
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001
1301

PAPER

An Efficient Algorithm to Extract an Optimal Sub-Circuit

by the Minimum Cut

Kengo R. AZEGAMI†∗a), Atsushi TAKAHASHI†, and Yoji KAJITANI†, Regular Members

SUMMARY We improve the algorithm to obtain the min-
cut graph of a hyper-graph and show an application to the sub-
network extraction problem. The min-cut graph is a directed
acyclic graph whose directed cuts correspond one-to-one to the
min-cuts of the hyper-graph. While the known approach trades
the exactness of the min-cut graph for some speed improvement,
our proposed algorithm gives an exact one without substantial
computation overhead. By using the exact min-cut graph, an ex-
haustive algorithm finds an optimal sub-circuit that is extracted
by a min-cut from the circuit. By experiments with the indus-
trial data, the proposing method showed a performance enough
for practical use.
key words: circuit partition, hyper-graph partition, network

ow, min-cut, integrated circuit design

1. Introduction

Partitioning is essential in various stages of hierarchal
VLSI design. The problem formulations as well as its
solutions have been studied extensively. Studies related
to our subject are found in [3], [6], [10], [13], [14], and
[16]. See [12] for an extensive survey. Since the problem
is so diverse, we start with some general framework
with respect to problems, approaches and application
environments.

In partitioning a given huge circuit into sub-
circuits, three major indices are focused: (1) the cut
size (number of edges interconnecting sub-circuits), (2)
the number of sub-circuits, and (3) the balance (max-
imum difference of sizes) of sub-circuits. The problem
formulation, approach and environment are stated in
terms of them.

Typical problem formulations are such that “parti-
tion a given circuit into a certain number of sub-circuits
minimizing the cut size” and that “partition the circuit
under the constraint of a limit of cut size minimizing
the number of sub-circuits.” There are other combina-
tions of three indices but they are too unrealistic to be
considered in VLSI design.

The approaches are classified roughly in two ways,
one based on the max-flow min-cut theorem and the
other based on the greedy vertex exchange strategy

Manuscript received December 10, 1999.
Manuscript revised September 6, 2000.

†The authors are with the Department of Electrical and
Electronic Engineering, Tokyo Institute of Technology, To-
kyo, 152-8552 Japan.

∗Presently, with System LSI Development Laboratory
of Fujitsu Laboratories LTD.
a)E-mail: azegami@lab.ss.titech.ac.jp

(such as KL or FM methods [3]).
While applications of partition in VLSI design are

derived mainly from two environments. One is in the
placement based on the slice line structure. Since the
circuit is embedded in two divided half zones, it is nec-
essary to give a solution to:

(Slicing Problem) Find a partition into two with
the minimum cut-size under the constraint on the num-
ber and balance of sub-circuits.

The other is in module design of pre-fabricated cir-
cuits such as FPGA or MCM architecture. Since each
module is a look-up table or a cell in a library, the
problem is described as:

(Module Problem) Find a partition of the cir-
cuit into the minimum number of sub-circuits under the
constraint of the cut-size and balance of sub-circuits.

For the Slicing Problem, the max-flow min-cut
based approach has not been believed effective since
the algorithm finds a difficulty handling hyper-edges,
the balance is not controllable, and the computational
cost is large. So, the exchange based approaches have
been taking the place by the merits: it has no discrimi-
nation against hyper-edges, its computation cost can be
any small (the algorithm could stop any time), and the
balance can be arbitrarily defined (the initial partition
defines the balance). The only problem, but fatal, is
that the approximation to the exactness is not known.

For the Module Problem, both approaches were
considered not adequate. The exchange based one has
no idea to minimize the number of sub-circuits. It is
also true that the max-flow min-cut based approach
complies no idea of balancing nor minimizing the num-
ber of sub-circuits. The concern of this paper is in the
Module Problem. However, it is so intractable that we
introduce an alternative which is described as follows.

(Extraction Problem) Given a circuit with two
vertices assigned, extract a maximal sub-circuit that in-
cludes one designated vertex inside and the other out-
side under the constraint of the size of the cut being
minimum and the size of the circuit within a specified
range.

