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SUMMARY A semi-synchronous circuit is a circuit in which
every register is ticked by a clock periodically, but not necessar-
ily simultaneously. In a semi-synchronous circuit, the minimum
delay between registers may be critical with respect to the clock
period of the circuit, while it does not affect the clock period
of an ordinary synchronous circuit. In this paper, we discuss a
delay insertion method which makes such a semi-synchronous cir-
cuit faster. The maximum delay-to-register ratio over the cycles
in the circuit gives a lower bound of the clock period. We show
that this bound is achieved in the semi-synchronous framework
by the proposing gate-level delay insertion method.
key words: delay insertion, clock period minimization, semi-
synchronous circuit

1. Introduction

Semi-synchronous circuits are expected to achieve
a high-performance by removing the constraint of
complete-synchronous circuits that every register is
ticked by a clock simultaneously. Among various ob-
jectives in the synthesis of high-performance circuits,
the clock period minimization is the primal subject.

For given signal delays between registers, it is
known that the minimum clock period in the semi-
synchronous framework is determined in polynomial
time [1], [2], [6]. To achieve this clock period, each reg-
ister should be ticked by a clock at its own due clock
input timing. A clock-tree synthesis algorithm that re-
alizes a due clock input timing for each register was
proposed in [5]. A clock-driven layout methodology
that minimizes both the clock period and the clock-tree
length was proposed in [7].

The purpose of these studies are in improvement
of the performance of a given circuit in the semi-
synchronous framework. Although the performance of
a circuit is improved more or less by these methods,
a circuit should be synthesized taking account of the
effect of the semi-synchronous framework to make the
best use of it. In the complete-synchronous framework,
any increase of the minimum delay between registers is
not considered since it does not lead to the clock period
minimization, while it may reduce the clock period in
the semi-synchronous framework.

In this paper, we discuss a delay insertion method
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which makes a semi-synchronous circuit faster. The
maximum delay-to-register ratio (let it be TB) over the
cycles in the circuit gives a lower bound of the clock
period. TB may change when the delay of an element
or the number of registers in a cycle is changed. TB of
a given circuit cannot be reduced unless delays of ele-
ments are reduced or the number of registers in a cycle
is increased. However it is practical to consider that
the delay of each element has already been minimized
and the circuit topology optimized in the conventional
circuit design. Thus we assume that this TB is invari-
ant.

Therefore, the circuit is considered to have a pos-
sibility to be made faster only when the current clock
period is larger than TB. Our problem is to achieve
the lower bound in the semi-synchronous framework by
gate-level delay insertion. We show that the propos-
ing gate-level delay insertion method achieves the lower
bound if the delay of each element in the circuit is
unique (that is, max delay = min delay for each el-
ement) and the clock input timing of each register is
controlled as we design.

2. Preliminaries

In this paper, we consider a circuit with a single clock
consisting of registers and gates, and wires connecting
them. Both registers and gates are referred to elements.
A circuit is represented by the circuit graph G where a
vertex v ∈ V (G) represents an element and a directed
edge (u, v) ∈ E(G) does the signal propagation from
the output of element u to the input of element v along
the wire. The delay of an edge is the sum of the delay
due to the corresponding wire and the delay due to the
corresponding end element. We assume that each wire
delay and element delay is unique. The circuit graph of
the circuit given in Fig. 1 is shown in Fig. 2. The clock
distribution network of the circuit is not depicted.

Let Vr(G) = {r1, r2, . . . , rnr} ⊂ V (G) be the set
of registers. A register-path from register ri to regis-
ter rj in G is a directed path from ri to rj without
other registers. Let Er(G) be the set of ordered regis-
ter pairs (ri, rj) such that there is a register-path from
ri to rj . The delay of a register-path is unique since the
delay of each element is unique. While the delay be-
tween registers is not unique in general when there are
various paths between these registers. Let dmin(ri, rj)
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Fig. 1 A semi-synchronous circuit (minimum clock period =
9).

Fig. 2 Circuit graph G.

(dmax(ri, rj)) be the minimum (maximum) delay from
ri to rj . A register-path from ri to rj is said to be
minimum (maximum) if the delay of the register-path
is dmin(ri, rj) (dmax(ri, rj)). For example, in Fig. 2,
dmax(r2, r4) = 8, dmin(r2, r4) = 6.

