
2746
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

PAPER Special Section on VLSI Design and CAD Algorithms

A High-Speed and Low-Power Clock Tree Synthesis by

Dynamic Clock Scheduling

Keiichi KUROKAWA†a), Takuya YASUI†, Yoichi MATSUMURA†, Nonmembers,
Masahiko TOYONAGA††, and Atsushi TAKAHASHI†††, Regular Members

SUMMARY In several researches in recent years, it is shown
that the circuit of a higher clock frequency can be obtained by
controlling the clock-input timing of each register. However, the
power consumption of the clock-tree obtained by them tends to
be larger since the locations of registers are not well taken into
account in clock scheduling. In this paper, we propose a novel
clock tree synthesis that attains both the higher clock frequency
and the lower power consumption. Our proposed algorithm de-
termines the clock-input timings of registers step by step in con-
structing a clock tree structure. First, the clock period of a circuit
is improved by controlling the clock-input timing of each regis-
ter, and second, the clock-input timings are modified to construct
a low power clock tree without deteriorating the obtained clock
period. According to our experiments using several benchmark
circuits, the power consumption of our clock trees attain about
9.5% smaller than previous methods.
key words: clock scheduling, clock tree synthesis, high-speed,
low-power

1. Introduction

According to the progress of semiconductor manu-
facturing process technology, the physical design is-
sues, such as the signal delay caused by the resistance
and parasitic capacitance in interconnections, and the
power noise caused by the increase of the peak cur-
rent, become more complicated. In recent days, many
LSI designers must overcome not only the complexity
of the high performance logic function, but also these
physical design issues.

To make them simple, most of designers have been
taking a synchronous circuit design methodology that
separates a large circuit design into a clock part and a
logic part. In this design methodology, the clock part is
designed to deliver clock signal to all registers over the
chip simultaneously, and the logic part is designed to
minimize the maximum path delay between registers.

In Deep Sub-Micron (DSM) processes such as less

Manuscript received March 20, 2002.
Manuscript revised June 17, 2002.
Final manuscript received August 5, 2002.

†The authors are with Semiconductor Company, Matsu-
shita Electric Industrial Co., Ltd., Nagaokakyo-shi, 617-
8520 Japan.

††The author is with the Faculty of Science, Kochi Uni-
versity, Kochi-shi, 780-8520 Japan.

†††The author is with the Department of Communications
and Integrated Systems, Tokyo Institute of Technology, To-
kyo, 152-8552 Japan.

a)E-mail: kurokawa@mrg.csdd.mei.co.jp

than 0.25-micrometer rule, the signal propagation de-
lay in LSI is strongly affected by the wire resistances,
capacitances, process variations, operating conditions
and so on. These factors make the clock design compli-
cated. Thus a new design methodology is required in
DSM processes.

The clock tree synthesis based on the semi-
synchronous circuit design methodology that does not
always require simultaneous clock delivering, could be
one of solutions.

The basic idea of semi-synchronous circuit was pro-
posed by Fishburn [1]. He gave the necessary and suffi-
cient conditions for a synchronous circuit to work cor-
rectly with a clock period in terms of the maximum
and minimum signal path delays between registers and
the clock-input timings of registers. Furthermore, he
showed the possibility to improve the circuit by tuning
the clock-input timings of registers.

Takahashi et al. [2] interpreted the above condi-
tions by using a constraint graph, and introduced a fast
clock scheduling algorithm. Neves and Friedman [3],
Kourtev and Friedman [4] had extended clock schedul-
ing techniques in a robust circuit design under the
process variation. Liu et al. [5] proposed a combined
method of the retiming technique and the clock schedul-
ing technique. They showed the clock scheduling tech-
nique could improve performance of the circuit, but,
they did not complete the layout design.

Inoue et al. [7] showed any clock schedule could
be realized physically by constructing a various timing
clock tree (VTCT). However, the required wire length
and buffers for realizing a clock schedule tend to be
larger if the clock schedule is determined without con-
sidering register locations [8]. So far, many VTCT syn-
thesis algorithms have been proposed to realize smaller
clock trees, such as the bounded skew clock tree [9],
[10], the useful skew clock tree [11], and the associa-
tive skew clock tree [12]. These methods modify the
zero skew clock tree to reduce the size of tree or to
improve the circuit performance or reliability. In [13],
multi-level/multi-way clock based on a discrete clock
schedule was proposed to improve the circuit perfor-
mance. However, the size and power consumption of
the obtained clock tree was comparable or larger than
the zero skew clock tree.

