cluster routing,
respectively. To reduce the wire length and power consump-
tion, the flexibility of clock schedule is taken into account
in inter-cluster routing. It is shown that the clock tree con-
structed is comparable to a zero skew clock tree and that the
desirable clock schedule is obtained in a short time.

2. Preliminaries

We consider a circuit with a single clock consisting of
registers and combinatorial circuits between them. The
clock timing s(v) of register v is the difference in clock ar-
rival time between v and an arbitrary chosen (perhaps hy-
pothetical) reference register. The set of clock timings is
called a clock schedule.

We assume the framework that a circuit works correctly
if the following two types of constraints are satisfied for
every register pair with signal propagation [11]:

No-Double-Clocking (Hold) Constraints :

s(v)− s(u) ≤ dmin(u, v)

No-Zero-Clocking (Setup) Constraints :

s(u)− s(v) ≤ T −dmax(u, v)

where T is the clock period and dmax(u, v) (dmin(u, v)) is the
maximum (minimum) propagation delay from register u to
register v along a combinatorial circuit. These constraints
are represented by the constraint graph.

The constraint graph G(V,E) is defined as follows: a ver-
tex v∈V corresponds to a register, a directed edge (u, v)∈E
corresponds to either type of constraints; an edge (u, v) cor-
responding to the no-double (no-zero) clocking constraint is
called D-edge (Z-edge), and the weight w(u, v) of the edge
is dmin(u, v) (T − dmax(v,u)). An edge (u, v) is said to be
legal if s(v)− s(u) ≤ w(u, v), illegal otherwise. The slack
of an edge (u, v) is defined as

∆(u,v) = s(u)+w(u, v)− s(v).

If the slack of an edge is 0, the edge is said to be critical.
A cycle (path) consisting of critical edges in G is called a
critical cycle (path). A clock schedule is called feasible if
there is no illegal edge in G.

For given the maximum and minimum propagation de-
lays between registers, the minimum feasible clock period,

clock source

a

b

register functional element
with delay 2

12 6

2

22

4

c

d 2

Figure 1. Circuit

12 10

2

t-8

t-12

6

2
t-2

b

c

d

a

t-12

t-2
D-edge:

Z-edge :

Figure 2. Constraint graph GT=t

under the assumption that the clock timing of every regis-
ter can be controlled, can be determined by using the con-
straint graph G [19]. Note that the constraints can be sat-
isfied if and only if G contains no negative cycle [15, 19].
The constraint graph G when T = t is denoted by GT=t . For
example, the constraint graph GT=t of the circuit shown in
Fig 1 is shown in Fig 2. The smallest clock period t such
that GT=t contains no negative cycle is denoted by T (G).
Note that there exists a critical cycle in GT=t if and only if
t = T (G).

A feasible clock schedule can be obtained if the con-
straint graph contains no negative cycle. One way to get
a feasible clock schedule is as follows: choosing an arbi-
trary vertex in the constraint graph, let the clock timing of
each register be the weight of a shortest path from the cho-
sen vertex to the vertex corresponding to the register. Note
that a feasible clock schedule is not unique in general.

Let r(v) = [smin(v),smax(v)] be a range of clock timing
of register v. The set r of ranges is called consistent if a fea-
sible clock schedule is obtained whenever the clock timing
of every register v is chosen from r(v). One way to get a
consistent set of ranges is as follows: find a feasible clock
schedule s; let

r(v) = [s(v)− 1
2

min
(v,u)∈E

∆(v,u), s(v)+
1
2

min
(u,v)∈E

∆(u,v)].

Note that a consistent set of ranges is not unique in general.
In this paper, the registers are partitioned into several

clusters such that the clock timings of registers in each clus-
ter are constrained to be equal. The constraint graph GC ,
which is a constraint graph under this constraint, is obtained
from G by contracting vertices in each cluster into one ver-
tex. The minimum feasible clock period T (GC) and a feasi-
ble clock schedule sC under this constraint can be obtained



by using GC. In this case, the clock timing of a register v is
denoted by sC(v).

3. Algorithm

The algorithm partitions registers into several clusters.
The registers in each cluster are driven by a buffer. In each
cluster, the clock timings of registers are assumed to be
equal. This assumption makes sense when the routing de-
lay which is caused by the resistance of the wire connecting
from the driving buffer to registers can be ignored compared
with the gate delay which is caused by the resistance of a
buffer. In order to make the assumption valid, the algorithm
bounds the radius of the cluster, the radius of the minimum
bounding regular rhombus that covers locations of registers
in the cluster, so that the maximum wire length from the
driving buffer to each register can be bounded. Note that
the required intra-cluster wire length would be small by this
bound. Also the reliability of the circuit would be improved
since the deviation of clock delay caused by the deviation
of routing delay is suppressed [20].

By assuming that the clock delay from a clock source
to each driving buffer can be controlled, the algorithm im-
proves clustering to reduce the clock period. As the number
of clusters is increased, the minimum feasible clock period
becomes shorter, but the required inter-cluster wire length
would be larger. This is because not only the number of
cluster is increased, but also the resultant clock schedule
becomes random. Thus, in order to make the inter-cluster
wire length smaller, the number of clusters is controlled as
small as possible after taking the driving ability of a buffer
into account.