To approach this problem, the only algorithm so
far proposed is to fix a maximum flow between the two
designated vertices, one being the source and the other

1302
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

being the sink of the flow, and find the minimum cut
nearest to the source (sink) which separates the flow-
reachable set of vertices from the source (to the sink)
and the rest. Other minimum cuts are found by choos-
ing some vertices and finding the flow-reachable sets
of vertices from them. Not to miss any minimum cut,
the choice of the vertices shall be from all the combi-
nations of the vertices. Even though some bounding
techniques are applied, this meek algorithm needs in-
numerable times of the whole graph traversal, which is
not tolerable by its huge computation time.

To display all the minimum cuts between two des-
ignated vertices, a useful data structure known by the
name of min-cut graph [17] exists. It is a directed
acyclic graph M(H) defined for any hyper-graph H
such that all of its directed cuts correspond one-to-one
to the minimum cuts of H. The existence of the min-
cut graph for an ordinary graph is a known fact. For
the hyper-graph H, as far as the authors know, it was
first suggested by Liu and Wong in [17]. See Fig. 1 for a
hyper-graph H. This graph has min-cuts C1, . . . , C6 of
cut weight 4. See Fig. 2 for its corresponding min-cut
graph M(H).

They [17] claim merits of the min-cut graph but
mentioned also that the penalty is in the computa-

Fig. 1 Hyper-graph H and its s-t min-cuts of cut weight 4. An
edge with two end vertices are drawn as a single line, while an
edge with more than two end vertices are drawn as a curve.

Fig. 2 The min-cut graph M(H) for H. Each vertex in M(H)
is labeled by a set of vertices in H surrounded by its min-cuts.

tional cost to obtain it since they assumed the meek
algorithm mentioned above. Therefore they proposed
a heuristic to construct an approximated min-cut graph
as a compromise, which in some cases lack preciseness
in displaying the min-cuts.

The first objective of this paper is to give an em-
pirical proof that the exactness of min-cut graph is easy
to achieve by noting if we come to the idea that a ver-
tex of the min-cut graph corresponds to a strongly con-
nected component of the flow graph with respect to the
flow-reachability. We can expect the algorithm to find
better partitions by utilizing an exact min-cut graph.
Once M(H) is obtained, we would use it to extract a
sub-circuit from H.

In worst case, the number of directed cuts in M(H)
is exponential to the number of its vertices. The second
objective of this paper is to show by experiments that
an exhaustive search for its desired directed cut will
work in a reasonable computation time. It is done by
extracting a vertex from M(H), closest to the source,
after another considering maximization of the evalua-
tion. We dare to apply the strategy faithfully to the
industrial data which are consisting of thousands of
vertices and the size constraint is around hundreds of
vertices. This reveals an empirical fact that using the
exact min-cut graph to extract a desired sub-circuit is
practical enough for industrial use.

2. Flow-Graph and Flow-Block

Let F = (V, E) be an ordinary flow-graph where V
and E are the sets of vertices and edges, respectively.
(u, v) ∈ E is an edge with direction from u to v. Each
edge e has an associated capacity cap(e). Special ver-
tices s and t are the source and sink, respectively.

Assume an s-t flow of F . Of each edge e, flow(e)
denotes the amount of the flow on the edge. An edge
e is said saturated if flow(e) = cap(e) and zero-flow if
flow(e) = 0. A vertex p is flow-reachable from vertex
v if there exists a flow-augmentable path from v to p.
The maximal amount of flow (or its flow distribution
on the edges) from s to t is referred to as a maximum
s-t flow, or simply a max-flow. In a flow-graph with a
max-flow, there is no flow-augmentable path from s to
t, that is, t is not flow-reachable from s. A max-flow can
be computed by known algorithms, for instance, by the
preflow-push method in O(n2m) [5], [7], and Goldberg
et al.’s method in O(nm log n2

m) [4], where n = |V | and
m = |E|.

Let V1 and V2 be sets of vertices such that s ∈ V1,
t ∈ V2, V1, V2 ⊂ V , V = V1 ∪ V2 and V1 ∩ V2 = ∅. The
set of edges connecting a vertex in V1 and a vertex in
V2 is called an s-t cut, denoted by [V1, V2]. An edge
(u, v) in [V1, V2] is called forward if u ∈ V1 and v ∈ V2,
and backward if u ∈ V2 and v ∈ V1. An s-t cut with the
minimum capacity is referred to a minimum s-t cut, or
simply a min-cut.