In this paper, we propose a novel clock tree syn-



KUROKAWA et al.: A HIGH-SPEED AND LOW-POWER CLOCK TREE SYNTHESIS
2747

thesis algorithm that attains both the higher clock fre-
quency and the lower power consumption. We pay at-
tention that there are many equivalent clock schedules
in terms of the clock frequency. We select the best clock
schedule that attains both the higher clock frequency
and the lower power consumption from the equivalent
schedules. In the clock tree we synthesis, the effect of
routing delay is suppressed as small as possible. Thus,
the clock-input timing of each register is determined as
the sum of gate delays of clock buffers along the path
from the clock source to the register.

In our proposed algorithm, first, the clock period is
improved by setting the clock-input timing of each reg-
ister to a multiple of the predefined unit delay. Next,
the topology of a clock tree is determined with clock
buffer insertion. The registers with the same clock-
input timing are partitioned into clusters so that the
registers in each cluster are driven by a clock buffer.
The gate delay of the clock buffer is tuned to the unit
delay by changing the interconnection topology from
the clock buffer to registers in the cluster. If the gate
delay of the clock buffer is smaller than the unit delay
even after tuning, the cluster is expanded by adding
registers with smaller clock-input timings unless the
clock-input timings of them can be changed without vi-
olating the constraints. After the topology of the clock
tree is determined, each cluster is rescheduled in order
to shorten the wire length of each cluster unless the
clock period is not deteriorated.

This paper is organized as follows. In Sect. 2, the
condition where synchronous circuits work correctly
with a given clock period and the flexibility of clock-
input timings of registers are discussed. In Sect. 3, a
proposed clock tree synthesis algorithm is explained. In
Sect. 4, several experimental results are given to evalu-
ate the effect of a proposed algorithm. Section 5 is the
conclusion.

2. Preliminaries

2.1 Synchronous Circuits

We call the procedure of finding the set of clock-input
timings of registers as clock scheduling . The clock-input
timing s(v) of register v is the difference in clock arrival
time between v and an arbitrary chosen (perhaps hy-
pothetical) reference register.

The relation between clock scheduling and a cir-
cuit performance is briefly explained using a part of a
synchronous circuit shown in Fig. 1. Let u and v be the
registers to which a clock with period T is inputted.
Let CL be the combinatorial circuit between u and
v with the signal propagation path Pmax (u, v) of the
maximum signal path delay δmax (u, v) and Pmin(u, v)
of the minimum signal path delay δmin(u, v). Hold(v)
and Setup(v) are the hold time and the setup time of
register v, respectively.

Fig. 1 A part of a synchronous circuit.

A synchronous circuit works with period T if and
only if the following two inequalities are satisfied for
every register pair (u, v) with signal propagation path
delays.

HOLD constraints

s(v)− s(u) � δmin(u, v)−Hold(v) (1)

SETUP constraints

s(u)− s(v) � T − (δmax (u, v) + Setup(v)) (2)

In order to represent the above constraints, the
constraint graph G(V,E) is defined as follows: a vertex
v ∈ V corresponds to a register, a directed edge (u, v) ∈
E with weight wT (u, v) corresponds to a either type of
constraints. The weight wT (u, v) is δmin(u, v)−Hold(v)
in case that the edge corresponds to HOLD constraint,
and is T − (δmax (v, u)+Setup(u)) in case that the edge
corresponds to SETUP constraint. That is, in the con-
straint graph, each (u, v) correspond to the constraint
that

s(v)− s(u) � wT (u, v) (3)

If Eq. (3) is satisfied, for every edge in the con-
straint graph, the circuit correctly works with period
T . Thus, the slack of edge (u, v) is defined as

∆T (u, v) = s(u) + wT (u, v)− s(v) (4)

For given the maximum and minimum propagation
delays between registers, the minimum feasible clock
period, under the assumption that the clock-input tim-
ing of every register can be controlled, can be deter-
mined by using the constraint graph G [2]. Note that
the constraints can be satisfied if and only if G contains
no negative cycle.

