IEICE TRANS. FUNDAMENTALS, VOL.E82-A, NO.11 NOVEMBER 1999

2431

|PAPER Special Section on VLS| Design and CAD Algorithms

Schedule-Clock-Tree Routing for Semi-Synchronous

Circuits™*

Kazunori INOUE', Nonmember, Wataru TAKAHASHI™*, Atsushi TAKAHASHI'f,

SUMMARY It is known that the clock-period can be shorter
than the maximum of signal-delays between registers if the clock
arrival time to each register is properly scheduled. The algo-
rithm to design an optimal clock-schedule was given. In this
paper, we propose a clock-tree routing algorithm that realizes
a given clock-schedule using the Elmore-delay model. Follow-
ing the deferred-merge-embedding (DME) framework, the algo-
rithm generates a topology of the clock-tree and simultaneously
determines the locations and sizes of intermediate buffers. The
experimental results showed that this method constructs a clock-
tree with moderate wire length for a random layout of scheduled
registers. Notably, the required wire length for a gentle layout
of scheduled registers was shown to be almost equal to that of
zero-skew clock-trees.

key words: clock-tree, clock-scheduling, semi-synchronous cir-
cuit, deferred-merge embedding

1. Introduction

In layout synthesis, the distribution of the clock is crit-
ical to the performance of sequential circuits. In the
complete-synchronous system, the clock is assumed to
be distributed periodically and simultaneously to ev-
ery register. The clock-skew, which is the maximum
difference of delays to the clock pins on registers from
the clock source, exerts a negative effect against speed-
ing up a sequential circuit. Efforts have been made
to eliminate it. Surveys are found in [5],[13]. In
the semi-synchronous system, the clock is assumed to
be distributed periodically to each individual register,
though not necessarily to all registers simultaneously.
The clock-timing of a register is the difference between
clock-delays to the register and to a reference register.
A clock-schedule is a set of clock-timings of registers.
Given signal-delays between registers, a clock-schedule
that realizes the minimum clock-period is called an op-
timum clock-schedule. An optimum clock-schedule in
a semi-synchronous system is determined by a graph

Manuscript received March 15, 1999.

Manuscript revised June 10, 1999.

fThe author is with Software Development Center,
Hitachi ULSI Systems Corporation, Kokubunji-shi, 185-
0014 Japan.

TThe authors are with the Department of Electrical
and Electronic Engineering, Tokyo Institute of Technology,
Tokyo, 152-8552 Japan.

*Presently, with C&C Media Research Laboratories,
NEC Corporation.

** A preliminary version [21] was presented in ICCAD ’97.

and Yoji KAJITANI', Members

theoretical algorithm [22]. It is known that the mini-
mum clock-period is usually shorter than the maximum
signal-delay between registers. The minimum clock-
period is obtained by a linear programming [12], or by
using the decision version of the problem with a binary
search strategy [8]. Similar discussions can be found on
multi-phase clock-schedules [15], [19], [20].

The crucial problem in a semi-synchronous system
design is the layout realization of the clock-schedule.
We call a clock-tree that realizes the given clock-
schedule a schedule-clock-tree. Herein, we propose a
schedule-clock-tree routing algorithm.

Neves and Friedman [16]—[18] proposed methods by
which to construct a topology of a schedule-clock-tree
and to determine the specification of delay at each edge
of the clock-tree. However, no specific routing algo-
rithm to embed the topology in the Manhattan plane
is given. The main target of their work is in terms of
hierarchical data path design.

Zero-skew clock-tree routing is a type of schedule-
clock-tree design. Tsay [24] noted that there is an al-
gorithm for zero-skew clock-tree routing that can be
extended for use with general schedule-clock-tree de-
sign by adding a fictitious delay element in each clock
pin. The deferred-merge embedding (DME) algorithm
for zero-skew clock-tree routing was introduced inde-
pendently by Edahiro[9],[11], Chao et al.[2],[3], and
by Boese and Kahng [1], [3].

Substantive related researches have been done us-
ing the DME framework [4], [6], [7], [14], [25]-[27]. For
example, Xi and Dai[26],[27] proposed clock routing
algorithms that modified a zero-skew clock-tree con-
structed by the DME algorithm; by using the allowable
range of the clock-timing of each register, this method
had the potential to reduce power consumption or im-
prove the reliability of the clock-tree. Surveys con-
cerned with the DME framework and clock synthesis
can be found in [5],[13].

The DME algorithms consist of two phases; the
bottom-up phase of topology generation and the top-
down phase of embedding the topology in the Manhat-
tan plane. The most successful DME algorithm, called
the clustering-based DME algorithm [10], constructs a
topology of the clock-tree by merging a pair of the
nearest-neighbors in the bottom-up phase. The connec-
tion between two subtrees seldom makes a detour since

IEICE TRANS. FUNDAMENTALS, VOL.E82-A, NO.11 NOVEMBER 1999

2432

any two subtrees are usually balanced. In this manner,
a small total connection length is achieved. However,
in schedule-clock-tree routing, because the two subtrees
may be unbalanced due to the clock-timing assigned to
each register, the required connection length often dif-
fers significantly from the Manhattan distance between
the roots.

