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Assignment of Intervals to Parallel Tracks with

Minimum Total Cross-Talk

Yasuhiro TAKASHIMA!, Nonmember, Atsushi TAKAHASHI'T,

SUMMARY  The most basic cross-talk minimization problem
is to assign given n intervals to n parallel tracks where the cross-
talk is defined between two intervals assigned to the adjacent
tracks with the amount linear to parallel running length. This
paper solves the problem for the case when any pair of intervals
intersects and the objective is to minimize the sum of cross-talks.
We begin the discussion with the fact that twice the sum of lengths
of |n/2] shortest intervals is a lower bound. Then an interval set
that attains this lower bound is characterized with a simple as-
signment algorithm. Some additional considerations provide the
minimum cross-talk for the other interval sets. The main proce-
dure is to sort the intervals twice with respect to the length of left
and right halves of intervals.

key words: minimum cross-talk, assignment, intersecting interval
sets

1. Introduction

Along with the development of high-density and high-
speed circuits, the layout design is confronting a new
difficulty in routing, i.e. the minimization of the cross-
talk between signals on wires. Various cross-talk mod-
els have been proposed according to the devices, design
styles, and specifications. However, there have been few
contributions that give any provable optimum. Most
of contributions, as far as the authors know ([1]-[5]),
are heuristics algorithms. To our knowledge, only one
preceding result is found in Zhou and Wong[6] where
an optimal river routing problem is solved on the same
model as is adopted in this paper. A motivation of this
paper is to present any non-trivial fact which could be
a principle or a rule-of-thumb in routing.

This paper assumes the simplest model called the
adjacent-cross-talk model: the cross-talk is observed
only between two adjacent parallel running intervals
and the quantity is proportional to the parallel running
length. The problem is to assign given n intervals to n
parallel tracks such that the sum of cross-talks is mini-
mum. This paper solves the problem for the intersecting
interval set which is a set of intervals on the real line
such that any two intervals have non-empty cross-talk
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when they are adjacent. In Fig. 1, an intersecting inter-
val set S and two assignments are shown. Each figure
between intervals represents the amount of cross-talk.
The total cross-talk of assignment A; is 62 and that of
assignment A, is 59. (Ap is optimal as will be proved
in Sect.5.)

Our problem has been graph theoretically formu-
lated as follows: The cross-talk is represented by an
edge-weighted complete graph where a vertex corre-
sponds to an interval and the weight of an edge is the
cross-talk between two intervals corresponding to its end
vertices when the intervals are adjacent. The optimal
interval assignment problem is equivalent to find a min-
imum weight Hamiltonian path of the graph since the
total cross-talk of an assignment of n intervals to the n
tracks corresponds to the length of a Hamiltonian path.

Finding a minimum weight Hamiltonian path of a
general graph is N'P-hard and trivially harder than our
problem. The converse had not been proved but still
this similarity has been making us doubt if our prob-
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Fig. 1 Tnput § = {[-4,10], [-6,7, [-88], [-10,12],
[—12,14], [~14,4]}, Two assignments A1, Az, cross-talks, and
double-orders.
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lem is A"P-hard. This paper clears that the problem in
our case so restricted that the problem is P. It will also
reveal that the problem is easier to treat directly than
using graph theoretical formulation. Or more precisely,
a polynomial time algorithm is given to construct an
optimal assignment. The algorithm is simply to sort
the intervals in two ways, thus, the time complexity of
the algorithm is O(nlogn).

The rest of the paper is organized as follows. Sec-
tion 2 is for definitions. In Sect.3, a lower bound is
presented. In Sect. 4, a notion of perfect assignment is
introduced. In Sect.5, the classes of interval sets for
which no perfect assignment is possible are considered.
Section 6 is the conclusion.

2. Preliminaries

The input of the problem is the set S = {I,,...,I,}
of intervals on the real line, x-axis, where each interval
lying between z = a and = b (a < b) is represented as
I =[a,b]. The length is |I| = b — a.