2.2 The Flexibility of Clock Scheduling

A clock schedule is called feasible if every constraint is
satisfied. A feasible clock schedule can be obtained if
the constraint graph contains no negative cycle. Gen-
erally speaking, a feasible clock schedule is not unique,
that is, the clock-input timing of each register that sat-
isfies the constraint is not unique even if the clock-
input timings of the other registers are fixed. Let



2748
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

r(v) = [smin(v), smax (v)] be a range of clock-input
timing of register v, called the clock range. A set of
clock ranges r(v) is called consistent if the feasible clock
schedule is obtained when the clock-input timing of v is
chosen within r(v). One way to get a consistent set of
clock ranges is as follows: find a feasible clock schedule
s, and then determine the clock range r(v) of a register
v according to Eq. (5).

r(v) =

[
s(v)− 1

2
min

(v,u)∈E
∆T (v, u), s(v)

+
1
2

min
(u,v)∈E

∆T (u, v)

]
(5)

Note that a consistent set of clock ranges is not unique
in general. In this paper a smaller clock circuit is de-
rived by using this flexibility of clock scheduling.

2.3 Problem Formulation

In this paper, the clock tree synthesis problem is defined
as the minimization of the power consumption in the
clock tree subject to the minimum feasible clock period
under semi-synchronous framework in discrete clock-
scheduling.

The minimum feasible clock period in discrete
clock-scheduling is almost same as the minimum fea-
sible clock period in continuous clock-scheduling [13].
Since the clock power consumption depends on the
number of clock buffers and the clock wire length, they
are expected to be reduced too.

The inputs of our algorithm are the position of each
register to which clock is inputted, the minimum and
maximum signal path delays between registers, and the
position of the clock source. The outputs of our algo-
rithm are the net list of clock tree, are the position of
each clock buffer and the routing topology from each
clock buffer in the clock tree. The obtained clock tree is
evaluated by the clock period and the power consump-
tion.

The layout region is rectangle. In the clock tree,
only one type of clock buffer is inserted, and there is no
limitation on the number of clock buffers. No obstacles
are considered in the clock buffer insertion and the clock
tree routing. These assumptions make problem simple.
Although the deterioration is expected in the practical
situation, it is small enough in our experiences.

In our algorithm, the gated clock is not considered.

3. The Clock Tree Synthesis by Dynamic Clock
Scheduling

Our proposed algorithm is an enhancement of the algo-
rithm proposed in [13]. Before introducing our pro-
posed algorithm, the algorithm in [13] is briefly ex-
plained. A clock tree constructed by [13] is a multi-level

Fig. 2 A multi-level multi-way clock tree.

multi-way tree as shown in Fig. 2. The root and internal
nodes of the tree correspond to the clock buffers, and
the leaves correspond to the registers. A clock buffer
drives other clock buffers and/or registers.

The characteristic of this clock tree is that the
clock-input timing of each register and each clock buffer
is set as a multiple of the unit delay Ut. The gate delay
of a clock buffer is defined as the sum of an intrinsic
delay and the delay proportional to a load capacitance.
The maximum load capacitance of a clock buffer is lim-
ited by the signal slew constraint. Ut is set equals to the
delay of the clock buffer which drives the maximum load
capacitance. There are mainly two merits by restricting
the clock-input timings to the discrete value. Firstly,
the routing delay in the clock tree is made as small
as possible so that the clock tree is robust against envi-
ronmental and manufacturing variations. Secondly, one
clock buffer can drive more registers and clock buffers
effectively, because the number of registers and clock
buffers with the same clock-input timing is larger than
the previous semi-synchronous circuits with continuous
clock-input timings.

In [13], the clock tree is generated in three stages
as follows.

In the first stage, a clock schedule with discrete
clock-input timings is obtained. The clock-input timing
of each register is set to a multiple of the unit delay
value Ut, that is, i × Ut (1 � i � m). m is defined so
that the range of clock-input timings in a continuous
clock schedule [16] that achieves the minimum feasible
clock period is covered. When the clock-input timing
of a register is i× Ut, we called the clock-input timing
of a register is at level i since the level of the register
in the clock tree is i.

In the second stage, the topology of the clock tree
is determined from level m (the bottom) to level 1 (the
top). At each level, the registers with the same clock-
input timing are partitioned into clusters. The size of
each cluster is limited so that the gate delay of the clock
buffer of the cluster is less than Ut, and the routing
delay of interconnection is small. The clock buffers are
regarded as registers in the next higher level.

In the third stage, the interconnection of each clus-
ter is constructed so that the gate delay of the clock



KUROKAWA et al.: A HIGH-SPEED AND LOW-POWER CLOCK TREE SYNTHESIS
2749

buffer becomes Ut. The gate delay of the clock buffer
of a cluster is called simply as the cluster delay in the
following.