The schedule-clock-tree routing algorithm pro-
posed in this paper follows the clustering-based DME
algorithm in [10]. However, the proposed algorithm se-
lects a merging pair so that the required connection
length is small, as it is in [3]. Moreover, the buffer
insertion and sizing are considered in bottom-up topol-
ogy generation phase, as they do in [4],[25]. In the
top-down phase of embedding, each internal vertex of
the clock-tree is embedded in the Manhattan plane so
that the connection length from the parent vertex is
minimized.

The experimental results showed that this method
constructs a schedule-clock-tree with wire length that
is moderate compared with that of a zero-skew clock-
tree. For randomly generated pin locations and the
clock-schedule, the total connection length was about
1.5 times larger than that of a zero-skew clock-tree. For
pins that are located randomly but scheduled gently
(that is, clock-timings of two clock-pins are near when
their locations are close to each other), the wire length
of a schedule-clock-tree is almost equal to that of a
zero-skew clock tree.

The rest of this paper is organized as follows. In
Sect.2, we give basic definitions and an overview of
the problem. The generation of the merging-segment is
discussed in Sect. 3. The definition of the merging-cost
of a merging-segment is given in Sect. 4. The outline of
the proposed algorithm SCT-Routing is given in Sect. 5.
In Sect. 6, we describe the buffer insertion and sizing
procedure. The experimental results are presented in
Sect. 7. Section 8 is the conclusion.

2. Preliminaries

Assume locations of the clock source pin py and clock
pins on registers P = {p1,p2,. .., pn} on the Manhattan
plane, and a clock-schedule S of registers are given.
We construct a clock-tree T that realizes S using the
Elmore-delay model.

A clock from pg arrives at each clock pin p; with
some delay which is called the clock-delay of p;. To
describe the clock-schedule, we take an arbitrary (per-
haps hypothetical) register as the reference register
such that it is ticked by a clock with the reference
clock-delay. Then pin p; is ticked d(p;) time after the
reference clock pin is ticked. d(p;) is called the clock-
timing of p;. We chose the reference register in or-
der that the clock-timing d(p;) of each register would
be non-negative. If the reference clock pin is ticked
on time (..., —t,0,¢,2t,...) where t is the clock-period

of the circuit concerned, then p; is ticked on time
(.., =t+dp:),d(p:), t +d(p;), 2t + d(p;), - .).

A clock-tree T is a rooted binary tree whose root
corresponds to pg and n leaves correspond to pins in P.
For a given schedule S, T is called a schedule-clock-tree
of S if S is realized by T. A subtree T, is defined as
the subtree of T rooted by a vertex v in T. Let 7(v)
be the difference of the reference clock-delay from the
clock-delay to v in T', and 7(v,p;) be the propagation
delay from v to a pin p; in 7). In a schedule-clock-tree,
7(v) = 7(v,p;) — d(p;), for any pin p; in T;,. See Fig. 1.

The delay model is analyzed in the following. Let
r and ¢ denote the resistance and capacitance per unit
length of wire, respectively. Let v; and vy be the chil-
dren of v on T, and let I; and I3 be the wire length from
v to v1 and to vy, respectively.

Let C(v) be the total load capacitance of v, includ-
ing wire capacitance and gate capacitance. Then C(v)
is calculated by

Ci ifv= Di,
C(v) =4 cpuy if a buffer is inserted into v,
C*(v) otherwise,

where C*(v) = C(v1) + C(v2) + ¢(l1 + 12), and ¢; and
cpus are the load capacitance of pin p; and the input ca-
pacitance of the inserted buffer, respectively. Similarly,
7(v) is calculated by

—d(pi) if v =p,
T(v) =4 7*(v)+Tpus if a buffer is inserted into v,
T*(v) otherwise,

l
where 7%(v) = rly <071 + C(vl)) + 7(v1) and Tpyyf is

the internal delay of the inserted buffer.

Here, similar to the case of zero-skew routing [24],
the following equation derived from the w-model is as-
sumed to be satisfied in a schedule-clock-tree:

7 (v) = 1l (122 + c@)) +7(v2). (1)

A location of v is called a delay-balance-point of two
subtrees if Eq. (1) is satisfied when the wire length con-
necting to the root of each subtree is equal to the Man-
hattan distance. In our algorithm, we list, if they exist,

clock pin

) ,

Py v

P\O/ L X X::"-..
L clock source :

reference clock-delay g\

- ime

Fig.1 Delays in a schedule-clock-tree.