AZEGAMI et al.: AN EFFICIENT ALGORITHM TO EXTRACT AN OPTIMAL SUB-CIRCUIT BY THE MINIMUM CUT
1303

Assume a max-flow. Let a flow-block be a maximal
set of mutually flow-reachable vertices. An equivalent
definition is that a flow-block is a strongly connected
component in terms of flow-reachability. Since two ver-
tices are in the same flow-block if and only if they are
mutually flow-reachable, a flow-block is not separated
by a min-cut, and any two flow-blocks can be separated
by a min-cut.

3. Constructing Min-Cut Graph: Our Pro-
posal

We confirm that our main task is to (1) find all the flow-
blocks, and then (2) browse them to find an appropriate
min-cut.

In [17], an algorithm DMC (Desirable Min-Cut) is
described. DMC is a heuristic which creates an approx-
imated min-cut graph from a given hyper-graph. Since
it is a heuristic, the graph obtained by it may not be
precise and results in lack of disclosed min-cut.

Unlike the approach in DMC, we determine an ex-
act min-cut graph. The approach consists of the fol-
lowing four steps. The details will be given later.

Procedure 1: (Construction of M(H): Our Pro-
posal)

Input: Hyper-Graph H
Output: Min-Cut Graph M(H)

1. (Graph Transformation) Get the s-t flow-graph F
by applying the Yang-Wong transformation to all
the hyper-edges in H.

2. (Max-Flow) Compute a max-flow in F .
3. (Flow-Block Candidates) Obtain F ′ by applying
Flow-Reachability transformation to all the local
structures in F .

4. (Strongly Connected Component) Find all the
strongly connected components in F ′. Get min-
cut graph M(H) by contracting each of them into
a single vertex.

✷

3.1 Graph Transformation

We transform H = (VH , EH) to a directed graph
F = (VF , EF) by applying Yang-Wong Transformation
to all the hyper-edges [2], [11], [15] (Fig. 3). This trans-
formation replaces a hyper-edge eH with a structure,
called the local structure of eH . The formal definition
is as follows.

Definition 1: (Yang-Wong Transformation of eH

with weight w: Step 1 in Procedure 1.)

1. Create a pair of vertices x and x′.
2. Create a directed edge el = (x, x′) with cap(el) =

w.

Fig. 3 Yang-Wong transformation to a hyper-edge of three
end vertices to a local structure.

3. For each end vertex v of eH , create a pair of
directed edges e = (v, x) and e′ = (x′, v) with
cap(e) = cap(e′) = ∞.

4. delete eH

✷

VF consists of two kinds of vertices, VH and the
added ones. We refer to the ones in VH as original ver-
tices, the added ones as virtual vertices, and the added
edges (x, x′) as virtual edges.

This equivalent transformation could be inter-
preted as a series of three well-known equivalent trans-
formations from the edge-capacity undirected hyper-
graph to the vertex-capacity undirected graph, from it
to the vertex capacity directed graph, and from it to the
edge-capacity directed graph. But the authors would
like to call it as the Yang-Wong transformation since,
from the authors knowledge, Yang and Wong [11], [15]
was the first to define it as a single operation, which
has made the description very smart.

3.2 Flow-Block Candidates

After computing the max-flow, we transform F to a di-
rected graph F ′ by applying the flow-reachability trans-
formation to all the local structures before finding the
strongly connected components. Yang-Wong transfor-
mation adds extra vertices and edges, i.e. virtual ver-
tices, virtual edges and infinity-capacity edges. By ap-
plying the flow-reachability transformation to all the
local structures in F , such extra components are re-
moved and the flow-reachability relations between the
original vertices are embossed.

Example given in Fig. 4 would be helpful to under-
stand.

Definition 2: (Flow-Reachability Transformation of
a local structure l: Step 3 in Procedure 1.)

1. let el be the virtual edge of l
2. if el is saturated then

a. let Vo, Vi and Vn be the sets of original vertices
in l, from which the flow comes in to el, goes
out from, and neither, respectively.

b. Pick two vertices vi and vo, each from Vi and
Vo, respectively

1304
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

Fig. 4 Flow-reachability transformation: Some examples.

c. If |Vn| = 0 then create an edge (vi, vo)
d. Else for each vertex vn ∈ Vn, create edges

(vi, vn) and (vn, vo)
e. if |Vi| > 1 then connect all of the vertices in

Vi by a ring (directed cycle)
f. if |Vo| > 1 then connect all of the vertices in

Vo by a ring

3. Else

a. connect all of the original vertices in l by a
ring

4. delete el, all the virtual vertices and the infinity-
capacity edges in l.