In the following, we assume that the delay of each
edge can be increased independently each other by de-
lay insertion to the circuit. Moreover, we assume that
the clock input timing of each register is controlled as
we design.

3. A Lower Bound of the Clock Period

Most of the following facts are known in [1]–[4], [6], but
given for completeness.

Definition 1 (Delay-to-register ratio): The delay-to-
register ratio of a directed cycle (or closed-walk) L in
the circuit graph G is defined as the sum of edge delays
over the number of registers in L. Let TB(G) be the
maximum delay-to-register ratio of those of directed cy-
cles. ✷

Note that TB(G) is equal to the maximum delay-
to-register ratio of those of directed closed walks.
Clearly, the circuit cannot work with the clock period
less than the delay-to-register ratio of any cycle in G.
So, TB(G) gives a “lower Bound” of the clock period
which is our target to be realized.

In the following, we discuss a lower bound of the
clock period of a circuit in the semi-synchronous frame-
work and that in the complete-synchronous framework.

3.1 Semi-Synchronous Circuits

In semi-synchronous circuits, the clock input timing of
a register may be different from other registers.

The clock-timing s(ri) of register ri is defined as
the difference in clock arrival time between ri and an ar-
bitrary chosen reference register. For example, in Fig. 1,
r2 is chosen as the reference register, and clock-timings
of r1, r2, r3, and r4 are 3, 0, 7, and 6, respectively.

We assume the framework that a circuit works cor-
rectly with clock period T if the following two types of
constraints are satisfied [2].

No-Double-Clocking Constraints

s(rj) − s(ri) ≤ dmin(ri, rj) for ∀(ri, rj) ∈ Er(G)

No-Zero-Clocking Constraints

s(ri) − s(rj) ≤ T − dmax(ri, rj)
for ∀(ri, rj) ∈ Er(G)

To calculate the minimum clock period in the semi-
synchronous framework, we define the constraint graph
H(G,T ) as follows. A vertex corresponds to a register
in Vr(G), and an edge corresponds to either type of con-
straints: an edge from ri to rj with weight dmin(ri, rj),
called the D-edge, corresponds to the no-double clock-
ing constraint on a minimum register-path from ri to rj

in G; an edge from rj to ri with weight T −dmax(ri, rj),
called the Z-edge, corresponds to the no-zero clocking
constraint on a maximum register-path from ri to rj

in G. The sets of D-edges and Z-edges are denoted by
Ed(G) and Ez(G), respectively.

The constraint graph H(G,T ) for the circuit graph
given in Fig. 2 is shown in Fig. 3. For example, the D-
edge from r2 to r4 with weight 6 corresponds to the
minimum register-path from r2 to r4, and the Z-edge
from r4 to r2 with weight T − 8 corresponds to the
maximum register-path from r2 to r4. Notice that the
direction of Z-edge is opposite to the direction of the
signal propagation.

The following lemma is well known about the clock
period of semi-synchronous circuits.

Lemma 1 ([6]): A circuit G works with clock period
T in semi-synchronous framework if and only if the con-
straint graph H(G,T ) contains no negative weight di-
rected cycle. ✷

A negative weight directed cycle is simply called
“negative cycle” in the following.

Note that if the circuit works with clock period T ,
then the circuit works with T ′ such that T ′ ≥ T . Let
TS(G) be the minimum clock period of the circuit G in
the semi-synchronous framework.

Theorem 1 ([6]): TS(G) is the minimum T such that
there is no negative cycle in the constraint graph
H(G,T ).
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Fig. 3 Constraint graph H(G, T ) of G.

We can determine the minimum clock period
TS(G) and the clock-timing of each register in time
polynomial in the number of vertices and edges in
H(G,T ) [1], [2], [6].

3.2 Complete-Synchronous Circuits

In complete-synchronous circuits, above two types
of constraints must be satisfied as well. How-
ever no-double-clocking constraints in the complete-
synchronous framework could be ignored, as long as
a complete-synchronous circuit has the premise that
a clock ticks all the registers simultaneously, that is,
s(ri) = s(rj) = 0 and dmin(ri, rj) ≥ 0 are considered to
hold.

