
2756
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

PAPER Special Section on VLSI Design and CAD Algorithms

A Clustering Based Fast Clock Schedule Algorithm for

Light Clock-Trees∗∗∗

Makoto SAITOH†∗, Masaaki AZUMA†∗∗, Nonmembers,
and Atsushi TAKAHASHI†a), Regular Member

SUMMARY We introduce a clock schedule algorithm to ob-
tain a clock schedule that achieves a shorter clock period and
that can be realized by a light clock tree. A shorter clock period
can be achieved by controlling the clock input timing of each reg-
ister, but the required wire length and power consumption of a
clock tree tends to be large if clock input timings are determined
without considering the locations of registers. To overcome the
drawback, our algorithm constructs a cluster that consists of reg-
isters with the same clock input timing located in a close area.
The registers in each cluster are driven by a buffer and a shorter
wire length can be achieved. In our algorithm, first registers are
partitioned into clusters by their locations, and clusters are mod-
ified to improve the clock period while maintaining the radius of
each cluster small. In our experiments, the clock period achieved
in average is about 13% shorter than that achieved by a zero-skew
clock tree, and about 4% longer than the theoretical minimum.
The wire length and power consumption of a clock tree accord-
ing to an obtained clock schedule is comparable to these of a zero
skew tree.
key words: semi-synchronous circuit, clustering, clock-
scheduling, clock tree

1. Introduction

A semi-synchronous circuit is a circuit in which the
clock is assumed to be distributed periodically to each
individual register, though not necessarily to all regis-
ters simultaneously. Among various objectives in the
synthesis of high-performance circuits, the clock period
minimization is the primal subject. For a given cir-
cuit with fixed signal propagation delays between reg-
isters, there exists a lower bound of the clock period in
semi-synchronous framework which is usually smaller
than the maximum signal delay between registers. This
lower bound is achieved if the clock is distributed to
each register at proper timing [8], [11], [21].

The clock timing of register is the difference in
clock arrival time between the register and an arbitrary
chosen (perhaps hypothetical) reference register. The
set of clock timings is called a clock schedule.

Manuscript received March 19, 2002.
Manuscript revised June 17, 2002.
Final manuscript received August 5, 2002.

†The authors are with the Graduate School of Science
and Technology, Tokyo Institute of Technology, Tokyo, 152-
8552 Japan.

∗Presently, with Fujitsu Corporation.
∗∗Presently, with Japan Patent Office.

∗∗∗The preliminary version was presented at [19].
a) E-mail: atushi@lab.ss.titech.ac.jp

It is shown that an arbitrary clock schedule can be
realized by constructing a clock tree [20]. However the
total wire length of a clock tree that realizes a clock
schedule depends on the clock schedule. The required
wire length for a clock schedule tends to be large if
it is determined without considering the locations of
registers. It is experimentally shown that the required
wire length for a random clock schedule is larger than
that for a gentle clock schedule (A clock schedule is
said to be gentle if the clock-timings of registers are set
to near when their locations are close to each other)
[13]. In practice, the allowable wire length and power
consumption of a clock tree would be those of a zero-
skew clock tree. Thus our problem is to find a clock
schedule that achieves a smaller clock period and that
can be realized with the wire length at least comparable
to or smaller than that of a zero-skew clock tree.

Many clock tree algorithms have been proposed
to reduce the wire length and power consumption un-
der framework called zero skew [2]–[4], [9], [10], bounded
skew [6], [7], [12], useful skew [23], [24], and associative
skew [5]. However, they did not fully utilize the flexi-
bility of clock schedule.

The flexibility is utilized to improve the circuit per-
formance by combining the retiming in [17], and to im-
prove the circuit reliability in [14]. However, the re-
alization of a clock schedule is not considered at all.
In [15], [22], a practical clock tree algorithm was intro-
duced in which a discrete clock timing is assigned to
each register. It is experimentally shown that the clock
period of a circuit is improved about 10% compared
against the circuit with a zero skew clock tree, and the
wire length of the clock tree is comparable to the zero
skew clock tree. By simulations using vender tools, the
circuits obtained are proved stable under various prac-
tical conditions. However, it takes more than one hour
to determine a clock schedule for a problem of about
one thousand registers, since the clock schedule algo-
rithm is based on a simulated annealing.