✷

The following facts hold.

Theorem 1:

1. An original vertex is flow-reachable, i.e. a directed
path exists, from the other original vertex in F if
and only if the former is reachable from the latter

in F ′.
2. Two original vertices belong to the same flow-

blocks if and only if they belong to the same
strongly connected component in F ′.

3. The graph obtained from F ′ by contracting each
strongly connected component into a single vertex
is M(H).

✷

For example, see Fig. 4. In Case A, any two of
u1, u2, v1, and v2 are mutually flow-reachable in F and
they are strongly connected in F ′. Also in Case B, v1 is
flow-reachable to any other vertex in F , i.e., there is a
directed path to any other vertex in F ′. Therefore, by
contracting each of the strongly connected component
in F ′ into a single vertex, M(H) is obtained.

3.3 Computational Complexity

Along Procedure 1, let us estimate the computational
complexity of our approach in obtaining an exact min-
cut graph.

Step 1 is possible by the search of the edges and
vertices of constant times which needs O(n + m) time.
In Step 3, applying flow-reachability transformation
can be done by one time graph search. Step 4, find-
ing the strongly connected components and their con-
traction, are possible in O(n + m) time as well, by the
depth-first-search [1], [8]. Therefore, the total computa-
tional complexity of Steps 1, 3 and 4 is O(n+m). Then
Step 2, to fix a max-flow, will be dominant in the part
to get M(H) from H. One of the fastest algorithms
works in O(nm log n2

m) [4].

4. Applications to Sub-Circuit Extraction

The way a practical circuit is modeled to the graph of
the Extraction Problem is as follows. First, two des-
ignated vertices are assigned as the source and sink of
F intending that the source is to be included in the
sub-circuit which we are concerned, and sink is not.

Once the problem instance is fixed, we apply our
way of constructing the min-cut graph. Assume that
the min-cut graph M(H) is obtained. The exact solu-
tion is obtained as follows. In a DAG, define a leaf as
a vertex in it with no outgoing edges. So, a vertex that
corresponds to the source of the flow is the only leaf in
M(H). Extract it, and construct a new DAG by delet-
ing it. Of all the new leaves born after the deletion, list
all of its combinations of the leaves. Check the feasibil-
ity of each combination if the sum of weights of chosen
leaves and the extracted leaves does not violate the size
constraint of the sub-circuit to be extracted. For each
feasible combination, by deleting all the leaves and the
ancestors of the unchosen leaves, construct a new DAG
for further extraction. Apply the mentioned procedure
recursively while a new DAG is constructed.

AZEGAMI et al.: AN EFFICIENT ALGORITHM TO EXTRACT AN OPTIMAL SUB-CIRCUIT BY THE MINIMUM CUT
1305

Fig. 5 Proposing method to finding a min-cut in M(H).

See an example shown in Fig. 5 where M(H) is
given. The vertices represent subsets of vertices of
hyper-graph H (shown in Fig. 1). Suppose the given
constraint of the sub-circuit size is 4. The current cut
is C1 which extracts v1. Deletion of v1 gives birth to
two leaves v2 and v3. We now have three combinations
for further extraction {v2}, {v3} and {v2, v3}. We start
the evaluation from the one with less number of ver-
tices among the combinations. Suppose we chose {v2}
as the first evaluation objective. The number of ver-
tices in H for {v2} with {v1} is 5, and this choice is
discarded. Since any combination of vertices including
{v2} will violate the size constraint, any further eval-
uations including these vertices, for instance {v2, v3},
are bounded, i.e. pruned. Finally, {v3} is evaluated.
The number of vertices in H for {v3} with {v1} is 3,
and this combination is stored. A new DAG to be cre-
ated for {v3} is empty since the ancestors of {v2} are
deleted. Hence, we conclude that {v1, v3} is the only
exactly optimal solution.

Our approach has two problems. The first prob-
lem is how to decide the source and the sink of the flow.
Here we had to introduce an expert heuristic: there are
many I/O pins and we divide them into two, the source
side and the sink side according to the closeness be-
tween pins measured by the shortest path length. Then
create new vertices s and t as the grand source and sink
connected to all the vertices of the source side and the

Fig. 6 Example ofM(H) where our approach takes a long time
to find an optimal cut.

sink side, respectively.
The second problem is that the computational

complexity of our approach is basically exponential,
and there are cases where our approach takes a long
time to find a solution. See Fig. 6 for such an example.

