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SUMMARY A semi-synchronous circuit is a circuit in which
the clock is assumed to be distributed periodically to each in-
dividual register, though not necessarily to all registers simulta-
neously. In this paper, we propose an algorithm to achieve the
target clock period by modifying a given target clock schedule as
small as possible, where the realization cost of the target clock
schedule is assumed to be minimum. The proposed algorithm it-
eratively improves a feasible clock schedule. The algorithm finds
a set of registers that can reduce the cost by changing their clock
timings with same amount, and changes the clock timing with
optimal amount. Experiments show that the algorithm achieves
the target clock period with fewer modifications.
key words: semi-synchronous circuit, clock schedule, clock tree

1. Introduction

A semi-synchronous circuit is a circuit in which the
clock is assumed to be distributed periodically to each
individual register, though not necessarily to all regis-
ters simultaneously. Among various objectives in the
synthesis of high-performance circuits, the clock period
minimization is the primal subject. For a given cir-
cuit with fixed signal propagation delays between reg-
isters, there exists a lower bound of the clock period in
semi-synchronous framework which is usually smaller
than the maximum signal delay between registers. This
lower bound is achieved if the clock is distributed to
each register at proper timing [4].

In designing a synchronous circuit, a target clock
period is usually set. Even if the target clock period
can be theoretically achieved for a given circuit in semi-
synchronous framework, a clock schedule must be real-
ized in layout synthesis. It is shown that an arbitrary
clock schedule can be realized by constructing a clock
tree [3]. However, there are many clock schedules that
achieve the target clock period, each of which has its
own realization cost. Therefore, it is important to get
a clock schedule that achieves the target clock period
with a lower realization cost.

It is not easy to give a concrete definition of the
realization cost of a clock schedule. The cost of a clock
tree that realizes a clock schedule will consist of the wire
length, the power consumption, and so on. However,
it is difficult to find an optimal clock tree that realizes
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the clock schedule. Therefore, we adopt an assump-
tion that the cost of a clock schedule is proportional
to the difference from the target clock schedule. The
target clock schedule is defined by a hypothetical opti-
mal clock tree. The realization cost of a clock tree that
realizes the clock schedule would be small if the differ-
ence between the clock schedule and the target clock
schedule is small. If the target clock schedule achieves
the target clock period, we could get a desired circuit
by constructing the assumed optimal clock tree, if not,
we should modify the target clock schedule to achieve
the target clock period. The problem is to find a clock
schedule that achieves the target clock period and that
minimizes the difference from the target clock schedule.

In the clock driven layout methodology [5], a cir-
cuit layout is obtained by assuming an optimal clock
tree. Then, a clock tree is constructed by using in-
formation of the layout. In this case, the target clock
schedule will be the clock schedule defined by the as-
sumed clock tree. The clock scheduling method to get
the clock schedule in which the clock timing of each reg-
ister is near to zero is proposed in [1]. The modification
method of the clock tree to enhance the reliability of
the circuit is proposed in [6].

We propose an algorithm to achieve the target
clock period by modifying a given target schedule as
small as possible. Experiments show that the algorithm
achieves the target clock period with fewer modifica-
tions.

The rest of this paper is organized as follows. In
Sect. 2, we give a basic definitions. The target schedul-
ing algorithm is proposed in Sect. 3. The experimental
results are presented in Sect. 4. Section 5 is the conclu-
sion.

2. Preliminaries

In this paper, we consider a circuit with a single clock
consisting of registers and combinatorial circuits be-
tween them. The clock timing s(v) of register v is the
difference in clock arrival time between v and an ar-
bitrary chosen (perhaps hypothetical) reference regis-
ter. The set of clock timings is called a clock schedule.
Let dmax(u, v) (dmin(u, v)) be the maximum (minimum)
propagation delay from register u to register v along a
combinatorial circuit.

We assume the framework that a circuit works cor-
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rectly with clock period T if the following two types of
constraints are satisfied for every register pair with sig-
nal propagation [2].