INOUE et al: SCHEDULE-CLOCK-TREE ROUTING FOR SEMI-SYNCHRONOUS CIRCUITS

the delay-balance-points of two subtrees such that the
required connection length is equal to the Manhattan
distance between the roots of two subtrees that are can-
didates for the parent vertex locations. If there is no
such point, we select the candidates for the parent ver-
tex locations from the locations of the root of either
subtree such that the Manhattan distance between the
roots of two subtrees is minimal. We call such a set of
candidate locations of the parent vertex v a merging-
segment of two subtrees, and denote it by ms(v). For
the clock pin p;, the merging-segment ms(p;) is defined
as the location of p;.

3. Generating the Merging-Segment

Let [denote the Manhattan distance between merging-
segments ms(v1) and ms(vy). By Eq. (1), assuming
l1 + 13 = [, we have that

_ T(v2) — 7(v1) + rl(C(ve) 4 ¢l /2)
r(cl 4+ C(v1) + C(v2))

If 0 < I3 <[then, no detour is requested to connect two
subtrees; and there are delay-balance-points of two sub-
trees T,, and T, at the minimum connection length,
forming ms(v) of Manhattan arc with £1 slope. In the
case that [y < 0 or l; > I, we conclude that the two
subtrees are too much out of balance. If I; < 0 then,
we place v on the root v; expecting to minimize the to-
tal connection length. The connection between v and
v makes a detour. The required connection length 7,
is

\/(rC(vg))Q + 2re(t(v1) — 7(v2)) — rC(ve) '

r_
l5=
rc

If Iy > I, then we place v on the vy, and the length 1}
of the connection between v and v is
\/(TC(Ul))2 + 2re(r(ve) — 7(v1)) — rC(v1)

r_
I = .
re

In either case, the merging-segment ms(v) of the two
subtrees is contained in either ms(v1) or ms(va).

4. Merging-Cost of Merging-Segment

The merging-cost of two merging-segments consists
of the required wire length connecting two merging-
segments and the buffer insertion penalty.

The required wire length connecting two subtrees
T,, and T,, tends to be large as the difference between
7(v1) and 7(ve) is large although v; is near vy. In zero-
skew routing by nearest-neighbors strategy, as in [10],
the connection seldom makes a detour since the differ-
ence between 7(v1) and 7(vq) is relatively small. How-
ever, in schedule-clock-tree routing, we should take the
detour into account. Thus, we take the required con-
nection length rather than the distance as part of the

2433

merging-cost.

The clock-tree without any intermediate buffers
is impractical since the load capacitance of the clock
source is too large. Intermediate buffers are inserted
into the clock-tree for the purpose of separating capac-
itances, to reduce clock-delays and total power dissipa-
tion, and to improve reliability against process varia-
tions. Moreover, it is possible to reduce the total con-
nection length by buffer insertion.

We insert one buffer into a vertex if the load capac-
itance of the vertex exceeds the predefined value cjjm,.
Otherwise, we determine whether to insert a buffer or
not according to its cost, since excessive buffer insertion
may cause negative effects such as area or power dissi-
pation by the buffers. We introduce the buffer insertion
penalty P(v) of subtree T,

lo Clim if a buffer is inserted into v
P(v)= & 20+(v) and 2C*(v) < clim,

0 otherwise.

P(v) controls the buffer insertion when the load capac-
itance is small. The cost depends on this penalty, but
also depends on the required connection length.

For any pair of subtrees, four solutions exist with
respect to the buffer insertion into the roots of those
subtrees. We select one solution for the pair by using
the procedure mentioned in Sect. 6.1. The insertion de-
pends on the combination of the two subtrees. Note
that the buffer is inserted into the root of a subtree or
not is fixed when the subtree is merged to the other
subtree.

Moreover, we assume that the inserting buffer can
be selected from various sizes of buffers {b1,ba, ..., b }.
The input capacitance of each buffer is ¢y, . The in-
ternal delay of each buffer depends on its load capac-
itance. However, we assume that, for any buffer b,
and b; (i < j), the internal delays 7y, s, and Ty, y; sat-
isfy Toup, > Tous; for the same load capacitance. The
detailed sizing procedure for two subtrees is described
in Sect. 6.2.

The merging-cost mc(v) of two subtrees T, and
T,, is defined following the solution selected by the pro-
cedure in Sect. 6,

me(v) =1+ B(P(v1) + P(v2)),

where [and (§ denote the required connection length
and the constant coefficient, respectively. Note that
either P(v1) or P(vz) is 0 since we insert buffers into
both roots of the two subtrees only if the total load
capacitance of each subtree exceeds cjjm,.