We introduce new steps into the algorithm in [13].
In our proposed algorithm, the clock-input timing of
each register is dynamically changed in the second and
third stage in order to reduce the power consumption
of a clock tree. Furthermore, the clock scheduling in
the first stage and the clustering algorithm in second
stage are improved. The details are described in the
following subsections.

3.1 The First Stage: The Discrete Clock Scheduling

The method of simulated annealing [14] is used to ob-
tain a discrete clock schedule. A discrete clock schedule
that satisfies hold constraints is given as an initial solu-
tion of simulated annealing. A clock schedule in which
clock-input timings of all registers are equal would be
a candidate of an initial solution. The clock-input tim-
ings of registers are modified one by one in simulated
annealing. The move operation of simulated annealing
is defined as the change of the clock-input timing of
randomly select one register at level i into level i + 1
or i− 1. The move is rejected if hold constraint is not
satisfied. Otherwise, the move is tested whether it is
accepted or not according to the cost function. The
cost function is

Cs = α×
∑
u∈V

[
max

(u,v)∈Es(u)
(max(0,∆Tmf (u, v)))

]

+ β ×
∑
u∈V

(s(u)− so)2 (6)

where Es(u) is the set of edges incident to u in the con-
straint graph that corresponds to SETUP constraint,
so is the target clock-input timing i× Ut (1 � i � m),
Tmf is the minimum feasible clock period derived by
the continuous scheduling method [2], and α and β are
constant values.

The first term in the cost function is the sum of
the maximum setup violations related to each register.
The second term is to get an akin tree to a zero skew
clock tree as mentioned in [13]. Usually so is set to
m/2× Ut.

In the cost function in [13], the maximum setup
violation and the sum of setup and hold violations are
evaluated. However, the reduction of the maximum
setup violation is difficult when the maximum setup
violation is attained related to more than one register
and the changes of clock-input timing of these registers
increase the sum of setup and hold violations. More-
over, the hold constraint would not be satisfied in the
final solution. If so, the circuit does not work at any
clock period.

The achieved clock period (Ts) of the obtained
clock schedule by simulated annealing is calculated as

follows.

Ts = Tmf + max
(u,v)∈E

(max(0,−∆Tmf (u, v))) (7)

Note that the obtained clock schedule is dynami-
cally changed in the following stages.

3.2 The Second Stage: Constructing a Clock Tree

In the second stage, the topology of a clock tree is de-
termined by clustering registers from the bottom level
to the top level. At each level, clustering is done by
two procedures. The first procedure is initial clustering
and the second procedure is expansion of clusters. Let
V i be the set of registers at level i.

3.2.1 The Initial Clustering

In Clustering procedure described in Fig. 3, V i is par-
titioned into clusters Ci. A start point is defined on
a corner of the layout region. First, a seed of a clus-
ter is selected among V i in order of the distance from
the start point, and then a cluster is generated from
the seed by adding un-clustered vertices according to
Merge procedure described in Fig. 4. This is repeated
until V i is clustered.

Let d(u, v) be the Manhattan distance between
registers u and v. For a cluster C, the center-of grav-
ity of C and the length of the minimum spanning
tree of C are denoted by Gr(C) and MST (C), respec-
tively. The interconnection length of C is estimated by
MST (C ∪ {Gr(C)}). The wire capacitance Cw(C) in-
side C is estimated by using the estimated interconnec-
tion length MST (C∪{Gr(C)}) of C. The cluster delay
δ(C) of C is estimated by δI + R × (Cw(C) + Cp(C))
where δI , R, and Cp are the intrinsic delay of a clock
buffer, the output resistance of a clock buffer, and the
sum of input capacitance of registers in C, respectively.

We assume that the routing delay inside a cluster
is sufficiently small, since the wire resistance inside a

Fig. 3 Procedure clustering.



2750
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

Fig. 4 Procedure merging vertices.

Fig. 5 Procedure expanding a cluster.

cluster is sufficiently small.
For a cluster C and register v �∈ C, let Cc(v, C) =

η × d(Gr(C), v) + ξ × min{d(u, v)|u ∈ C} where the
parameter of η, ξ are constant values.

By using a start point, clusters are generated one
by one without a crevice in the layout region. In Merge
procedure, the diameter of the cluster and the total
wire length of the cluster are kept as small as possible
by adding vertex according to the cost function Cc.

In [13], clusters initially consist of individual reg-
isters, and they are merged each other. However, the
size of final clusters is often not enough since it is diffi-
cult to find an appropriate merging partner especially
in the end of procedure.