The maximum delay of any path between registers
must be smaller than the clock period. Thus, a lower
bound of the clock period of a complete-synchronous
circuit is given as max(ri,rj)∈Er(G)(dmax(ri, rj)). To re-
duce this value, an idea of retiming relocates registers
of the circuit while preserving its functionality. It does
not change the delay-to-register ratio of any cycle. It is
shown that the lower bound TB(G) of the clock period
is achieved by retiming if arbitrary amount of retiming
is allowed [4]. It is counted as a merit of complete-
synchronous circuits. A motivation of this paper is to
show that the same performance is achievable by delay
insertion in semi-synchronous framework.

The value TB(G) can be calculated in polynomial
time by applying the result in [3] to the constraint graph
H(G,T ).

Theorem 2: TB(G) is the minimum T such that
there is no negative cycle consisting of only Z-edges
in the constraint graph H(G,T ). ✷

For example, in Fig. 3, TS(G) = 9 and TB(G) = 7.
It is easy to see the following corollary from Theorems 1
and 2.

Corollary 1: TS(G) ≥ TB(G) ✷

Notice that no circuit G works with clock period
less than TB(G), even if retiming techniques or semi-
synchronous techniques are applied, since TB(G) is in-
variant in these techniques.

Fig. 4 A negative cycle in H(G) with T = TB(G) = 7
(TS(G) = 9).

4. Delay Insertion Effect at Gate-Level

The delay insertion corresponds to the increase of the
edge delay in the circuit graph G. In this section, we
will show that a circuit G′ which works with clock pe-
riod TB(G) can be obtained from G by delay insertion.

In order to speed up the circuit, more precisely to
eliminate all the negative cycles in H(G′, TB(G)), we
should increase the edge weight in the constraint graph.
In the constraint graph, there are two types of edges.
The increase of the weight of a Z-edge corresponds to
the reduction of the maximum delay, which is out of
our consideration by the reason mentioned before. The
increase of the weight of a D-edge corresponds to the
increase of the minimum delay.

For simplicity, the constraint graph H(G′, TB(G))
is denoted by H(G′) for any G′ obtained from G by
delay insertion. If TS(G′) > TB(G), there are negative
cycles in H(G′) (Fig. 4). Moreover for each negative
cycle in H(G′) there exists a D-edge in the cycle.

Lemma 2: If TS(G′) > TB(G), every negative cycle
in H(G′) contains at least one D-edge.

Proof: By Theorem 2, there is no negative cycle con-
sisting of only Z-edges in H(G′), so all negative cycles
in H(G′) have at least one D-edge. ✷

Because every negative cycle in H(G′) has a D-
edge, we may improve the clock period by delay inser-
tion to the circuit corresponding to the D-edge.

To increase the weight of a D-edge in H(G), the de-
lay of an edge in the corresponding minimum register-
path in G should be increased. Accordingly, the path
delay of all paths through the edge in G increases, and
the weight of other D-edges and Z-edges in H(G) may
change.

For example, let us consider a part of a circuit
shown in Fig. 5. To increase the delay from ra to rc,
the delay either from ra to g or from g to rc should
be increased. In either case, the delay from ra to rd or
from rb to rc increases accordingly. Thus the delay be-
tween registers does not always change independently.
To understand the effect of the delay insertion exactly,
the circuit must not be modeled at register-level but at
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Fig. 5 Necessity of consideration at gate-level.

gate-level.
The delay insertion may increase the maximum de-

lay. If so, the weight of a Z-edge decreases accord-
ingly and the maximum delay-to-register ratio TB(G′)
of the delay inserted circuit G′ may become greater
than TB(G). Because TB(G) is the lower bound of the
clock period, if TB(G′) is greater than TB(G), our ob-
jective cannot be achieved. Thus, the delay insertion
must not increase the maximum delay-to-register ratio.
TB(G′) remains same if the sum of delays of any cycle
L in G′ is at most TB(G) times the number of registers
in L.

We define the delay-slack for each edge that repre-
sents the margin within which the delay insertion keeps
the maximum delay-to-register ratio.

Definition 2 (delay-slack): For a directed cycle (or
closed-walk) L, the cycle-slack of L in G′ is defined
as

TB(G) × N(L) − D(L)

where N(L) is the number of registers in L and D(L)
the sum of delays of L in G′. The delay-slack of an
edge (vi, vj) in G′ is the minimum cycle-slack over all
cycles that contain (vi, vj). ✷

Note that the delay-slack of each edge can be cal-
culated in time polynomial in the number of edges in
G. Clearly, the delay insertion less than or equal to
the delay-slack of (vi, vj) keeps the maximum delay-to-
register ratio.