5. Schedule-Clock-Tree Routing
The proposed schedule-clock-tree routing algorithm

SCT-Routing follows the DME framework.
In the bottom-up phase of topology generation, a

IEICE TRANS. FUNDAMENTALS, VOL.E82-A, NO.11 NOVEMBER 1999

2434
Algorithm Topology Generation:
1. K :={ms(pi)|1 £i<n};
2. While (|K| > 1){
3. G(V,E):= GRAPH(K);
4. Repeat MID(1,|K|/k,|K|—1) times {
5. Find e(v1,v2) from G(V, E) such that the weight
is minimum;
6. If ({ms(v1), ms(v2)} CK) {
7 Compete ms(v) from ms(v1) and ms(va);
K := (K — {ms(v1),ms(v2)}) U {ms(v)};
}
9. Delete e(v1,v2) from G(V, E);
}
}
Fig.2 The bottom-up phase of SCT-Routing.

tree of merging-segments is constructed that represents
possible locations (merging-segments) of vertices in a
schedule-clock-tree.

Let K denote a set of merging-segments that ini-
tially consists of all the clock pin locations; that is,
K = {ms(p;)}. The algorithm iteratively finds the
pair in K, that is, ms(v1) and ms(vs), such that the
weight of edge e(v1,v2) is minimal in the merging-cost
graph whose vertices correspond to K and in which
the weight of the edge represents the merging-cost of
two merging-segments. The edge set of the merging-
cost graph consists of the edges e(v;,v;) such that the
merging-cost of ms(v;) and ms(v;) is minimal over all
ms(vj) or minimal over all ms(v;) (¢ # j). A new
merging-segment ms(v) is computed for vertex v from
the delay-balance-points of two subtrees T, and T,,,. K
is updated by adding ms(v) and deleting both ms(v)
and ms(ve). After n — 1 operations, K consists of the
merging-segment for the root of the topology.

The bottom-up phase is shown in Fig. 2. In the al-
gorithm, GRAPH (K) represents a merging-cost graph
generation and M1D(a,b,c) is a function that returns
the middle value of a, b, and c. The merging-cost graph
is updated after several mergings for speed-up.

In the top-down phase of embedding, the exact lo-
cations of vertices are determined in reverse order of
that of the bottom-up phase. First, the location of the
root v of the tree of merging-segments is determined
on the merging-segment ms(v) so as to minimize the
Manhattan distance from the clock source pin. Once
the location of a vertex is determined, the locations of
its children on merging-segments are easily determined
S0 as to minimize the Manhattan distance from the par-
ent vertex location. The top-down phase is shown in
Fig. 3.

Algorithm Topology Embedding;:

1. Choose the location of the root v of the tree of merging-
segments from ms(v) such that the Manhattan distance
from the clock source pin is minimal. Connect the clock
source pin and v.

2. Local-Embedding(v);

Procedure Local-Embedding (v):

1. If (v has children) {

2. Choose the locations of children v; and v from ms(vy)
and ms(v2), respectively, such that the Manhattan dis-
tance from v is minimal. Connect v and v;. Connect

v and vg;
3. Local-Embedding(v1);
4. Local-Embedding(v2);
}
Fig.3 The top-down phase of SCT-Routing.

6. Buffer Insertion and Sizing
6.1 Buffer Insertion

For each pair of subtrees, four solutions exist with re-
spect to the buffer insertion into the roots v; and wve
of the two subtrees, respectively. However, we consider
at most two solutions for each pair. In the following,
we show the procedure that determines the solution for
each pair depending on whether C*(v1) and C*(v2) ex-
ceed ¢y, Or NOL.

In the case that neither C*(v1) nor C*(vy) exceeds
Ciim, the cost without buffer insertion is first calcu-
lated, which equals the required connection length. If
no detour is requested, the procedure adopts the solu-
tion of no buffer being inserted into the root of either
subtree. Otherwise, the connection to either v or v
makes a detour. Without loss of generality, we assume
that the connection to v; makes a detour. The cost
when the buffer is inserted into vy is calculated, which
is I’+ 3 P(v1) where I’ is the required connection length,
then the procedure selects the lower cost solution.

In the case that C*(v1) exceeds c¢pim but C*(vg)
does not, the cost when a buffer is inserted into v
is first calculated, which equals the required connec-
tion length. If no detour is requested, the procedure
adopts this solution. Otherwise, we calculate the cost
when the buffer is inserted into both v; and vg, which
is '+ BP(vy) where I’ is the required connection length.
Then the procedure selects the lower cost solution. The
procedure similarly selects the solution when C*(vg) ex-
ceeds ¢iim, but C*(v1) does not.

In the case that both C*(v;) and C*(v2) exceed
Clim, the procedure selects the solution that buffers are
inserted into both vy and ve. The cost is the required
wire length.

6.2 Buffer Sizing

First, we consider the case that a buffer is inserted into

INOUE et al: SCHEDULE-CLOCK-TREE ROUTING FOR SEMI-SYNCHRONOUS CIRCUITS

v1, but not into ve. By Eq. (1), assuming l; + I = [,
we have that

7(v2) — (7" (v1) + Touys) + 1(C(v2) + cl/2)
r(cl + cpur + C(v2))

where 73, ¢ is the internal delay of the inserted buffer.
If myup < 7(v2) — 7 (v1) + rl(C(v2) + ¢l /2) then {1 > 0;
that is, no detour is requested to connect v and wvs.
Similarly if 7y, > T(ve) — 7" (v1) — rl(cpur +cl/2) then
if [y < [; that is, no detour is requested to connect v
and vy.