The outline of the proposed algorithm CBCS is shown
in Figure 3. In the outline, c(v) denotes the cluster that
contains register v, and h(v) dose the rhombus in which v is
located.

In Step 1, the size of rhombus is bounded so that the
maximum Manhattan length within the adjacent nine rhom-
buses is at most twice the maximum radius of a cluster and
that a buffer can drive the registers in each cluster. By re-
stricting the registers of a cluster to adjacent nine rhom-
buses, routing delays could be kept small enough to be ig-
nored. In Step 2, we compute the minimum clock period in
T (GC) and find a feasible schedule sC by the clock sched-
ule algorithm in [23]. Note that there is a critical cycle in
GC

T=T (GC). If there is a critical cycle in GT=T (GC), then it

is impossible to reduce the clock period by modifying the
clustering. Otherwise, the clock period could be reduced by
modifying the clustering. Thus, in the following, we assume
that the graph obtained from GT=T (GC) by deleting non-
critical edges becomes a directed acyclic graph. In Step 3,
S is defined as the set of registers v such that s′(v) �= sC(v).
The registers on a critical path P in GT=T (GC), except one
register, are contained in S if P contains a Z-edge. A register
not incident to a critical edge is not contained in S since δ
is chosen small. By assuming that there is no critical cycle
consisting only of D-edges, each critical cycle in GC

T=T (GC)
is broken if each register v in S is removed from c(v) and
a new cluster consisting only of v is created. However the
number of clusters should be small to make the wire length

Algorithm CBCS

Input • the maximum (minimum) propagation delay between
registers

• the location of each register

• the maximum radius of a cluster
Output

• A partition of registers into clusters, and the corre-
sponding minimum feasible clock period and a clock
schedule.

1. Partition the chip area into rhombuses with oblique lattice, and
let registers in each rhombus be an initial cluster associated
with the rhombus.

2. Construct the constraint graph GC, compute the minimum fea-
sible clock period T (GC) and find a feasible schedule sC in
T (GC).

3. Find a feasible clock schedule s′ in clock period T (GC)− δ
such that ∑v∈V |s′(v)− sC(v)| is minimum where δ is small
value. Let S be the set of registers v such that s′(v) �= sC(v).

4. For each register v in S, apply the following: find a cluster c′(v)
such that c′(v) is associated with nine rhombuses adjacent to
h(v) and that the intersection of the consistent range of v and
that of c′(v) is maximum; move v from c(v) to c′(v).

5. If there exists a register v in S such that c(v) �= c′(v) in Step 4,
then return to Step 2.

6. If there exists a register v in S such that no new cluster associ-
ated with h(v) has been created, then create a new cluster that
contains v and return to Step 2.

7. For each register v in each new cluster, and for each register
v that is contained in an original cluster not associated with
h(v), move to the original cluster in h(v) if the intersection of
the consistent range of v and that of the cluster is not empty.

8. Output clusters, minimum clock period, and clock schedule.

Figure 3. Outline of proposed algorithm

of the clock tree small. Thus we move a register v from c(v)
to c′(v) in Step 4 since no new critical cycle is formed if
the consistent range of a register v and that of a cluster C is
neither empty nor unique. Note that S might be redundant
to break all the critical cycles. Thus, we return to Step 2
when at least one register in S is moved in Step 4 by ex-
pecting that critical cycles might be broken. The number of
new clusters for each rhombus is restricted to at most one to
keep the number of clusters small. In Step 6, one new clus-
ter is created, if possible, and return to Step 2. In Step 7, a
register moved from the original cluster is returned to it if
possible. A register moved from the original cluster might
be returned to it if other registers are moved from it.

The consistent set of ranges of clusters are obtained by
using feasible schedule s when Step 2 is executed. It is also
updated when the cluster accepts a register at Step 4, but
postponed when a register is removed from the cluster for
the computation time. The consistent set of ranges of regis-
ters are obtained by using feasible schedule s′ when Step 3
is executed.

Although the number of registers in S might not be im-
portant to get an optimal clustering, the size of S is small in
most cases since the graph obtained by deleting non-critical
edges seldom become complicated one. In case that the
setup and hold times of registers are taken into account, the
weight of a D-edge might be negative, and a critical cycle
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Figure 4. Clustering result (49 clusters)

consisting only of D-edges might exist. In such case, the
clock schedule s′ is obtained using the constraint graph ob-
tained by reducing the weight of each edge by δ. However
we use the constraint graph obtained by reducing the clock
period by δ since it has been implemented.

4. Experiments

The algorithm CBCS is applied to the circuit of 888 reg-
isters placed within 728×710 [µm2] which comes from an
industry.

The maximum propagation delay between registers, that
is, the minimum clock period in ordinary complete syn-
chronous framework, is 11569 [ps], and the minimum clock
period in semi-synchronous framework when each cluster
consists of one register is 8323 [ps]. The maximum radius
of a cluster is set 300 [µm].