No-Double-Clocking Constraints
s(v)− s(u) ≤ dmin(u, v)
No-Zero-Clocking Constraints
s(u)− s(v) ≤ T − dmax(u, v)

The constraint graph G(V,E) is defined as fol-
lows: a vertex v ∈ V corresponds to a register, and
a directed edge (u, v) ∈ E corresponds to either type
of constraints. An edge (u, v) called D-edge (Z-edge)
corresponds to the no-double (no-zero) clocking con-
straint, and the weight w(u, v) of the edge is dmin(u, v)
(T − dmax(v, u)). For a clock schedule s, an edge (u, v)
is said to be legal if s(v)− s(u) ≤ w(u, v), illegal other-
wise. The slack of an edge (u, v) is

∆(u, v) = w(u, v)− (s(v)− s(u)).

If the slack of an edge is zero, the edge is said to be crit-
ical. A clock schedule is called feasible in clock period
T if there is no illegal edge in the constraint graph. The
circuit works with the feasible clock schedule when the
clock period is T . There exists a feasible clock sched-
ule if the constraint graph contains no negative weight
directed cycle.

For example, the constraint graph of the circuit
shown in Fig. 1 is shown in Fig. 2. In Fig. 2, the number
in each vertex corresponds to the clock timing defined
by the clock tree in the circuit shown in Fig. 1. If T < 9,
edges (r4, r1) and (r1, r2) are illegal, and if T ≥ 9, they
are legal. They are critical when T = 9. There is no
illegal edge if T ≥ 9. So, the minimum clock period

Fig. 1 A semi-synchronous circuit C.

Fig. 2 Constraint graph of C in Fig. 1.

of this circuit is 9. The clock period of this circuit is
at least 9 even if the clock schedule is modified. This
can be easily verified [4]. However there are many clock
schedules that achieve the minimum clock period 9.

3. Target Clock Scheduling

We propose an algorithm to obtain a feasible clock
schedule that achieves the target clock period T and
that minimizes the difference from the given target
schedule so. It is trivial if so is feasible. Thus we as-
sume that so is infeasible and there exists a feasible
clock schedule. Usually, there are various feasible clock
schedules of various realization costs. The algorithm
selects a clock schedule with minimum realization cost.

The target scheduling problem
Input: constraint graph G(V,E), target schedule so

Output: clock schedule s such that s(v) − s(u) ≤
w(u, v) for ∀(u, v) ∈ E

Objective: minimize
∑

v∈V |s(v)− so(v)|
For the given target schedule so, we replace w(u, v)

with w(u, v) − so(v) + so(u) for all edges (u, v) in E.
Then we can regard the target clock timing of vertex v
as zero. In the following, without loss of generality, we
assume that so(v) = 0 for all v in V .

The proposed algorithm iteratively improves a fea-
sible clock schedule. A feasible initial clock schedule is
obtained by the algorithm shown in [4]. In each iter-
ation, the algorithm finds a set of registers that can
reduce the cost by changing their clock timings with
same amount, and changes the clock timing with opti-
mal amount. This operation is repeated until a mini-
mum cost schedule is obtained. An outline of the algo-
rithm is shown in Fig. 3.

The detailed algorithm to get an optimal amount
αopt is explained in Sect. 3.1. In Sect. 3.2, the detailed
algorithm to find a set of registers which reduce the
cost by changing their clock timings with same amount
is explained.

3.1 Optimal Amount of Clock Timing Adjustment

Let s be a feasible clock schedule, and R ⊆ V be a

� �
Step 1 Find a feasible initial clock schedule.

Step 2 Find a set R of registers which can reduce the
cost by changing the clock timing of each register
in R with the same amount.

Step 3 Determine the optimal amount αopt such that
the cost is minimized when the clock timing s(v)
of register v in R is changed to s(v)− αopt.

Step 4 Repeat step 2 and step 3 until there is no such
set of registers.

� �
Fig. 3 Outline of clock scheduling algorithm.
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set of registers. Let s′ be a clock schedule such that
s′(v) = s(v)− α if v in R, s′(v) = s(v) otherwise.