3.2.2 The Cluster Expansion

If the estimated cluster delay δ(C) of C is less than Ut,
registers in higher levels are tried to be added to C by
Expand procedure described in Fig. 5. The consistent
clock range of each register in higher levels is computed
by fixing the clock-input timing of each register in lower
levels. Note that the topology of clock tree is decided

Fig. 6 Process to construct clusters.

from the bottom level. That is, the registers in lower
levels already belong to some cluster. If the obtained
consistent clock range of a register contains i×Ut, the
register is a candidate of an adding register. It can
be added to a cluster at level i without violating the
Hold/Setup constraints and without contradicting to
the clustering result at lower levels. From the cluster
with small estimated cluster delay, the candidates are
added to the cluster by Merge procedure.

3.2.3 Illustrative Example

Figure 6 shows an example of constructing clusters. In
Fig. 6 Ut is defined as 300 pico-second (ps) and m = 4.

The registers at level 4, i.e. the bottom, of dis-
crete clock schedule are shown in dark circle in Fig. 6(a).
They are clustered into three clusters by Initial Cluster-
ing as shown in Fig. 6(a) through Fig. 6(e). The start
point is given at the upper left corner. First, the vertex
u from which the distance to the start point is minimum
among registers at level 4 is selected as the seed of the
first cluster at level 4 (Fig. 6(a)). Then, three regis-
ters are added to the first cluster by Merge procedure
(Figs. 6(b),(c)). The first cluster consists of 4 registers
since the estimated cluster delay exceeds 300 [ps] if the
next register v1 is added to the cluster (Fig. 6(c)). The
next seed is the register from which the distance to the
start point is minimum among the remaining registers
at level 4. The clustering result of the second and third
clusters are shown in Figs. 6(d) and (e), respectively.

In Expansion, it is found that the clock-input tim-
ings of two registers vs1, vs2 at higher levels contain



KUROKAWA et al.: A HIGH-SPEED AND LOW-POWER CLOCK TREE SYNTHESIS
2751

i×Ut = 1200 (Fig. 6(f)). Then cluster C3 is selected as
a first candidate of expansion since the estimated clus-
ter delay of cluster C3 is minimum among three clusters
at level 4 (Fig. 6(g)).

By Merge procedure, vs1 is added to C3 (Fig. 6(h)),
but vs2 is not added to C3 since the estimated cluster
delay exceeds 300 [ps]. Next, the other clusters are se-
lected, and the Merge procedure tries to add vs2 to
them, but vs2 is not added to neither of them since the
estimated cluster delay exceeds 300 [ps] (Figs. 6(i),(j)).
The clustering result of level 4 after Expand procedure
is shown in Fig. 6(k).

3.3 The Third Stage: The Routing Inside Clusters

In order to make the cluster delay the unit delay Ut,
the wire length of a cluster by the algorithm in [13] is
often larger than the shortest wire length of the clus-
ter. However, the cluster delay does not necessarily
need to be Ut if the Hold/Setup constraints are satis-
fied. Therefore, by Re-scheduling procedure in Fig. 7,
the clock-input timing of each register in a cluster is
changed with the same amount so that increase of the
wire length of the cluster is as small as possible unless
the Hold/Setup constraints are violated. Note that the
size of a cluster is defined so that the routing delay is
negligible within the cluster.

In our algorithm, interconnections of clusters are
realized by using cost-radius-balanced Steiner tree
(CRBST) [15]. For the source vs and multiple sinks V ,
CRBST constructs a Steiner tree that connects them.
A Steiner tree constructed by CRBST is varied by pa-
rameter c of CRBST.

The CRBST starts with a single source and iter-
atively adds a sink with the minimum cost to a par-

Fig. 7 Procedure re-scheduling clusters.

tial Steiner tree St until every sink is contained in the
Steiner tree. Roughly speaking, the cost of a sink v is
defined as

Cr(v) = min
u∈St

{
c× d(vs, v)

Ra
×dT (vs, u)+d(u, v)

}
(8)

where Ra is maxu∈V (d(vs, u)), and dT (vs, u) is the
maximum wire length from vs to u in a partial Steiner
tree St. When c = 0, the wire length (cost) of an ob-
tained Steiner tree is small but the path length (radius)
from the source to sinks is large. While, when c = 1,
the wire length of an obtained Steiner tree is large but
the path length from the source to sinks is small.