The minimum feasible clock period of the initial cluster-
ing of 37 clusters is 10154 [ps]. After Step 2 is executed
52 times, the minimum feasible clock period becomes 8391
[ps]. At this point, the number of clusters is 51 and the
number of register v not contained in the original cluster as-
sociated with h(v) is 103. In Step 7, six registers are moved
to their original clusters and the number of cluster becomes
49. The total computational time is about 24.9 seconds by
PentiumII 450Mhz. The clustering result is shown in Fig-
ure 4. The registers in each cluster are plotted by the same
symbol in Figure 4.

In order to confirm the quality of clustering, the clock
trees are constructed by the algorithm for low power pro-
posed in [1]. The clock tree algorithm consists of intra-
cluster routing and inter-cluster routing. In intra-cluster
routing, CRBST [17] is used to obtain a small Steiner tree
with radius constraint. In CRBST, the maximum allowable
path length from the source to sinks can be set by a param-
eter. In order to make the routing delay negligible, we set
the maximum radius of a cluster as the maximum allowable
path length for each inter-cluster routing. In inter-cluster
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Figure 5. Clock tree layout (8391[ps])

routing, the clock timing of each cluster within the consis-
tent range is achieved by the modified SC [13]. The mod-
ified SC is based on Differed-Merge-Embedding strategy
with buffer insertion. In the bottom up merging phase, a pair
that can be merged by a short interconnection with lower
power is selected recursively. The maximum path length
from a driving buffer and the maximum driving capacitance
of a buffer are also constrained in inter-cluster routing.

In Table 1, the statistics of clock trees are shown. The
columns consist of type of clustering, clock period, total
wire length, number of inserted buffers, and power con-
sumption. The total wire length is made of lengths of the
intra-cluster wire and the inter-cluster wire.

The clock trees in “Flat” obtained without clustering. In
the clock tree algorithm, intra-clustering routing is skipped.
The zero skew clock trees are obtained by ignoring the con-
sistent range of clock schedule. The clock trees in “Ini-
tial(37)” obtained by the initial clustering. The clock trees
in “Final(49)” obtained by the final clustering. The layout
of the clock tree that achieves the clock period 8391[ps] is
shown in Figure 5. The clock tree in “Industry” comes from
an industry. In the comparison between “Industry” and oth-
ers, there are several differences about conditions. For ex-
ample, relatively rough delay model is used in our exper-
iments. Though we believe that the result is not affected
significantly.

The clock trees obtained by clustering are better than
those in “Flat” with respect to both wire length and power
consumption. In constructing a clock tree in “Flat”, the
clock schedule is determined without considering the loca-
tions of registers. So many buffers are used and the wire
length and power consumption are large. With respect to
the wire length and the power consumption, the clock trees
in “Initial(37)” are better than others. But the minimum
clock period is more than 10000[ps]. Whenever cluster-
ing is modified in order to achieve shorter clock period, the
required wire length and power consumption are increased



clock period wire length (intra, inter) #buf power
[ps] (%) [µm] (%) [µm] [µW/MHz] (%)

Flat 8391 (73) 39857 (154) ( — , — ) 207 76.4 (122)
9000 (78) 35137 (135) ( — , — ) 182 69.0 (110)

10000 (86) 31067 (120) ( — , — ) 156 61.4 (98)
11569 (100) 29156 (111) ( — , — ) 138 57.5 (91)

(zero skew) 11569 (100) 35066 (135) ( — , — ) 163 65.6 (104)
Initial(37) 10154 (88) 23540 (91) (15410, 8130) 56 51.1 (81)

11569 (100) 22333 (86) (15410, 7033) 53 49.9 (80)
(zero skew) 11569 (100) 23828 (92) (15410, 8418) 63 52.5 (84)
Final (49) 8391 (73) 30317 (117) (19051, 11266) 90 63.4 (101)

9000 (78) 28706 (111) (19051, 9655) 73 59.4 (95)
10000 (86) 28267 (109) (19051, 9216) 69 58.4 (93)
11569 (100) 28032 (108) (19051, 8981) 64 57.4 (91)

Industry 11569 (100) 25947 (100) ( —, — ) 84 62.8 (100)

Table 1. Clock tree statistics

since the radius of each cluster becomes large or the number
of clusters is increased. By using the clustering “Final(49)”,
the clock period 8391 [ps] can be achieved. In construct-
ing a clock tree in “Final(49)”, the shorter we set the clock
period, the larger wire length is and the higher power con-
sumption is. The clock routing becomes harder as the clock
period was shorter since the consistent range of each regis-
ter becomes narrower.

5. Conclusion

In this paper, we proposed a fast clock schedule algo-
rithm that achieves a smaller clock period and that takes
the register locations into account. In experiments, the
clock period is reduced 27% compared to the complete syn-
chronous framework. The cost of clock tree that realizes
the obtained clock schedule is shown to be comparable to
the zero skew tree in experiments.

For the future works in order to obtain further smaller
clock tree, it is necessary to determine the clock timing of a
cluster and its consistent range by taking the characteristics
of the clock tree and its construction algorithm into account.
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