The reason we still think that the exhaustive search
to work efficiently in the Extraction Problem in VLSI
design comes from the belief that

• the structure of M(H) depends on the structure of
the hyper-graph, but is small and simple in com-
mon for practically large circuits.

and
• case where M(H) consists of innumerable small-
sized flow-blocks is rare.

These expectations shall be empirically proved on prop-
erly chosen industrial data set.

5. Min-Cut Graphs in Experiments

The experiments are to ensure the following items on
the properly chosen data set and constraint.

1. Smallness of M(H)
2. Smallness of computation time.
3. Merit over the the existing one that uses an ap-

proximated min-cut graph (proposed in [17]).

The test program, implemented in C, for the ex-
periments (a) reads a circuit net-list and constraints
(I/O number and size limit), (b) creates a hyper-graph
from it, (c) applies Yang-Wong transformation, (d) par-
titions the I/O terminals, (e) fixes a max-flow, (f) ap-
plies flow-reachability transformation, (g) contracts its
strongly connected components into single vertices, and
then (h) exhausts the directed cuts. It was tested on a
400MHz Pentium2 PC with 64MB of memory, under
FreeBSD.

See Table 1 featuring the test cases, and Table 2 for
the size of the largest and smallest library cells being
used.

The test cases are categorized as follows.

1306
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

A–D, G–O, Q–R: multi-media video decoder
(Adder, DCT, Control sequencer, Interface logic)
E–F, P: micro-processor (Adder, Multiplier)

The experiment took place to observe (a) the num-
bers of the vertices in M(H), and (b) time to search
for a partition (directed cut in M(H)) whose size is the
largest under the I/O number and the size constraints
of 64 and 25000, respectively. These constraints were
decided based on our experiences in successful utiliza-

Table 1 Features of the test data.

fanouts
Case # cells # nets # I/O max. avr. size

A 146 210 97 4 2.29 25187
B 294 422 193 4 2.30 48435
C 453 645 289 4 2.29 73365
D 589 845 385 4 2.31 96869
E 938 989 80 108 3.54 128920
F 1654 1704 79 157 3.46 218902
G 2180 2205 76 41 3.72 314768
H 2175 2250 138 329 3.46 290984
I 2232 2286 88 245 3.39 277722
J 2317 2446 189 57 3.16 294744
K 2573 2677 181 180 3.57 348780
L 2350 2493 203 509 3.27 310065
M 2527 2596 110 63 3.41 309402
N 2396 2418 40 486 3.16 280931
O 2254 2393 268 285 3.16 292056
P 183 254 84 26 2.56 31157
Q 2920 3020 175 557 3.27 366513
R 10530 11844 300 201 3.45 1469494

Table 2 Cells of the library: Largest and smallest.

Library Cell Size
max. min. variety of cells
1000 62 272

Table 3 Number of flow-blocks and time to obtain an appropriate min-cut, under
constraints: size ≤ 25000, I/O≤ 64.

Flow-Block Ours Liu-Wong

max- min- time search sub-circuit time search sub-circuit
Case # size size [ms] # size [ms] # size

A 4 15218 62 10 3 19062 9 3 19062
B 4 33016 62 20 3 19062 12 3 19062
C 3 57867 94 30 2 15498 16 1 15404
D 3 81557 94 40 2 15312 18 1 15218
E 2 125912 3008 50 1 3008 40 1 3008
F 2 215894 3008 80 1 3008 61 1 3008
G 19 308166 62 1250 73728 8408 124 7 6602
H 16 286660 94 2200 16384 4324 111 7 282
I 7 273152 94 100 16 4570 100 4 94
J 4 291548 94 120 3 3196 125 2 282
K 22 343406 94 2183 36043 24327 1649 18 5374
L 8 293103 62 130 66 16962 26 2 12765
M 14 305271 62 140 551 4131 123 7 282
N 7 278863 94 130 34 2068 121 6 282
O 2 289048 3008 120 1 3008 89 1 3008
P 3 26289 125 10 2 4868 14 1 4743
Q 19 344461 94 870 2 22052 14 2 16357
R 14 1466486 94 760 4098 3008 360 5 94