The internal delay of a buffer is related to the size
of the buffer. The size and power dissipation of a buffer
is small when the internal delay is large. To minimize
the detour and the size and power of a inserted buffer,
we insert a buffer such that the internal delay is maxi-
mal unless the connection from v to vo makes a detour.
Similarly, we select a buffer to insert into vo when no
buffer is inserted into v;.

Next, we consider the case that buffers are inserted
into both vy and vs. The required connection length
from v to v1 (v2) depends on both inserted buffers. If
C*(v1) or C*(v2) does not exceed cyim, then we first
select the buffer of the root whose load capacitance ex-
ceeds ¢y by the above procedure, assuming no buffer
is inserted into the other root. Then the buffer of the
other root is selected by the above procedure. Oth-
erwise, we test pairs of buffers for v; and vy in the
following order: pick a buffer for v; from the maximum
delay buffer to the minimum delay buffer, and for each
buffer for vy, pick a buffer for vy from the minimum de-
lay buffer to the maximum delay buffer. We select the
first pair for which the connection from v to vy makes
no detour.

I =

7. Experimental Results

The proposed schedule-clock-tree routing algorithm
SCT-Routing is implemented in C++. We tested it

2435

1 pF. The process parameters are set to r = 100 m€2 and
c = 0.06 fF. We use the algorithm parameters = 10
and k = 8.

We show three types of experimental results for
a random clock-schedule and one for a gentle clock-
schedule.

7.1 Random Clock-Schedule

7.1.1 Schedule-Clock-Tree Algorithms

Our SCT-Routing and the clustering-based DME algo-
rithm (developed for zero-skew routing) in [10], called
ZS-Routing here, are applied to schedule-clock-tree
routing. The results are shown in Table 2.

In Table 2, ZS and ZS+S correspond to ZS-
Routing. SCT and SCT\B correspond to SCT-
Routing, but no intermediate buffers are inserted in
SCT\B. The clock-timing of each register is set to Ons
in ZS, while either 0.0ns, 0.5ns, 1.0ns, 1.5ns, or 2.0ns
is randomly assigned to registers in the other cases.
The total connection length, the total connection length
over that in ZS, the clock-delay from the clock source
pin to a reference clock pin, and the numbers of inserted
intermediate buffers are shown in columns “len,” “ra-
tio,” “d,” and“buf,” respectively.

The results show that the simple nearest-neighbors
strategy, adopted in [10], is not wholly applicable for
schedule-clock-tree generation. The resultant total con-
nection length of the schedule-clock-tree is more than
15 times larger than that of the zero-skew clock-tree.
A zero-skew clock-tree layout, an example of r1 by ZS-
Routing, is shown in Fig. 4 for reference.

The total connection length of the SCT \ B and of
the SCT is far smaller than that of ZS-Routing for the
same input data. Inserted intermediate buffers reduce
both the total wire lengths and clock-delays. The clock-

on five different examples used in [24], though the lo- Table 1 Stfmsms ,Of the tested e%amples'
. . . [data || # of pins | width [um] | height [um] |
cation and load capacitance of each pin were randomly
. - rl 267 6998 7000
generated. The statistics of the examples are shown = %98 9401 9313
in Table 1. The load capacitance ¢; of pin p; ranged 3 362 9700 9350
from 30 to 80 fF. The buffer size is chosen from 13 vari- r4 1903 12697 12698
eties. The maximum load capacitance of buffers ¢, is r5 3101 14292 14522
Table 2 The results of ZS-Routing and SCT-Routing.
| [7S [Z5+S [SCT\B [SCT |
algorithm ZS-Routing || SCT-Routing
buffer no intermediate buffers | with intermediate buffers
clock-timing 0 [ns] [from 0 to 2 [ns] by 0.5 [ns] step
| data [len [um][d [ns] || len [um]] ratio|d [ns] [| len [um][ratio]d [ns] || len [um][ratio[d [ns]] buf |
rl 149,044 3.1 2,621,783(17.59| 23.9 320,847| 2.15 4.9 226,643| 1.52 4.3| 145
r2 307,403 9.4 5,900,991(19.19| 68.2 695,462| 2.26| 14.5 478,979| 1.56 4.6 298
r3 390,316 10.1 8,915,795|22.84| 127.5 796,512| 2.04| 18.2 583,456| 1.49 4.5| 404
14 776,362| 35.3 || 18,965,725|24.43| 356.9 || 1,580,134| 2.04| 42.3 || 1,150,775| 1.48| 5.7| 848
r5 1,180,594| 62.1 30,302,038 25.67| 553.6 2,270,389| 1.92| 87.1 1,648,764 1.40 6.4|1332