For two intervals I; = [a;, b;] and I; = [a;,b;] of S,

[max{a;, a; }, min{b;, b;}]
if max{a;,a;} < min{b;, b}
0 otherwise.

Ii/\IjZ

The interval set S considered in this paper is assumed
to satisfy.

Intersecting Assumption: Any two intervals are inter-
secting, i.e. I; AI; 0 for any I;, I; € S.

Then, without loss of generality, we assume that ev-
ery interval contains z = 0. By this assumption, each
interval I is represented by a pair of divided halves
I™ = [a,0] and I = [0,b] (¢ £ 0 < b), which are
called the negative and positive parts of I, respectively.

The intervals are embedded into the regularly
spaced n horizontal tracks in the channel. The i-th track
from the top in the channel is labeled 4, for simplicity.
An assignment A assigns the intervals to the tracks, one
interval to one track. Thus, an assignment A of S is an
integer valued one-to-one-function

A:S—{1,2,---,n},

representing that A assigns I € S to the A(I)-th track.
Two intervals /; and I; are said to be adjacent in A
if they are assigned to the adjacent tracks in A, i.e.
A(L) — A(L)] = 1.

An assignment A is evaluated by the smallness of
the total cross-talk

Xtalk(A) = >

I,,1;: adjacent in A

|1; A I ).

We consider the total cross-talks in the positive part and
negative part separately as
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Xtalk(A) = Xtalk (A) + Xtalk " (A)

where
Xtalk™(4) = )~ I A7
I,,I;: adjacent in A
Xtalk" (A) = > \LF AT

I;,I;: adjacent in A

If n < 2, the total cross-talk of any assignment is
unique. In the following, we assume that n > 3.

A sorting function O*(I) is defined for I € S
with respect to the shortness of the length in the pos-
itive part of I, i.e. OT(I) = k if I is k-th short-
est in {I,1F,...,I}}. Similarly, O~(I) is defined
with respect to the shortness of the length in the neg-
ative part. Thus, an interval I has the double-order
(O~(I),0"(I)). In Fig.1, the double-order is shown
in the right of each interval.

An interval I such that O (I) = k is denoted as
Iy, reading the k-th shortest interval in the positive
part. Ip,_ is defined similarly. Define four subsets of S
as follows.

Ss/_ = {Ik/_| 1L{k< n/Z},

Sl/— = {Ik/_|n/2 <k g 71},

Ssj ={lk/111 £ k <n/2},
Subscripts “s/=4” and “I/+” stand for “shorter intervals
in the positive or negative part” and “longer intervals
in the positive or negative part,” respectively. Note that
[Ss/-1 = 18s/41 = [51 =1 and |S;,-| = [Sy/4| = [%].
Ifnis odd, S,/ US_ = s/+ US4+ = S. Otherwise,
I(n2)/+ and Iy, ), are missing in these sets.

Further subsets are defined.

Ss,5 = S5/ N Sg/ps

Se 1= Sg)- NS4,

St =S NSs/q,

S = Sl/_ N Sl/‘+‘

The intervals which are [n/2]-th shortest in either
part will play key roles and be frequently referred to.

In the following, we let a = [n/2].
A brief consideration leads to the following fact.

Lemma 1:

|Sl,l| - |Ss,s’ =14 617
‘Ss,ll - ’Sl,s| = 62

where (61, 62) is:
Case 1. if n is odd, (0,0);
otherwise (n is even),

Case 2-a. if I,/ = I,,_, (0,0);
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(6,1)
2,2)
(3,3)
(1,4)
(4.5)
(5.6)

Fig. 2 The bipartite representation of S given in Fig. L.

Case 2-b. if I,/ € S;/_ and I,;_ € Sg/4., (1,0);
Case 2-c. if I,/ € S;/— and I/_ € Sy, (0,—1);
Case 2-d. if I,/ € S;y_ and I, € S,/+, (0,1);

( :

Case 2-e. if I,/ € Syy_ and I/ € Sy, -1,0)
0O
Note that cases (1) and (2-a)~(2-e) are exclusive
and form a classification of all possible interval sets.
These classes are easily understood by the bipartite rep-
resentation defined as follows. In the left and right
columns, lay n vertices. An interval I is represented
by an edge connecting the O~ (I)-th vertex in the left
and OT(I)-th vertex in the right. As an example, the
bipartite representation of the interval set given in Fig. 1
is shown in Fig.2.
An example of each class in Lemma 1 when n =38
is shown in Fig. 3.