(avr.) 8.4 279773 734 457.9 7274.4 9770.6 167.3 4 6940.4

tion of 10K gate FPGA. For comparison, we also im-
plemented the Liu-Wong’s approach. See Table 3 for
the result of the experiment. The table describes:

• number of flow-blocks (#)
• size of the largest flow-block (max-size)
• size of the smallest flow-block (min-size)

of each test case, and

• time to find a desired min-cut (time[ms]), including
the time to obtain a min-cut graph

• number of sub-circuits tested for feasibility (search
#)

• size of the extracted sub-circuit (sub-circuit size)

for both ours and Liu-Wong’s approaches of the corre-
sponding test cases.

As we had expected prior to the experiments, the
number of the flow-blocks are affected by the designs,
however, they are small compared to the number of the
vertices in the hyper-graph in most cases. For exam-
ple in case A, 146 vertices in hyper-graph but only 4
vertices in min-cut graph.

Our approach exhaustively searches for a desired
cut in M(H), thus the number of searches can be large
in some cases. However, the smallness and the simplic-
ity of M(H) overrides the inferiority in computation
time of an exhaustive search. For instance, compar-
ing case K to case L, the number of flow-blocks in-
creases from 8 to 22, and the search # increases from
66 to 36043, while the computation time increases from
130ms to only 2183ms.

Comparing the time in finding a desired cut, Liu-
Wong’s approach is advantageous. However, it is only
few hundreds of milli-seconds, which may be consid-
ered negligible. Similarly, comparing the size of the

AZEGAMI et al.: AN EFFICIENT ALGORITHM TO EXTRACT AN OPTIMAL SUB-CIRCUIT BY THE MINIMUM CUT
1307

extracted sub-circuit, our result is improved by 41%
(9770.6 for ours and 6940.4 for Liu-Wong’s). This is
because our algorithm exhaustively searches for an ex-
act optimal solution while Liu-Wong’s searches heuris-
tically, and in many cases, lose optimality.

From these observations, we can conclude that Liu
and Wong paid for the reduction of computation cost
by the exactness of M(H), which results in disadvan-
tage of the size of the extracted sub-circuit, while we
showed that exactness and small computation cost can
be achieved simultaneously in real industrial cases.

6. Concluding Remarks

The use of the min-cut graph has been known very
effective to extract a desired sub-circuit when the con-
straint is the smallness of the cut. To find the min-
cut graph of a hyper-graph has been believed to use a
formidable computation cost. This paper showed that
the preceding works had missed one simple fact, i.e.
the flow-reachability of a directed flow graph can be
equivalently transformed to the existence of a directed
path.

After showing how to construct the min-cut graph,
we also showed its application to the sub-circuit extrac-
tion problem for the industrial data and showed that
even an exhaustive search works very well since the size
of the min-cut graph is very small.

The only problem we had not discussed in detail is
to give a way to define the source and sink. Our ad-hoc
idea is just to group the I/O pins embedded in practical
circuits. To give a reasonable way to define the source
and the sink is included in future works.

Acknowledgment

The authors would like to express their thanks to
Dr. Shigetoshi Nakatake (Kita-Kyushu Univ.), Mr. Hi-
romasa Takahashi (Fujitsu Labs.), and Dr. Kaoru
Kawamura (Fujitsu Labs.) for their valuable advices
and support.

This work is a part of CAD21 project at Tokyo
Institute of Technology. It is also partly financially
supported by New Energy and Industrial Technology
Development Organization (NEDO) #98C05-002-2

References

[1] T.C. Hu, Integer Programming and Network Flows,
Addison-Wesley Publishing Company, Inc., 1970.

[2] E.L. Lawler, “Cutsets and partitions of hypergraphs,” Net-
works, no.3, pp.275–285, 1973.

[3] C.M. Fiduccia and R.M. Mattheyses, “A linear time heuris-
tic for improving network partitions,” Proc. ACM/IEEE
DAC, pp.175–181, 1982.

[4] A.V. Goldberg and R.E. Tarjan, “A new approach to the
maximum flow problem,” Proc. 18th Annual ACM Sympo-
sium on Theory of Computing, pp.136–146, 1986.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction
to Algorithms, M.I.T. Press, 1990.