5. Delay Insertion Algorithm

Our algorithm Delay-Insertion is described in Fig. 6.
It finds a negative cycle CH in H(G′) and inserts delays
calling sub-algorithm Delay-Into-Cycle until an op-
timal circuit is obtained. In the following, we will show
that Delay-Insertion outputs the optimal circuit, and
terminates in polynomial time.

Delay-Into-Cycle, described in Fig. 7, inserts de-
lays to edges in a minimum register-path in G′ corre-
sponding to the D-edge in CH . The amount of inserted
delay to each edge which is calculated just before delay
insertion is equal to the delay-slack of the edge. We
will show that the delay-slack of at least one edge in G′

becomes zero whenever Delay-Into-Cycle is applied
to G′.

To explain the behavior of Delay-Insertion, we

Fig. 6 Delay insertion algorithm.

Fig. 7 Delay insertion to negative cycles.

apply Delay-Insertion to the circuit graph with
TB(G) = 7 in Fig. 2. Since the TB(G) 
= TS(G),
Delay-Into-Cycle is applied to the negative cycle in
the constraint graph shown in Fig. 4. D-edge (r2, r4)
in the negative cycle is selected to insert the delay in
Delay-Into-Cycle. The minimum register-path from
r2 to r4 is (r2, a, e, f, r4). Since the weight of cy-
cle (r2, a, b, r1, c, d, f, r4, g, r3, h, r2) is 28, and the cy-
cle contains four registers, the cycle-slack of the cycle
is zero, and the delay-slacks of (r2, a) and (f, r4) are
zero. (a, e) and (e, f) are contained by only one cy-
cle (r2, a, e, f, r4, g, r3, h, r2). Since the cycle-slack of
the cycle is 11, the delay-slacks of (a, e) and (e, f)
are 11. Then no delay is inserted to (r2, a), and 11
delays are inserted to (a, e). Here, the delay-slack
of (e, f) becomes zero, since the cycle-slack of cycle
(r2, a, e, f, r4, g, r3, h, r2) becomes zero. So, no delay is
inserted to (e, f). The output of Delay-Into-Cycle
is shown in Fig. 8 (a). Until the lower bound TB(G) is
achieved, Delay-Into-Cycle is applied to a negative
cycle in the constraint graph. The output of Delay-
Insertion is shown in Fig. 8 (b). The corresponding
circuit is shown in Fig. 9.

Lemma 3: Whenever Delay-Into-Cycle is applied
to G′, a delay is inserted to at least one edge in G′ so
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(a)

(b)

Fig. 8 The example of Delay-Into-Cycle.

Fig. 9 Circuit after delay insertion (TS(G) = 7).

that the delay-slack of the edge becomes zero.

Proof: Let CH be a negative cycle in H(G′), and G∗

be the circuit obtained byDelay-Into-Cycle (G′,CH).
If a delay is inserted to any edge, the delay-slack of
the edge becomes zero, sinceDelay-Into-Cycle inserts
delay with the same amount of the delay-slack. If a
minimum register-path in G′ becomes non-minimum in
G∗, it means that a delay was inserted to some edge in
the register-path. Thus we assume that every minimum
register-path in G′ corresponding to D-edge in CH is
minimum in G∗. We show that a delay is inserted to
some edge by showing that the weight of CH in H(G∗)
is non-negative.

Let us assume that CH consists of only one D-edge
ed from ri to rj and Z-edges ez

1, e
z
2, . . . , e

z
m (Fig. 10). Let

PG
min = (eG

1 , eG
2 , . . . , eG

n ) be a minimum register-path
from ri to rj in G′ corresponding to ed, and PG

Z be a
path from ri to rj that consists of maximum register-
paths in G′ corresponding to the Z-edges (Fig. 11).

We show that PG
min is a maximum register-path in

G∗. Assume to the contrary that there exists a maxi-
mum register-path PG

max from ri to rj in G∗ such that
the weight of PG

max is greater than that of PG
min. For

Fig. 10 A part of constraint graph used in the proof.

Fig. 11 Corresponding circuit graph.

each edge eG
l in PG

min there exists a path PG
l such that

PG
l and eG

l form a cycle whose cycle-slack is zero in G∗.
Let WG

1 be the closed walk (PG
min, PG

n , PG
n−1, . . . , P

G
1 ).