Let δt(C) be the target cluster delay of cluster C.
Initially, δt(C) takes the value of Ut for each cluster C.
If δt(C) is achieved for every cluster, the Hold/Setup
constraints will be satisfied. Let δr(C) be the cluster
delay of C when the interconnection of C is realized by
CRBST with c = 0, that is, the wire length of C is ex-
pected to be the shortest. Note that δr(C) is less than
or equal to δt(C). If the difference between δt(C) and
δr(C) is large, then the extra wire length of C to achieve
δt(C) becomes large. However, δr(C) can be adopted if
the Hold/Setup constraints are satisfied. Even if δr(C)
does not satisfy the Hold/Setup constraints, the ex-
tra wire length is reduced if δt(C) is reduced unless
Hold/Setup constraints are violated. Since the mini-
mum cluster delay to meet the Hold/Setup constraints
depends on the other cluster delays, the target cluster
delay δt(C) is changed in order to the difference be-
tween δt(C) and δr(C). Notice that if the cluster delay
of C is changed, the clock-input timing are changed for
registers in lower level clusters driven by C as well as
for registers in C. Notice also that decrease of the tar-
get cluster delay of a cluster may enable the decrease
of other target cluster delay.

For example, assume that the unit delay Ut, the
target delay δt(C) and the cluster delay δr(C) are
300 [ps], 300 [ps], and 200 [ps], respectively. Then δt(C)
will be updated as follows. If the minimum cluster delay
δm(C) is 210 [ps], then δt(C) is updated to 210 [ps], and
if δm(C) is 190 [ps], then δt(C) is updated to 200 [ps].
Because δt(C) is updated to minimum value between
δr(C) and δt(C) without Hold and Setup violations.

If we can not change the target cluster delay δt(C)
when δt(C) differs from δr(C), we increase the param-
eter c of CRBST in order to increase the wire length
of the cluster to achieve the target cluster delay δt(C).
If δt(C) is not achieved, dummy sinks are added to
achieve δt(C) by increasing the load capacitance of the
clock buffer.



2752
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

4. Experiments

4.1 The Experimental Conditions

Table 1 shows the overview of the benchmark circuits.
These circuits are sub blocks of an image processing
LSI that has been manufactured in our company by
0.18-micromenter process on 1.8 Volt.

The cell placement results are obtained by using a
commercial layout design tool. Our clock tree synthesis
defines the structure of the tree, the position of clock
buffers and the routing topology from the clock buffers
to registers.

The clock buffer of which the output resistance is
850 [pico-second per pico-farad] is selected. The unit
delay value Ut = 300 [ps] is defined by a load capaci-
tance which satisfied the signal slew constraint in 0.18-
micrometer process.

4.2 Comparisons

Table 2 shows the minimum feasible clock period of

Table 1 The benchmark circuits.

Table 2 Comparison of clock period (unit: ns).

each circuit in zero skew framework (ZS), in semi-
synchronous framework that allows continuous clock-
input timing [2] (Continuous), and in semi-synchronous
framework by the discrete clock scheduling described in
Sect. 3.1 (Discrete). The clock period of our new dis-
crete clock scheduling is almost equivalent to that of
[13], though its solution space is limited by hold con-
straints.

We construct four types of clock trees ZS, DC′,
DC, and DCER. The clock tree ZS, which corresponds
to the zero clock schedule, is constructed by Clustering
procedure. The clock-input timing of every register is
the same in the zero clock schedule. The clock tree
DC′, DC, and DCER correspond to the discrete clock
scheduling described in Sect. 3.1. The clock tree DC′ is
constructed by Clustering procedure in [13]. The clock
tree DC is constructed by Clustering procedure without
Expand and Re-schedule cluster procedures. The clock
tree DCER is constructed by Clustering , Expand , and
Re-schedule cluster procedures. The number of buffers
in clock trees, the wire lengths of clock trees, and the
power consumption of these clock trees in one clock
cycle are show in Tables 3, 4, and 5, respectively.

DC trees by our proposed Clustering procedure,
has 7.0% fewer buffers and 13.3% shorter wire length
compared with DC′ in [13]. DC has a fewer clusters
than DC′, because the clusters are generated finely by
the Clustering procedure. Therefore, DC has a fewer
clock buffers and shorter clock wire length than DC′.
Furthermore, the wire length of DCER decreases 34.0%
by adding Expand and Re-schedule cluster procedures.
As the results, the power consumption of DCER is
15.7% lower than that of DC′, and 9.5% lower than that
of DC. DCER has much shorter clock wire length than
DC, because the Expand and the Re-schedule make the
detour in clusters shorter than DC. Moreover, since the
number of registers in a cluster is increased by the Ex-
pand procedure, the clock buffers of DCER are reduced
from DC.