The edge (u, v) is legal in s′ if both u and v are in
R or neither u and v are in R. In case that u ∈ R and
v /∈ R, (u, v) is legal if w(u, v)− s(v) + (s(u)− α) ≥ 0,
that is, α ≤ w(u, v)− s(v) + s(u) = ∆(u, v). Similarly,
in case that u /∈ R and v ∈ R, (u, v) is legal if w(u, v)−
(s(v)− α) + s(u) ≥ 0, that is, α ≥ −(w(u, v) − s(v) +
s(u)) = −∆(u, v). Thus, s′ is feasible if and only if

L(R) ≤ α ≤ U(R), (1)

where L(R) = maxu/∈R,v∈R(−∆(u, v)) and U(R) =
minu∈R,v/∈R∆(u, v).

The cost of s′ is minimum when the number of
registers in R with positive clock timing is equal to
that in R with negative clock timing. If such schedule
is infeasible, then the cost of s′ is minimum when the
difference in the number between registers with posi-
tive clock timing and that with negative clock timing
is minimum.

Let β be zero, if the number n of registers in R
is even and

⌊
n+1
2

⌋
-th largest clock timing in R is non-

negative in s and
⌈

n+1
2

⌉
-th in R is non-positive in s.

Otherwise let β be the
⌊

n+1
2

⌋
-th largest clock timing of

registers in R in s.

Lemma 1: The optimal α, say αopt, that minimizes
the cost of s′ is β if L(R) ≤ β ≤ U(R), L(R) if β <
L(R), and U(R) if U(R) < β.

If αopt is zero, the set of registers cannot reduce
the cost. If αopt is positive or negative, then the cost
can be reduced. αopt is positive if and only if both
U(R) and β are positive, that is, there is no critical
out-edge from R in s, and the number of registers in R
with positive clock timing in s is larger than that in R
with non-positive clock timing in s. Similar discussion
is possible when αopt is negative.

3.2 Cost Reduceable Register Sets

The problem is to find a set R of registers with non-
zero αopt. In the following, we discuss the problem that
finds a set R of registers with positive αopt. Similar
discussion is possible in the case of negative αopt.

Input: The constraint graphG(V,E), and clock sched-
ule s.

Question: Is there a set R of registers which satisfies
the following conditions.

• There is no critical out-edge from R in s.
• The number of registers in R with positive
clock timing in s is larger than that with non-
positive clock timing in s.

Let Gc(V,Ec) be the critical graph obtained from
constraint graph G(V,E) by deleting non-critical edges.
A vertex is labeled “+” if the clock timing is positive

Fig. 4 Constraint graph and critical edges.

Fig. 5 Critical graph from constraint graph.

in s, labeled “−” otherwise.
The problem is formulated as follows.

Input: The critical graph Gc(V,Ec)
Question: Is there a set R of vertices which satisfies

following conditions.

• There is no out-edge from R.
• The number of “+” vertices in R is larger than
that of “−” vertices in R.

An illustrative constraint graph is shown in Fig. 4.
Critical edges are written in bold. The corresponding
critical graph is shown in Fig. 5.

The algorithm which solves the problem is shown
in Fig. 6.

We explain the algorithm using the critical graph
shown in Fig. 5. The graph GH obtained in step 1
and step 2 is shown in Fig. 7. The edges in the maxi-
mum matching obtained in step 3 are written in bold in
Fig. 7. In Fig. 8, the graph G∗

H is shown. Vertices a, b,
c, f , g, and h are matched vertices, and others are un-
matched vertices. Because e is unmatched “+” vertex,
e is selected as vs in step 5. Reachable vertices from e
are shown in Fig. 8. Because the vertex j is reachable
from vertex c ∈ R′ in graph GC , j is added to R in step
6. Thus, R = {b, c, e, f, h, j} is obtained.