In this paper, we propose a fast clock schedule al-
gorithm that achieves a shorter clock period and that
takes the realization cost of a clock tree into account.
In the algorithm, a cluster of registers located in a close
area with the same clock input timing is constructed.
The registers in each cluster are connected by a Steiner
tree and driven by a buffer. To make the lengths of

SAITOH et al.: A CLUSTERING BASED FAST CLOCK SCHEDULE ALGORITHM FOR LIGHT CLOCK-TREES
2757

the intra-cluster wire and the inter-cluster wire small,
the number of clusters and the radius of each cluster
should be small in addition to achieve a shorter clock
period. In order to get such a desirable clustering, the
algorithm first partitions registers into clusters by their
locations, and modifies clusters to improve the clock
period while maintaining the number of clusters and
the radius of each cluster small. In each repetition of
modification, a set of critical registers with respect to
the clock period is selected. Each register in the set is
moved to a near or a new cluster in order to relax the
timing constraints.

In experiments, the algorithm is applied to sev-
eral circuits. The computational time to obtain the
clock schedule is about 81 seconds for the circuit with
888 registers by Athlon 1.4 [GHz]. The clock period
achieved is about 13% shorter than that achieved by a
zero-skew clock tree, and about 4% longer than the the-
oretical minimum without considering the realization of
clock schedule. To confirm the realization cost of the
obtained clock schedule, a clock tree that realizes the
clock schedule is constructed by the algorithm proposed
in [1]. The clock tree algorithm consists of two phases,
intra-cluster routing and inter-cluster routing. A pro-
cedure based on the cost-radius balanced Steiner tree
algorithm (CRBST) [18] and that based on the schedule
clock tree algorithm (SC) [13] are used in intra-cluster
routing and in inter-cluster routing, respectively. To re-
duce the wire length and power consumption, the flex-
ibility of clock schedule is taken into account in inter-
cluster routing. It is shown that the clock tree con-
structed is comparable to a zero skew clock tree and
that the desirable clock schedule is obtained in a short
time.

2. Preliminaries

We consider a circuit with a single clock consisting of
registers and combinatorial circuits between them. The
clock timing s(v) of register v is the difference in clock
arrival time between v and an arbitrary chosen (per-
haps hypothetical) reference register. The set of clock
timings is called a clock schedule.

We assume the framework that a circuit works cor-
rectly if the following two types of constraints are satis-
fied for every register pair with signal propagation [11]:

Hold Constraints :
s(v)− s(u) � dmin(u, v)

Setup Constraints :
s(u)− s(v) � T − dmax(u, v)

where T is the clock period and dmax(u, v) (dmin(u, v))
is the maximum (minimum) propagation delay from
register u to register v along a combinatorial circuit.
These constraints are represented by the constraint
graph.

The constraint graph G = (V, E) is defined as

Fig. 1 Circuit.

Fig. 2 Constraint graph Gt.

follows: a vertex v ∈ V corresponds to a register, a
directed edge (u, v) ∈ E corresponds to either type
of constraints; edge (u, v) corresponding to the hold
(setup) constraint is called hold-edge (setup-edge), and
the weight w(u, v) of (u, v) is dmin(u, v) (T−dmax(v, u)).
The constraint graph G when the clock period is t is de-
noted by Gt. Similarly, weight w(u, v) when the clock
period is t is denoted by wt(u, v).

For example, the constraint graph Gt of the circuit
shown in Fig. 1 is shown in Fig. 2.

For clock schedule s in clock period t, edge (u, v)
in Gt is said to be legal if s(v)− s(u) � wt(u, v), illegal
otherwise. The slack of edge (u, v) for clock schedule s
in clock period t is defined as

∆s,t(u, v) = s(u) + wt(u, v)− s(v).

If the slack of an edge is 0, the edge is said to be critical.
A cycle (path) consisting of critical edges is called a
critical cycle (path). A clock schedule is called feasible
in clock period t if there is no illegal edge in Gt.