IEICE TRANS. FUNDAMENTALS, VOL.E82-A, NO.11 NOVEMBER 1999

2436
Table 3 The results of SCT-Routing for different clock-timings.
clock-timing from O to 2ns by 1ps step from 0 to 10ns by 2.5ns step
data len [um] | ratio | d [ns] [buf len [um] [ratio | d [ns] [buf
rl 303,502 | 2.04 4.4 226 394,983 | 2.65 12.1 42
r2 604,219 1.97 5.0 537 732,336 | 2.38 12.7 93
r3 770,325 1.97 5.6 780 856,136 | 2.19 12.8 | 121
r4d 1,535,543 1.98 6.4 | 1705 1,648,321 2.12 14.1 | 252
rb 2,247,764 | 1.90 6.9 | 2803 || 2,330,142 1.97 13.9 | 367
Table 4 Schedule-clock-tree using zero-skew clock-trees
(clock-timings are from 0 to 2ns by 0.5ns step).
L\‘l—r T N [data [| len [um] | ratio [d [ns] [[buf |
I T | rl 308,396 | 2.07 3.3 39
ﬂ = r2 642,919 2.09 4.1 88
l r3 821,867 | 2.11 4.3 || 107
r4d 1,621,783 2.09 4.9 239
rH 2,373,154 | 2.01 5.5 || 377

%

Fig.4 A zero-skew clock-tree layout of the example rl
by ZS-Routing.

Fig.5 A random schedule-clock-tree layout of the example rl
by SCT-Routing.

delay reductions are significant for a large clock-tree.
The total connection length by SCT-Routing is about
1.5 times larger than that of the zero-skew clock-tree.
A schedule-clock-tree layout, an example of r1 by SCT-
Routing, is shown in Fig. 5.

7.1.2 Clock-Schedule Dependence

When the variation of clock-timings assigned to each
register is large, the total connection length of SCT-
Routing is large. The results shown in Table 3 reflect
a clock-timing from 0 to 2ns by 1ps step assigned to
each register. The average wire length ratio is 1.97 with
respect to ZS-Routing for zero-skew routing. Although
the numbers of inserted buffers are increased, the clock-
delays are almost equivalent to those shown in Table 2.

The maximum difference of clock-timings also af-
fects the total connection length and clock-delay. In
Table 3, the results when clock-timing from 0 to 10ns
by 2.5ns step is assigned to each register are shown.
The wire length ratios increase compared those shown
in Table 2, particularly for small size data. The clock-
delays also increase although the number of inserted
buffers is small.

7.1.3 Schedule-Clock-Tree Consisting of Zero-Skew
Trees

If the set of pins is classified such that the clock-timing
of each class is equivalent, it is possible to construct a
schedule-clock-tree as the sum of the zero-skew clock-
trees each designed for its class.

In Table 4, the results for the same data used in
Table 2 are shown when we construct five zero-skew
clock-trees for the registers each assigned to the same
clock-timing by SCT-Routing. The total connection
length is larger than that of the original SCT-Routing.

7.2 Gentle Clock-Schedule

A clock-schedule is said to be gentle if the clock-timings
of two clock-pins are near when their locations are close
to each other. The required wire length of a clock-tree
is assumed to be small when the clock-schedule is gentle

INOUE et al: SCHEDULE-CLOCK-TREE ROUTING FOR SEMI-SYNCHRONOUS CIRCUITS

clock-source

QWi2eH) ¥

clock-delay clock-timing W: width of the chip
for register H: height of the chip

Fig.6 Clock-delay map.

Table 5 Schedule-clock-tree using clock-routing driven layout
(e = 0.5ns/mm).
[data][len [um] | ratio | d [ns] | buf [[m [ns] |

rl 164,480 1.10 6.3 79 5.0

r2 377,092 1.23 8.1 | 152 6.5

r3 467,100 1.20 8.8 | 191 7.0

r4 803,141 1.03 10.8 | 372 9.0

r5 1,254,727 | 1.06 13.0 | 599 10.5

rather than random.

To shorten the wire length of a clock-tree in ad-
dition to shortening the clock-period, a new design
methodology that produces a gentle clock-schedule was
proposed in [23]. In [23], the clock-timing of each clock-
pin is determined by its location according to the clock-
delay map as shown in Fig. 6. The reduction of the wire
length of a clock-tree that realizes a clock-delay map us-
ing a simple delay model is assumed to be about 30%
compared with that of the zero-skew clock-tree.

Here we construct a clock-tree that realizes the
clock-delay map in Fig. 6 using the Elmore-delay model.
The clock-timing d(v) of a register v determined by the
clock-delay map is proportional to the Manhattan dis-
tance from pg to v. That is, d(v) = aLa(po,v) where a
is a certain coefficient that transforms the length to de-
lay, and Ls(pg,v) denotes the Manhattan distance be-
tween po and v. In experiments, we set & = 0.51 ns/mm
and assign a clock-timing rounded to 0.5 ns step to each
register. The results are shown in Table 5. The max-
imum difference of clock-timings is shown in column
“m.”