Table 3 Comparison of clock buffers.



KUROKAWA et al.: A HIGH-SPEED AND LOW-POWER CLOCK TREE SYNTHESIS
2753

Table 4 Comparison of the wire length of clock tree (unit:
mm).

Table 5 Comparison of clock power consumption (unit:
µW/MHz).

In comparison between DCER and ZS, the num-
ber of buffers increases slightly but the wire length de-
creases much by DCER. Thus, the power consumption
of clock trees by our proposed algorithm DCER is 4.4%
smaller than that of clock trees by ZS. Note that the
clock period of DCER is 14.7% smaller than that of ZS.

In Fig. 8(a) and Fig. 8(b), registers at level 9 in cir-
cuit C4 by DC and DCER are shown, respectively. The
registers (crosses) within each cluster are connected by
lines. Note that some registers in Fig. 8(a) disappear
in Fig. 8(b) since they are re-scheduled to lower levels
by Expand procedure, while some registers appear in
Fig. 8(b) since they are re-scheduled from higher levels
by Expand procedure. The increase of the number of
registers in a cluster without increasing the diameter
of the cluster is seen at Fig. 8(b). Figure 9 shows the
clock tree of C6 obtained by the algorithm DCER.

(a)

(b)

Fig. 8 Clustering results. (a) Clusters obtained by the algo-
rithm DC. (b) Clusters obtained by our algorithm DCER.

Fig. 9 Interconnections.

5. Conclusion

In this paper, we proposed a novel clock tree synthesis
that attains both the higher clock frequency and the
lower power consumption of a clock-tree.



2754
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

The clock tree in our algorithm is constructed by
determining the clock-input timings of registers in con-
structing a clock tree structure step by step, while the
previous methods were based on a firmed clock schedul-
ing.

In the experiments using several benchmark cir-
cuits, our clock trees are 9.5% lower power consump-
tion than the previous methods, and are about 15.7%
lower power consumption than the clock trees obtained
by [13], while the achieved clock periods are the same
level. We compared it with the zero skew clock trees
and found the clock periods are improved up to 14.7%.

In our algorithm, we assume that the routing delay
in each cluster is sufficiently small. However, since the
routing delay is not zero in actual situation, we should
take it into account by using a delay margin. If the large
delay margin is inevitable and it affects the achievable
clock period, then an enhancement of our algorithm is
required to handle the routing delay within a cluster.
Moreover, a simultaneous optimization of the combina-
torial logic circuit and the clock tree circuit is a future
work in order to further improve the performance and
power of a circuit.

Acknowledgments

We thank to Prof. Yoji Kajitani of the University of Ki-
takyushu for his useful suggestions, and Mr. Yoshifumi
Okamoto, Mr. Seiji Yamaguchi of Matsushita Electric
Industrial Co., Ltd. for their supports.

References

[1] J.P. Fishburn, “Clock skew optimization,” IEEE Trans.
Comput., vol.39, pp.945–951, 1990.

[2] A. Takahashi and Y. Kajitani, “Performance and relia-
bility driven clock scheduling of sequential logic circuits,”
Proc. Asia and South Pacific Design Automation Confer-
ence, pp.37–42, 1997.

[3] J.L. Neves and E.G. Friedman, “Optimal clock skew
scheduling tolerant to process variations,” Proc. 33rd De-
sign Automation Conference, pp.623–628, 1996.

[4] I.S. Kourtev and E.G. Friedman, “Clock skew scheduling
for improved reliability via quadratic programming,” Proc.
ICCAD, p.239, 1999.

[5] X. Liu, M.C. Capaefthymiou, and E.G. Friedman, “Max-
imizing performance by retiming and clock skew schedul-
ing,” Proc. 36th Design Automation Conference, pp.231–
236, 1999.

[6] M. Edahiro, “A clustering-based optimization algorithm in
zero skew routing,” Proc. 30th Design Automation Confer-
ence, pp.612–616, 1993.

[7] A. Takahashi, K. Inoue, and Y. Kajitani, “Clock-tree rout-
ing realizing a clock-schedule for semi-synchronous cir-
cuits,”Proc. ICCAD, pp.260–265, 1997.