3. A Lower Bound

In this section, we focus mainly on the positive part.
The same discussion is possible for the negative part.

Given an assignment .4, consider a pair of two ad-
jacent intervals. If one interval is contained in the other,
the quantity of the cross-talk between them is the length
of the shorter one. Hence, if OT(I;) < O7(J;) then
the quantity of the cross-talk between them in the pos-
itive part is |I;” A Ij+| = |I}]. In this case, I; is said to
dominate I; in the positive part in \A. An interval can
dominate at most two intervals in A and the number of
adjacent pairs is n — 1.

From these observations, we have that
Theorem 1: If n is odd,

T€Ss/4

Xtalkt (A) = 2
If n is even,

Xtalk " (A) =2 | > 1] + 115,

IESS/+
]

Let p; be the number of intervals dominated by
I;4 in the positive part in A. Trivially, p; is either 0,
1, or 2, and their sum is n — 1. The sequence p(A) =
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(2-d) (2-€)

Fig. 3 Typical interval sets belonging to each class. (dotted
lines: I/, broken lines: In/-)

(pi,p2,---,pn) is called the positive dominating vector
of A. The total cross-talk of A in the positive part is
Z?:l piII@‘—I;_;_ |

The set of positive dominating vectors is a partial
ordered set with respect to the total cross-talk in the
positive part in the following sense.
Lemma 2: Xtalk'(4;) < Xtalkt(A4y) if

p(A1) = (P1,-- -, Pis -3 Pjs - Pn)

and

p(AQ): (plv"'api_17"'7pj+17"'7pn)
A£i<j<n). )
Proof: Since \Ij+/+| > |IZ.7+|, Xtalk™(Ay) —
Xtalk™ (A1) = |15, | = 1], | =2 0. m

An assignment A and the positive dominating vec-
tor of A are called minimal in the positive part if the
positive dominating vector of A is

(2,2,...,2,0,0,...,0)

~———

o

when n is odd,
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(2,2,...,2,1,0,0,...,0)
S~——
a—1

when n is even.

Since Xtalk™ (A) = 27, p(i)|I;7|, the following
lemma is trivial.
Lemma 3: If an assignment A is minimal in the pos-
itive part, A attains the lower bound in Theorem 1 in
the positive part. a

If there is no interval which has the same length as
I/, in the positive part, the condition in Lemma 3 is
not only sufficient but also necessary.

An assignment A is called alternate in the positive
part if

¢ An interval of class §;,, is not adjacent to any of
class 5;/, and

e ifn is even, I,/ is not adjacent to two intervals of
class S/ .

If n is odd, the alternate assignment is character-
ized more definitely as .A(I) is even for I € S,/; and
A(I) is odd for I € Sy ...

Lemma 4: An assignment A is alternate in the posi-
tive part if and only if the positive dominating vector

of A is minimal. O
Proof: To prove Lemma 4, first, we assume that A is
alternate in the positive part. Since |S;/.| = [2] and

each interval of S /+ is not adjacent to the others, if n
is 0dd, each interval of S —S;,, = S,/ is not adjacent
to the others, or if n is even, at most two intervals of
§=38y/4+ =Ss/4 U{ly)+} are adjacent to each other. If
n is odd, each interval of S,, dominates two intervals
in A in the positive part. Thus, the positive dominating
vector of A is minimal. If n is even, there can exist two
following cases. First, we consider the case that inter-
vals of § — &,y = S,/ U{l,/4} are not adjacent to
each other. In this case, I,/ is assigned either track 1,
or n, since I,/ is not adjacent to two intervals of class
S+, and dominates one interval in A in the positive
part. And each interval of S, dominates two intervals
in A in the positive part. Thus, the positive dominating
vector of A is minimal. Second, we consider the case
that two intervals of § — &§;/; = S,/ U {l,/4} are ad-
jacent to each other. In this case, intervals of S/, are
assigned to track 1 and n, since S/ | =[Sy U{I,/4 }.
If intervals of S/, are adjacent, then I, /+ 18 adjacent
to two intervals of class ;... Thus, an interval of S, /+
and I,/ are adjacent. Hence, I,,. dominates one in-
terval and each interval of S, dominates two intervals
in A in the positive part. Thus, the positive dominating
vector of A is minimal.