The results show that the wire length of a con-
structed clock-tree is almost equal to that of the zero-
skew clock-tree and the number of inserted intermediate
buffers is smaller than that of a random schedule-clock-
tree. A layout result of the example rl for a gentle
clock-schedule is shown in Fig. 7.

8. Conclusions

In this paper, we show that a schedule-clock-tree for
semi-synchronous circuit design can be constructed

2437

| al

T e Ll T

T

L&L = f&ﬁ
R

T

(== s =5 T |

Fig.7 A gentle schedule-clock-tree layout of the example r1 by
SCT-Routing.

with a wire length that is moderate compared with that
of a zero-skew clock-tree for a random clock-schedule
and almost equal to that for a gentle clock-schedule.

It appears that the reliability of a general schedule-
clock-tree against temperature or process variation is
inferior to that of a zero-skew clock-tree; a constructed
clock-tree is unbalanced due to the clock-timing differ-
ence. We should analyze the sensitivity of the con-
structed schedule-clock-trees and improve our algo-
rithm to increase reliability.

Our future work will also pursue the generation of
feasible buffer placement in our algorithm.

The performance of a constructed schedule-clock-
tree highly depends on a given clock-schedule. Taking
the given clock-schedule into consideration, it is pos-
sible to adopt techniques such as those remarked in
Sect.7.1.3. It is also possible to restrict the variety of
the clock-schedule, as was done in [23]. It is apparent
that a clock-schedule exists for which the required wire
length of the clock-tree is far smaller than that of a
zero-skew clock-tree. However, at this point in our ex-
periments, our method can only construct a clock-tree
with advantages comparable to those of a zero-skew
clock-tree. Further reduction of wire length may be
possible if we define the merging-cost by incorporating
the information from the clock-schedule or construct a
clock-tree topology in a top-down manner.

We believe that high-performance circuits with a
shorter wire length of the clock-tree cannot be con-
structed without adhering to the concept of the semi-
synchronous framework. This paper includes a basic
consideration of the semi-synchronous system design.

Acknowledgments

This work is part of a project of CAD21 at the Tokyo
Institute of Technology, and was supported in part by a

2438

IEICE TRANS. FUNDAMENTALS, VOL.E82-A, NO.11 NOVEMBER 1999

Grant-in-Aid for Scientific Research from the Ministry
of Education, Science and Culture of Japan.

References

[1]

2]

3]

[4]

[5]

[6]

7]

(8]

[9]

[10]
(11]
(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

20]

21]

[22]

K.D. Boese and A.B. Kahng, “Zero-skew clock routing trees
with minimum wirelength,” Proc. IEEE 5th ASIC Conf.,
pp-1.1.1-1.1.5, 1992.

T.H. Chao, Y.C. Hsu, and J.M. Ho, “Zero skew clock net
routing,” Proc. 29th DAC, pp.518-523, 1992.

T.H. Chao, Y.C. Hsu, J.M. Ho, K.D. Boese, and A.B.
Kahgn, “Zero skew clock routing with minimum wire-
length,” IEEE Trans. Circuits & Syst., vol.39, no.11,
pp-799-814, 1992.

Y.P. Chen and D.F. Wong, “An algorithm for zero-skew
clock tree routing with buffer insertion,” Proc. European
Design and Test Conf., pp.66-71, 1996.

J. Cong, L. He, C.K. Koh, and P.H. Madden, “Per-
formance optimization of VLSI interconnect layout,”
INTEGRATION, the VLSI Journal, vol.21, pp.1-94, 1996.
J. Cong, A.B. Kahng, C.K. Koh, and C.W.A. Tsao,
“Bounded-skew clock and Steiner routing under Elmore de-
lay,” Proc. 1995 ICCAD, pp.66-71, 1995.

J. Cong and C.K. Koh, “Minimum-cost bounded-skew clock
routing,” Proc. ISCAS 95, vol.1, pp.215-218, 1995.

R.B. Deokar and S.S. Sapatnekar, “A graph-theoretic ap-
proach to clock skew optimization,” Proc. ISCAS 94, vol.1,
pp-407-410, 1994.

M. Edahiro, “Minimum skew and minimum path length

routing,” NEC Research & Development, vol.32, no.4,
pp.569-575, 1991.
M.Edahiro, “A clustering-based optimization algorithm

zero-skew routings,” Proc. 30th DAC, pp.612—-616, 1993.
M. Edahiro and T. Yoshimura, “Minimum path-length
equi-distant routing,” Proc. APCCAS 92, pp.41-46, 1992.
J.P. Fishburn, “Clock skew optimization,” IEEE Trans.
Comput., vol.39, no.7, pp.945-951, 1990.