[8] K. Inoue, W. Takahashi, A. Takahashi, and Y. Kajitani,
“Schedule-clock-tree routing for semi-synchronous cir-
cuits,” IEICE Trans. Fundamentals, vol.E82-A, no.11,
pp.2431–2439, Nov. 1999.

[9] D.J.-H. Huang, A.B. Kahng, and C.-W.A. Tsao, “On the
bounded-skew clock and steiner routing problems,” Proc.
32nd Design Automation Conference, pp.508–513, 1995.

[10] A.B. Kahng and C.-W.A. Tsao, “More practical bounded-
skew clock routing,” Proc. 34th Design Automation Con-
ference, pp.594–599, 1997.

[11] J.G. Xi andW.M. Dai, “Useful-skew clock routing with gate
sizing for low power design,” Proc. 33rd Design Automation
Conference, pp.383–388, 1996.

[12] Y. Chen, A.B. Kahng, G. Qu, and A. Zelikovsky, “The
associative-skew clock routing problem,” Proc. ICCAD,
pp.168–172, 1999.

[13] K. Kurokawa, T. Yasui, M. Toyonaga, and A. Takahashi, “A
practical clock tree synthesis for semi-synchronous circuits,”
IEICE Trans. Fundamentals, vol.E84-A, no.11, pp.2705–
2713, Nov. 2001.

[14] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, “Opti-
mization by simulated annealing,” Science, vol.220, pp.671–
680, 1983.

[15] H. Mitsubayashi, A. Takahashi, and Y. Kajitani, “Cost-
radius balanced spanning/steiner trees,” IEICE Trans. Fun-
damentals, vol.E80-A, no.4, pp.689–694, April 1997.

[16] T. Yoda and A. Takahashi, “Clock schedule design for
minimum realization cost,” IEICE Trans. Fundamentals,
vol.E83-A, no.12, pp.2552–2557, Dec. 2000.

Keiichi Kurokawa received his
B.E., M.E. degrees in mechanical en-
gineering from Ritsumeikan University,
Kyoto, Japan, in 1990 and 1992, respec-
tively. He joined Matsushita Electric In-
dustrial Co., Ltd., Osaka, Japan, in 1992.
His research interests are high-level syn-
thesis, physical design synthesis of VLSI
circuit, and combinational optimization
algorithms. He is a member of IEEE.

Takuya Yasui received his B.E.,
M.E. degrees information engineering
from Hiroshima University, Hiroshima,
Japan, in 1991 and 1993, respectively. He
joined Matsushita Electric Industrial Co.,
Ltd., in 1993. His research interests in-
clude high-level synthesis, physical design
synthesis of VLSI circuit for design au-
tomation and graph algorithm. He is a
member of the Information Processing So-
ciety of Japan.

Yoichi Matsumura received the
B.Eng., and M.Eng. degrees from Waseda
University in 1995, and 1997, respectively,
all in electrical engineering. In 1997, he
joined Matsushita Electric Industrial Co.,
Ltd. Since then, he has been working
on research and development of VLSI de-
sign automation. His research interests
are clock tree optimization and low power
design.



KUROKAWA et al.: A HIGH-SPEED AND LOW-POWER CLOCK TREE SYNTHESIS
2755

Masahiko Toyonaga received B.S.
degree from Yamaguchi University, M.S.
degree from Kobe University, D.E. degree
in electronics engineering Osaka Univer-
sity, Japan, in 1979, 1981, and 1995, re-
spectively. He joined Matsushita Elec-
tric Corporation, Kyoto, Japan, in 1982.
He moved Semiconductor Research Cen-
ter of Matsushita Electric Industrial Co.
Ltd., Osaka, Japan, in 1993. He joined
Semiconductor Industrial Research Insti-

tute Japan, in 2000. He has been a professor of the faculty of
science in Kochi University since 2002. His research interests in-
clude logic/high-level synthesis, physical design synthesis of VLSI
circuit, and stochastic optimization methods for design automa-
tion. He is a member of IEEE, and IPSJ.

Atsushi Takahashi received his B.E.,
M.E., and D.E. degrees in electrical and
electronic engineering from Tokyo Insti-
tute of Technology, Tokyo, Japan, in
1989, 1991, and 1996, respectively. He
had been with the Tokyo Institute of
Technology as a research associate from
1991 to 1997 and has been an associate
professor since 1997. He is currently with
Department of Communications and Inte-
grated Systems, Graduate School of Sci-

ence and Engineering. His research interests are in VLSI layout
design and combinational algorithms. He is a member of the
Information Processing Society of Japan and IEEE.