Next, we assume that A is not alternate in the pos-
itive part. From the definition of alternate assignment,
an interval of §;,; dominates at least one interval in A
or if n is even, I, /+ dominates two intervals in .A. Thus,
the positive dominating vector of A is not minimal. O
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An assignment. which is alternate simultaneously
in the positive part and negative part is called a per-
fect assignment. 1t is true that a perfect assignment, if
one exists, attains the minimum total cross-talks over
all assignments of S. If there is no interval which has
the same length as I,,,, in the positive part or Iy - in
the negative part, the assignment which attains the min-
imum total cross-talks over all assignments of S is only
perfect. Though the number of alternate assignments in
each part is so many as

(”“1>!-(”+1>! if nis odd,

2 2

n-<"*2)!-(ﬁ>! if n is even,
2 2

it is not a trivial problem for given S to answer if there
exists a perfect assignment.

4. Intersection Sets with Perfect Assignment

A characterization of the interval set which has a perfect
assignment is given in a simple form but its verification
needs a lengthy case study.
Theorem 2: The necessary and sufficient condition of
an interval set S to have a perfect assignment is that
there exists a classification of S into Ss,s0 Ss.1, Sis, and
&1 such that

(1) if n is odd, Ss; US; s = 0;

() ifniseven, (Io/r F Io/_) or (S, US, s = 0).

O

Proof when 7 is odd

First, we prove the sufficiency. Since S, ;US; s = 0,
8,5 and S;; cover S. Furthermore, it holds by Lemma 1
that |S;;| = |S, 5| + 1. Therefore, the assignment A as
follows is possible.

Starting with an interval of S; ;, assign inter-
vals of S, , and S;; alternately to the tracks
from the first track.

Since S € Sl/_ N Sl/_(_ and S, s € 83/_ N Ss/+, an in-
terval of class Sy is not adjacent to any of class Sy,
nor is an interval of class S;,, adjacent to any of class
Si/+. Thus, A is perfect.

Next, the necessity is shown as follows: Assume
without loss of generality that S, ; = Sy NSy £ 0.
If A'is a perfect assignment, A(I) is odd for I € S;,_
and A(I) is even for I € S,/,. This is impossible since
there is an interval that belongs to S5
Proof when n is even

To prove the sufficiency, we define the assignment
A for the cases (2-a)~(2-¢) which were defined in
Lemma 1. The proof of the perfectness of each case
is clear from the definition.

e case (2-a)
Necessarily, S;; US;s = 0. So {I,/4+}US,sUS,,
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covers all the intervals. Furthermore, since |S;;| =
|Ss,s|+1 by Lemma 1, the following perfect assign-
ment is possible.

Starting with an interval of &;;, assign
intervals of S, , and &;;, alternately,
from the 1st track to the n — 1-th track,
and let A(ly/4) = n.

In cases (2-b)~(2-e), In /4 F Lo/

e case (2-b)

Since [Si;| = [Ss;s| + 2 and |Ss;| = [Sis| by
Lemma 1, the following assignment is possible.

Starting with an interval of &;;, assign
intervals of S; s and S, alternately as
possible, from the 1st track to 2|S, | +1-
th track. Then let A(I,/;) = 2|S;s| + 2.
Next, assign intervals of §; s and S;;, al-
ternately as possible, starting with an in-
terval of S; ;. The last interval is assigned
n—2. Let A(I,;—) = n— 1. Finally, for
the remaining interval I, which is of Sy,
let A(I) =n.

e case (2-¢)

Since |Si;| = [Ss,s| + 1 and [Ss;| = |Si,s] — 1 by
Lemma 1, the following assignment is possible.