The cycle-slack of WG
1 is zero in G∗ since it consists

of cycles whose cycle-slacks are zero. Then the cycle-
slack of the walk (PG

max, P
G
n , PG

n−1, . . . , P
G
1 ) in G∗ is

negative and contradicts the assumption that the cycle-
slack of every cycle is non-negative in G∗. Thus PG

min

is a maximum register-path in G∗. Since the delay of
each register-path is unique, dmax(ri, rj) = dmin(ri, rj)
in G∗. So the weight of ez is TB(G) − dmin(ri, rj), and
the weight of ed is dmin(ri, rj) in H(G∗).

Let WH
1 be the closed walk consisting of Z-edges

that corresponds to WG
1 (Fig. 10). The weight of WH

1

in H(G∗) is zero since the cycle slack of WG
1 is zero.

Let WH
2 be the closed walk consisting of Z-edges that

corresponds to the walk (PG
Z , PG

n , PG
n−1, . . . , P

G
1 ). The

weight of WH
2 in H(G∗) is non-negative since the walk

consists only of Z-edges.
The cycle CH is obtained from WH

2 by adding ed

and ez and deleting WH
1 . Thus the weight of cycle

CH in H(G∗) is w(WH
2 ) + w(ed) + w(ez) − w(WH

1 ) =
w(WH

2 ) + dmin(ri, rj) + (TB(G) − dmin(ri, rj)) − 0 =
w(WH

2 ) + TB(G) where w(X) is the weight of X in
H(G∗). Since w(WH

2 ) is non-negative, the weight of
CH is positive.

It is easy to see that the weight of CH is w(WH
2 )+

TB(G) × M in general where M is the number of D-
edges in CH .

Therefore, a delay is inserted to some edge in
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a minimum register-path corresponding to D-edges in
CH . ✷

If the delay of each element is not unique, the delay
of a minimum register-path corresponding to a D-edge
has a certain range. In such a case, the weight of CH

is w(WH
2 ) + TB(G) + dmin(ri, rj) − dmax(ri, rj) when

the number of D-edges is one. Thus the weight of CH

is not necessarily non-negative and delay may not be
inserted to any edge.

When Delay-Insertion terminates, clearly the
clock period of the obtained circuit G′ in semi-
synchronous framework is TB(G). So, we prove only
that Delay-Insertion terminates in polynomial time.

Theorem 3: AlgorithmDelay-Insertion terminates
in time polynomial in the number of edges in G.

Proof: It is not difficult to see that each step inDelay-
Insertion is in polynomial time. The number of rep-
etitions from Step 2 to Step 6 is at most the number
of edges in G since the delay-slack of at least one edge
becomes zero at each repetition. ✷

6. Experimental Results

Algorithm Delay-Insertion is applied to benchmark
circuits in LGSynth91. In experiments, we assume that
each gate has unit delay, and routing delays are zero.
The clock period is reduced in 6 out of 24 circuits. The
minimum clock periods before delay insertion of the
other 18 circuits in semi-synchronous framework are
revealed to be equal to the maximum delay-to-register
ratio of each circuit. The results of improved circuits
are shown in Table 1. Here, the number of gates is de-
noted by Gate, the maximum delay-to-register ratio by
MD, the clock period of the semi-synchronous circuit
before delay insertion by Init., the clock period after
delay insertion by Fin., the amount of inserted delay
by ID, and the computation time (PentiumII 450 MHz)
by Time (sec.).

7. Conclusions

We proved that the minimum clock period of a circuit
in semi-synchronous framework achieves the maximum
delay-to-register ratio by delay insertion under the as-
sumption that the delay of each edge is unique.

As future works, the reduction of the amount of

Table 1 Experimental results: clock period reduction.

circuit Gates MD Init. Fin. ID Time

s1423 657 59 54 53.00 5987 16.81
s298 119 9 6 5.33 78 0.38
s344 160 20 17 14.00 225 0.55
s349 161 20 17 14.00 225 0.49
s444 181 11 7 6.58 57 0.17
s526 193 9 6 5.50 110 0.55

the inserted delay in Delay-Insertion, more practical
delay assumption (the delay of each edge is not unique),
delay realization method such as detour of routing wire
or delay element insertion, and the combination of re-
timing and delay insertion technique to minimize the
area and clock period, should be investigated.
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