We prove that the algorithm finds a set R of ver-
tices which satisfies the conditions as follows.
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� �
Step 1 Let G′

H(V, E′
H) be the transitive graph of

GC(V, EC), that is, there is an edge (u, v) in E′
H

if there is a path from u to v in GC .

Step 2 Let GH(V, EH) be the graph obtained from
G′

H(V, E′
H) by deleting all edges in E′

H except
the edges connecting from “+” vertex to “−”
vertex.

Step 3 Obtain a maximum matching of the underly-
ing graph of GH , and let G∗

H be the graph ob-
tained from GH by changing the direction of all
matched edges.

Step 4 If all “+” vertices is matched, then output “No”
and terminate.

Step 5 Select an unmatched “+” vertex vs, and let R′

be the set of vertices reachable from vs in G∗
H .

Step 6 Output the set R of vertices obtained from R′ by
adding a vertex reachable from R′ in GC(V, EC).

� �
Fig. 6 Cost reduceable set finding algorithm.

Fig. 7 Maximum matching of graph GH .

Fig. 8 Graph G∗
H and reachable vertices from e.

1. If the algorithm outputs “No,” no set of vertices
satisfies the conditions.

2. No edge (u, v) with u ∈ R and v /∈ R exists in GC .
3. A set R of vertices which is given by the algorithm
has more “+” vertices than “−” vertices.

Theorem 1: If all “+” vertices are matched in step
3, then there is no set of vertices that satisfies the two

conditions.

Proof: Assume that there exists a set A of vertices
that satisfies the two conditions. For each “+” vertex
u in A, there exists a “−” vertex v which is matched to
u. Then there exists a path from u to v in the critical
graph GC . By the former condition, v is contained in
A, for otherwise, there exists an edge on the path such
that the edge is out-edge from A in GC . Therefore, the
number of “−” vertices is at least that of “+” vertices.
This contradicts the latter condition. ✷

Theorem 2: No out-edge from R exists in GC .

Proof: Assume that there exists an edge from u ∈ R
to v /∈ R in GC . In step 6, v is added to R, since v is
reachable from u in GC . This contradicts the assump-
tion. ✷

Lemma 2: Except vs, no unmatched vertex exists in
R′ obtained in step 5.

Proof: An unmatched “+” vertex has no in-edge inG∗
H

since the direction of edge is from “+” vertex to “−”
vertex except matched edges. Thus, every unmatched
“+” vertex except vs is not reachable from vs in G∗

H ,
and not contained in R′.

If there exists a path from vs to an unmatched “−”
vertex in G∗

H , then the path is an augmenting path
of the matching. This contradicts the fact that the
maximum matching is obtained in step 3. ✷

Lemma 3: The number of “+” vertices in R′ is larger
than the number of “−” vertices in R′.

Proof: If a matched “+” vertex u is contained in R′,
then the corresponding “−” vertex v is contained in R′,
since (v, u) is the only in-edge of u in G∗

H . Thus, the
number of “+” matched vertices is equal to that of “−”
matched vertices in R′. From Lemma 2, R′ contains one
unmatched “+” vertex. So, the number of “+” vertices
is just one larger than the number of “−” vertices. ✷

Lemma 4: All vertices added to R′ in step 6 are “+”
vertices.

Proof: For each “−” vertex u in R′, there exists an
edge (w, u) in GH such that w is “+” vertex in R′,
since there is no edge connecting “−” vertices in GH .
That is, for each u, there exists a “+” vertex w in R′

such that u is reachable from w in GC . Assume that
“−” vertex v /∈ R′ is added to R′ in step 6. Then v
is reachable from a vertex in R′ in GC . That is, v is
reachable from “+” vertex w in R′ in GC . Therefore,
there exists an edge (w, v) in GH . This contradicts that
v is not in R′. ✷

From Lemmas 3 and 4, we have the following the-
orem.
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Theorem 3: The number of “+” vertices in R is
larger than that of “−” vertices in R.

Thus, every claim is proved and the algorithm finds
cost reduceable register set if it exists.

Theorem 4: The algorithm outputs the minimum
cost schedule.