Note that the constraints can be satisfied if and
only if G contains no negative cycle [16], [21]. The
smallest clock period t such that G contains no neg-
ative cycle is denoted by T (G). For given the maxi-
mum and minimum propagation delays between regis-
ters, the minimum feasible clock period T (G), under
the assumption that the clock timing of every register
can be controlled, can be determined by using the con-
straint graph G0 [21]. Note that there exists a critical
cycle in Gt for a feasible clock schedule if and only if
the clock period t is T (G).

A feasible clock schedule can be obtained if the
constraint graph contains no negative cycle. One way
to get a feasible clock schedule is as follows: choosing an

2758
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

arbitrary vertex in the constraint graph, let the clock
timing of each register be the weight of a shortest path
from the chosen vertex to the vertex corresponding to
the register. Note that a feasible clock schedule is not
unique in general.

Let r(v) be a range of clock timing of register v.
The set r of ranges is called consistent in clock period
t if a feasible clock schedule is obtained whenever the
clock timing of every register v is chosen from r(v). One
way to get a consistent set of ranges is as follows: find
a feasible clock schedule s in clock period t; let r(v) be

[
s(v)− 1

2
min

(v,u)∈E
∆s,t(v, u),

s(v) +
1
2
min

(u,v)∈E
∆s,t(u, v)

]
.

Note that a consistent set of ranges is not unique in
general.

In this paper, the registers are partitioned into sev-
eral clusters such that the clock timings of registers in
each cluster are constrained to be equal. The constraint
graph GC = (V C , EC) under this constraint is obtained
from G by contracting vertices in each cluster into one
vertex. V C corresponds to the set of clusters and EC

corresponds to the set of hold and setup constraints
between clusters. The constraint graph GC when the
clock period is t is denoted by GC

t . The minimum fea-
sible clock period T (GC) and a feasible clock schedule
sC under this constraint can be obtained by using GC .
In this case, the clock timing of a register v is denoted
by sC(v).

3. Algorithm

The algorithm partitions registers into several clusters.
The registers in each cluster are driven by a buffer.
In each cluster, the clock timings of registers are as-
sumed to be equal. This assumption makes sense when
the routing delay which is caused by the resistance of
the wire connecting from the driving buffer to registers
can be ignored compared with the gate delay which is
caused by the output resistance of the buffer. Even
in deep-sub-micron technology era, the maximum rout-
ing delay is small enough if the maximum wire length is
bounded. Thus, in order to make the assumption valid,
the algorithm bounds the radius of the cluster, the ra-
dius of the minimum bounding regular rhombus that
covers locations of registers in the cluster, so that the
maximum wire length from the driving buffer to each
register can be bounded. Note that the required intra-
cluster wire length would be small by this bound. Also
the reliability of the circuit would be improved since
the deviation of clock delay caused by the deviation of
routing delay is suppressed [15], [22].

By assuming that the clock delay from the clock
source to each driving buffer can be controlled, the

Algorithm CBCS
Input

• the maximum (minimum) propagation delay be-
tween registers

• the location of each register
• the maximum radius of a cluster

Output

• A partition of registers into clusters, and the cor-
responding minimum feasible clock period and a
clock schedule.

1. Partition the chip area into rhombuses with oblique
lattice, and let registers in each rhombus be an initial
cluster associated with the rhombus.

2. Construct the constraint graph GC , compute the min-
imum feasible clock period T (GC), and find a feasible
schedule sC in T (GC).

3. Find a feasible clock schedule s′ in clock period
T (GC)−δ such that

∑
v∈V |s′(v)−sC(v)| is minimum

where δ is small value. Let S be the set of registers v
such that s′(v) �= sC(v).

4. For each register v in S, apply the following: find a
cluster c′(v) such that c′(v) is associated with rhom-
buses adjacent to rhombus h(v) and that the intersec-
tion of the consistent range of v and that of c′(v) is
maximum; move v from cluster c(v) to c′(v).