Starting with an interval of &;;, as-
sign intervals of S, s and S, alternately
as possible, from the 1st track to, say,
2|8;,s| + 1-th track. Then let A(Io/4) =
2|Ss 5| + 2. Next, assign intervals of 5
and S, alternately as possible, starting
with an interval of S; ;. The last interval
is assigned n — 1. Let A(I,/_) = n.

e case (2-d)

Since |Sl,l1 = ISS’S| + 1 and ISS,li = |Sl73| + 1 by
Lemma 1, the following assignment is possible.

Starting with an interval of &;;, as-
sign intervals of S ; and Sj;, alternately
as possible, from the 1st track to, say,
2|S, s|-th track. Then let A(ly/4) =
2|Ss 5| + 1. Next, assign intervals of S
and S, , alternately as possible, starting
with an interval of §; . The last inter-
val is assigned n — 2. Let A(ly,—) =
n—1. Finally, for the remaining interval
I, which is of S, let A(I) = n.

e case (2-e)

Since |S;,1| = |Ss,s| and |Ss1| = |S1,s| by Lemma 1,
the following assignment is possible.
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Starting with an interval of &;;, as-
sign intervals of S, , and Sy, alternately
as possible, from the 1st track to, say,
2|Ss,s|-th track. Then let A(ly/4) =
2|Ss,s| + 1. Next, assign intervals of S s
and Sy, alternately as possible, starting
with an interval of ;5. The last interval
is assigned n — 1. Let A(I,/_) = n.

To prove the necessity, assume that I/ = In/—
and S;; U Sy s 0. This case falls in Case (2-a). Since
|Si1| = |Ss,s| + 1 and an interval of class S;/— is not
adjacent to any of class S;,_, nor is an interval of class
Sy/4+ adjacent to any of class S;/ from the definition of
alternate, the elements of S, ; U S;; are assigned alter-
nately starting and ending with the intervals of &;; in
both part in any perfect assignment. Since Sy sUSs + 0,
assume without loss of generality I, € S 5. I; is adja-
cent to some I; € ;. Then, I; or I; dominates the
other in the negative part which violates the definition
of alternate assignment. O

5. Intersection Sets with No Perfect Assignment

If an interval set has no perfect assignment, it satisfies
the following conditions by Theorem 2.

1. If n is odd, 8571 USZ,S :+: 0.
2. If nis even, (In/4 = Io/—) and (S5 U Sy, + 0).

For description, certain particular dominating vec-
tors in A are defined.

e If n is odd, p(A) = (p;) is o-minimal if:
p(A) = (27"'a27171a07"'70)-
N —
a—1
e If n is even, p = (p;) is

1. p-minimal:

2. v-minimal:

A) = 2a"'72707]—>07"')0 .
p(A) = ( )

a—1

The corresponding dominating vector in the negative
part n(A) = (n;) is analogously defined.

Theorem 3: If S does not have a perfect assignment,
then it is possible to construct an assignment A of S
which satisfies the following conditions. The assign-
ment attains the minimum total cross-talk.

e When n is odd, one of p(.A) and n(.A) is minimal
and another is o-minimal.
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e When n is even, one of p(A) and n(A) is minimal
and another is y-minimal or v-minimal.
O

Proof: Note that 4 is taken from two choices if n
is odd, four choices if n is even. We have to prove
that there are choices as in the theorem and that one
of such assignment attains the minimum total cross-
talk. From Lemma 2, the assignment A whose p(A) is
o-minimal attains the minimum total cross-talk in the
positive part over all assignments of S except the assign-
ment A" whose p(A’) is minimal. And it is impossible
to be minimal in both parts from the assumption. Thus,
the latter is satisfied. The former will be proved by con-
struction.