Proof: Let s be the clock schedule obtained by the
algorithm. Assume contrary that there exists a clock
schedule s′ such that

∑
|s′(v)| <

∑
|s(v)|.

Let δ(v) = s(v) − s′(v). First, we show that if an
edge (u, v) is critical in s, then δ(u) ≤ δ(v). Since s
is feasible and (u, v) is critical, we have s(v) − s(u) =
w(u, v). Since s′ is feasible, s′(v) − s′(u) ≤ w(u, v).
Since (s(v)−s′(v))− (s(u)−s′(u)) ≥ 0, we have δ(u) ≤
δ(v).

We partition the vertex set V into V+ = {v|δ(v) >
0}, V− = {v|δ(v) < 0}, and V0 = {v|δ(v) = 0}. Further
we partition the vertex set V+ into V1, V2, . . ., Vm as
follows: for any vertex v and u in Vi (1 ≤ i ≤ m),
δ(v) = δ(u) = δi; for any vertex v ∈ Vi and u ∈ Vj

(1 ≤ i < j ≤ m), δ(v) > δ(u).
Let fi(x) =

∑
v∈V1∪V2∪···∪Vi

|s(v)−x|. Since there
is no cost reduceable set for s, fi(x) ≥ fi(x′) for any
x > x′ ≥ 0. Note that there is no critical out-edge
from {V1, V2, . . . , Vi}, and fi(x) is a convex function.
Then

∑
v∈V+

|s′(v)| = f1(δ1) − f1(δ2) + f2(δ2) − · · · −
fm−1(δm) + fm(δm) ≥ fm(0) =

∑
v∈V+

|s(v)|. Simi-
larly, we have

∑
v∈V−

|s′(v)| ≥
∑

v∈V−
|s(v)|. There-

fore,
∑

v∈V |s′(v)| ≥
∑

v∈V |s(v)|, and this contradicts
the assumption. ✷

In example shown in Fig. 4, {b, c, e, f, h, j} is se-
lected as R, and optimal amount αopt is 1. After chang-
ing clock timings of registers in R, there exists no cost
reduceable set. The schedule obtained by the algorithm
is shown in Fig. 9.

4. Experimental Results

The proposed algorithm and an algorithm using linear
programming are implemented on PentiumII 450MHz
(Free BSD). They are applied to benchmark circuits
in LGSynth93. The experimental results of the target
scheduling algorithm are shown in Table 1. We assume
that the signal delay between registers is the number of
gates along a path in the combinatorial circuits between
them. The target clock timing of each register is zero.

In Table 1, the number of registers is shown in column
#Reg, the number of register pairs with signal propaga-
tion in column #Path, the maximum delay in a circuit
in column Max D, the minimum clock period in semi-
synchronous framework in column Min CP which is the
target clock period, the number of registers scheduled
other than the target clock timing in column #Other,
the sum of the difference between the resultant clock
timing and the target clock timing in column Cost, the
computational time of the proposed algorithm in col-
umn Time, and the computational time using the linear
programming in LP. Although the clock schedule ob-
tained by our algorithm is different from that by linear
programming, the costs of them are same.

5. Conclusion and Future Works

In semi-synchronous framework, we proposed the algo-
rithm to minimize the difference from the target clock
schedule. In experiments, the minimum clock period
is achieved with fewer difference from the target clock
timing. Our algorithm is faster than the algorithm us-
ing linear programming. As future works, we should
discuss the validity of cost function and improve it.
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Fig. 9 Solution given by the scheduling algorithm.

Table 1 Results of the target scheduling algorithm.

Model #Reg #Path Max D Min CP #Other Cost Time [sec] LP [sec]

s1423 75 1766 66 57.00 6 21.00 0.093 0.141
s5378 164 1185 29 22.34 16 22.53 0.087 0.140

s9234.1 135 1947 55 51.00 16 30.00 0.107 0.182
s38417 1458 31446 65 45.00 63 149.00 2.393 13.080

s38584.1 1427 16219 67 48.00 12 48.00 1.361 2.095
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