E.G. Friedman, ed., Clock Distribution Networks VLSI Cir-
cuits and Systems: A Selected Reprint Volume, IEEE Press,
1995.

D.J.H. Huang, A.B. Kahng, and C.W.A. Tsao, “On the
bounded-skew routing tree problem,” Proc. 32nd DAC,
pp-508-513, 1995.

D.A. Joy and M.J. Ciesielski, “Placement for clock period
minimization with multiple wave propagation,” Proc. 28th
DAC, pp.640-643, 1991.

J.L. Neves and E.G. Friedman, “Topological design of clock
distribution networks based on non-zero clock skew speci-
fications,” Proc. 36th Midwest Symp. on Circuits and Sys-
tems, pp.468-471, 1993.

J.L. Neves and E.G. Friedman, “Circuit synthesis of clock
distribution networks based on non-zero clock skew,” Proc.
ISCAS 94, vol.4, pp.175-178, 1994.

J.L. Neves and E.G. Friedman, “Minimizing power dissi-
pation non-zero skew-based clock distribution networks,”
Proc. ISCAS’ 95, vol.3, pp.1577-1579, 1995.

K.A. Sakallah, T.N. Mudge, and O.A. Olukotun, “Analysis
and design of latch-controlled synchronous digital circuits,”
Proc. 27th DAC, pp.111-117, 1990.

T.G. Szymanski, “Computing optimal clock schedules,”
Proc. 29th DAC, pp.399-404, 1992.

A. Takahashi, K. Inoue, and Y. Kajitani, “Clock-tree rout-
ing realizing a clock-schedule for semi-synchronous cir-
cuits,” Proc. 1997 ICCAD, pp.260-265, 1997.

A. Takahashi and Y. Kajitani, “Performance and reliability
driven clock scheduling of sequential logic circuits,” Proc.

23]

(24]
[25]

[26]

27]

ASP-DAC’97, pp.37-42, 1997.

A. Takahashi, W. Takahashi, and Y. Kajitani, “Clock-
routing driven layout methodology for semi-synchronous
circuit design,” Proc. TAU 97, pp.63-66, 1997.

R.S. Tsay, “Exact zero skew,” Proc. 1991 ICCAD, pp.336—
339, 1991.

A. Vittal and M. Marek-Sadowska, “Power optimal buffered
clock tree design,” Proc. 32nd DAC, pp.497-502, 1995.
J.G. Xi and W.W.M. Dai, “Jitter-tolerant clock rout-

ing two-phase synchronous systems,” Proc. 1996 ICCAD,
pp-316-320, 1996.

J.G. Xi and W.W.M. Dai, “Useful-skew clock routing with
gate sizing for low power design,” Proc. 33rd DAC, pp.383—
388, 1996.

Kazunori Inoue received the B.E.
and M.E. degrees in electrical and elec-
tronic engineering from the Tokyo Insti-
tute of Technology in 1995 and 1997, re-
spectively. He is a member of the techni-
cal staff with Hitachi ULSI Systems Corp.
where he is involved in the chip layout de-
sign of RISC microprocessors. The most
of this work was performed while he was
at the Tokyo Institute of Technology.

‘Wataru Takahashi received the B.E.
and M.E. degrees in electrical and elec-
tronic engineering from the Tokyo In-
stitute of Technology, Tokyo, Japan, in
1996 and 1998, respectively. He currently
works at NEC Corporation. His current
research interests include high level syn-
thesis. This work was done while he was
a master course student at the Tokyo In-
stitute of Technology.

Atsushi Takahashi received his B.E.,
M.E., and D.E. degrees in electrical and
electronic engineering from the Tokyo In-
stitute of Technology, Tokyo, Japan, in
1989, 1991, and 1996, respectively. He
had been with the Tokyo Institute of
Technology as a research associate from

3 1991 to 1997 and has been an associate
g professor since 1997 in the Department
of Electrical and Electronic Engineering.

His research interests include in VLSI lay-

out design and combinational algorithms. He is a member of the
IPSJ and IEEE.

INOUE et al: SCHEDULE-CLOCK-TREE ROUTING FOR SEMI-SYNCHRONOUS CIRCUITS
2439

Yoji Kajitani received his B.S., M.S.,
and D.E. degrees from the Tokyo Insti-
tute of Technology, Tokyo, Japan, all in
electrical engineering, in 1964, 1966, and
1969, respectively. He has been a profes-
sor of Department of Electrical and Elec-
tronic Engineering at the Tokyo Institute
of Technology since 1985, and has been
a professor of Japan Advanced Institute
of Science and Technology from 1992 to
1995. His current research interests are
in combinatorial algorithms applied to VLSI layout design. He
received the best paper awards in 1969, 1973, and 1985 all from
IEICE. He was awarded IEEE Fellowship in 1992.