[6] Y.C. Wei and C.K. Cheng, “Ratio cut partitioning for hi-
erarchical designs,” IEEE Trans. Comput.-Aided Des. In-
tegrated Circuits & Syst., vol.10, no.7, pp.911–921, July
1991.

[7] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows:
Theory, Algorithms and Applications, Prentice Hall Inter-
national Inc., 1993.

[8] A. Dolan and J. Aldous, Networks and Algorithms: An
Introductory approach, John Wiley & Sons, 1993.

[9] E. Ihler, D. Wagner, and F. Wagner, “Modeling hyper-
graphs by graphs with the same mincut properties,” Infor-
mation Processing Letters, no.45, pp.171–175, March 1993.

[10] N.S. Woo and J. Kim, “An efficient method of partitioning
circuits for multiple-FPGA implementations,” Proc. DAC,
pp.202–207, 1993.

[11] H. Yang and D.F. Wong, “Efficient network flow based
mincut balanced partitioning,” Proc. ACM/IEEE ICCAD,
pp.50–55, 1994.

[12] C.J. Alpert and A.B. Kahng, “Recent directions in netlist
partitioning: A survey,” Integration, the VLSI J., no.19,
pp.1–81, 1995.

[13] N. Togawa, M. Sato, and T. Ohtsuki, “A circuit partition-
ing algorithm with replication capability for multi-FPGA
systems,” IEICE Trans. Fundamentals, vol.E78-A, no.12,
Dec. 1995.

[14] N. Togawa, M. Sato, and T. Ohtsuki, “A performance-
oriented circuit partitioning algorithm with logic-block
replication for multi-FPGA systems,” IEEE APCCAS,
pp.294–297, 1996.

[15] H.H. Yang and D.F. Wong, “Efficient network flow based
min-cut balanced partitioning,” IEEE Trans. Comput.-
Aided Des., Integrated Circuits & Syst., vol.15, no.12,
pp.1533–1540, Dec. 1996.

[16] H. Nagamochi, K. Nishimura, and T. Ibaraki, “Computing
all small cuts in an undirected network,” SIAM J. Discrete
Mathematics, vol.10, no.3, pp.469–481, Aug. 1997.

[17] H. Liu and D.F. Wong, “Network-flow-based multiway
partitioning with area and pin constraints,” IEEE Trans.
Comput.-Aided Des. Integrated Circuits & Syst., vol.17,
no.1, pp.50–59, Jan. 1998.

[18] K.R. Azegami, A. Takahashi, and Y. Kajitani, “Maxflow
based method for enumerating mincut edges of graph mod-
eled logic circuit,” IEICE Technical Report, VLD98-116,
1998.

[19] K.R. Azegami, A. Takahashi, and Y. Kajitani, “Enumer-
ating the min-cuts for applications to graph extraction un-
der size constraints,” Proc. IEEE ISCAS, pp.VI.174-VI.177,
1999.

Kengo R. Azegami received his B.E.
and M.E. degrees from Nagaoka Univer-
sity of Technology, Niigata, Japan, all in
electronic engineering, in 1990, and 1992,
respectively. Received D.E. from Tokyo
Institute of Technology in 2001. He is cur-
rently with System LSI Development Lab.
of Fujitsu Labs. LTD. His research inter-
ests include applications of graph theory
in VLSI circuit designs.

1308
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

Atsushi Takahashi received his B.E.,
M.E., and D.E. degrees in electrical and
electronic engineering from the Tokyo In-
stitute of Technology, Tokyo, Japan, in
1989, 1991, and 1996, respectively. He
had been with the Tokyo Institute of
Technology as a research associate from
1991 to 1997 and has been an associate
professor since 1997 in the Department
of Electrical and Electronic Engineering.
His research interests include in VLSI lay-

out design and combinational algorithms. He is a member of the
IPSJ and IEEE.

Yoji Kajitani received his B.E., M.E.
and D.E. degrees from the Tokyo Insti-
tute of Technology, Tokyo, Japan, all in
electrical engineering, in 1964, 1966 and
1969, respectively. He has been a profes-
sor in the Department of Electrical and
Electronic Engineering at the Tokyo In-
stitute of Technology since 1985, and has
been a professor at the Japan Advanced
Institute of Science and Technology from
1992 to 1995. His current research inter-

ests are in combinatorial algorithm applied to VLSI layout design.
He was awarded IEEE Fellowship in 1992.