[When n is odd]

1. Construct A such that p(A) is minimal and n(A)
is o-minimal.

Starting with an interval of &;;, assign
intervals of Sy, and &, alternately as
possible, except {Io/ ,[(a11)/—}. Note
that I,,,_ is included in S, s or Ss; and
that I(a+1)/_ is included in Sz’s or Sl,l-
Let the last interval be denoted by I*.
Next take one of I,/ and I(q41),— fol-
lowing the rule that

if I* € &, take the one of Sg/4,

or if I* € S, ;, take the one of

St/
(Note that I,/ or I(441),- belongs to
Ss/4 in the case of I* € §;;. Otherwise,
it holds that I* € Sy, Iy/— € Ssy, and
f(a+1)/7 € &;1. Then ‘Su‘ = !Ss’s| +2,a
contradiction. The analogous fact holds
in the case of I* € S, ;.)

Then, one interval remains which is I, /-
or (441y/—, which we denote I’. Restart
the assignment of S;, and S,;, alter-
nately as possible, except I, starting with
an interval such that it belongs to the dif-
ferent subset in the negative part and the
same subset in the positive part with re-
spect to I*. (For example, if I* € Sy,
then the next interval is from S ;.)

At this stage, I’ and possibly one inter-
val of &;; will remain. Take I’ and then
assign the remaining interval.

It is clear that p(.A) is minimal since we are always
following the strategy to change the subsets from
“l/4+” and “s/+” in the positive part. In the neg-
ative part, the procedure goes the same way with
exception when I, or [(441)/- is assigned. This
causes the number of dominating by them being
exactly 1, to lead to
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Procedure: Min Total Xtalk(S)

Step 1. Determine if S has a perfect assignment or
not by the condition presented in Theorem 2.

Step 2. If yes, apply the algorithms presented in the
proof of Theorem 2.

Step 3. Otherwise,
3-1. Construct two assignments (if n is odd)

or four assignments (if n is even) by the
way presented in the proof of Theorem 3.

3-2. Compute the total cross-talks of them
and take the one with the minimum.

Fig. 4 Min Total Xtalk (S).

n(‘A): (27"'727]-’1’07"'»0)'
S e’

a—1

2. Construct A such that p(.A) is o-minimal and n(A)
is minimal.
The construction is the same as above exchanging
G_’ and ‘_’_.’

[When n is even]

The construction of A is by a tricky way.

Suppose we want to have an assignment .A such that
n(A) is minimal and p(.A) is y-minimal. Then, alter the
intervals I,/ and I(,_1y/+ by exchanging positive parts
I:/+ and 1&1)” to get new set S’. Since S’ violates
the condition I,,,, = I/, there exists a perfect assign-
ment. Get a perfect assignment of S, and keeping its
order recover the interval set S. Then, the assignment
A of § will be such that n(.A) is minimal and

p(A) = (27"'7271,2707"'a0)'
——
a—2

Suppose we want have an assignment 4 such that
n(A) is minimal and p(A) is v-minimal. Then we have
only to change Iosy and Iigyqy/4.

Other symmetric cases are omitted. O

Finally, we summarize the procedures into one (see
Fig. 4).

Theorem 4: The computational complexity of Min
Total Xtalk(S) is O(nlogn) where n = |S]|.

6. Conclusions

This paper solved a total cross-talk minimization prob-
lem. The model assumed is very basic, and the result
looks too much theoretical. The future works will be
to extend the result to meet the practical situations as
follows:

1. (Tapered cross-talk) The cross-talk is defined on
each interval as the weighted sum of cross-talks af-
fected from other intervals not only the one from
the adjacent ones.
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2. (Maximum cross-talk) Evaluation is the maximum
of cross-talks between adjacent intervals,

3. (Non-intersecting intervals) Intervals which are not
intersecting are allowed,

4. (Cross-talk limitation) For each pair of intervals,
the bound of admissible cross-talk is preassigned,

5. (Individual cross-talk) For each pair of intervals,
the cross-talk when they are adjacent is preassigned,

6. (Rectilinear intervals) Cross-talks caused by verti-
cal connections to the terminals are involved.
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