5. If there exists a register v in S such that c(v) �= c′(v)
in Step 4, then return to Step 2.

6. If there exists a register v in S such that no new cluster
associated with h(v) has been created, then create a
new cluster associated with h(v) that contains v and
return to Step 2.

7. For each register v in each new cluster, and for each
register v that is contained in an original cluster not
associated with h(v), move to the original cluster in
h(v) if the intersection of the consistent range of v
and that of the cluster is not empty.

8. Output clusters, minimum clock period, and clock
schedule.

Fig. 3 Outline of proposed algorithm.

algorithm improves clustering to reduce the clock pe-
riod. As the number of clusters is increased, the min-
imum feasible clock period becomes shorter, but the
required inter-cluster wire length would be larger. This
is because not only the number of cluster is increased,
but also the resultant clock schedule becomes random.
Thus, in order to make the inter-cluster wire length
smaller, the number of clusters is controlled as small as
possible after taking the driving ability of a buffer into
account.

The outline of the proposed algorithm CBCS is
shown in Fig. 3. In the outline, c(v) denotes the cluster
that contains register v, and h(v) does the rhombus in
which v is located. A rhombus is said to be adjacent
to itself as well as surrounding eight rhombuses. A
rhombus is adjacent to at most nine rhombuses.

In Step 1, the size of rhombus is bounded so that
the maximum Manhattan length within the adjacent
nine rhombuses is at most twice the maximum radius
of a cluster and so that a buffer can drive the registers in
each cluster. By restricting the registers of a cluster to

SAITOH et al.: A CLUSTERING BASED FAST CLOCK SCHEDULE ALGORITHM FOR LIGHT CLOCK-TREES
2759

Fig. 4 Rhombuses and initial clustering.

adjacent nine rhombuses, routing delays could be kept
small enough to be ignored. Although the alignment
of rhombuses would affect the final result, we select an
arbitrary one, for example, boundary lines are drawn
at equal intervals such that one of them is started from
a corner of the area. An illustrative example is shown
in Fig. 4.

In Step 2, we compute the minimum clock period
in T (GC) and find a feasible schedule sC by the clock
schedule algorithm in [25]. Note that there is a criti-
cal cycle in GC

T (GC) for sC . If there is a critical cycle
in GT (GC) for sC , then it is impossible to reduce the
clock period by modifying the clustering. Otherwise,
the clock period could be reduced by modifying the
clustering. Thus, in the following, we assume that the
graph obtained from GT (GC) by deleting non-critical
edges becomes a directed acyclic graph. In Fig. 4, clus-
ters associated with X, Y , and Z form a critical cycle
in GC

T (GC), but there is no critical cycle in GT (GC).
In Step 3, clock schedule s′ is obtained by the clock

schedule algorithm in [25]. Then, S is defined as the
set of registers v such that s′(v) �= sC(v). The registers
on a critical path P in GT (GC) for sC , except one reg-
ister, are contained in S if P contains a setup-edge. A
register not incident to a critical edge is not contained
in S since δ is chosen small. By assuming that there
is no critical cycle consisting only of hold-edges, each
critical cycle in GC

T (GC) is broken if each register v in S

is removed from c(v) and a new cluster consisting only
of v is created. However the number of clusters should
be small to make the wire length of the clock tree small.
Thus we move a register v from c(v) to c′(v) in Step 4
if the consistent range of a register v and that of a clus-
ter c′(v) is neither empty nor unique. In Fig. 4, assume
that the intersection of the consistent range of register
x and that of the cluster associated with rhombus W
is neither empty nor unique. Then, the critical cycle
is broken by moving register x from cluster associated

Fig. 5 Relaxing timing constraints.

Fig. 6 Final clustering.

with rhombus X to cluster associated with rhombus W
as shown in Fig. 5.

Note that S might be redundant to break all the
critical cycles. Thus, we return to Step 2 when at least
one register in S is moved in Step 4 by expecting that
some critical cycles are broken.

In Step 6, one new cluster is created, if possible,
to break a critical cycle, and return to Step 2. The
number of new clusters for each rhombus is restricted
to at most one to keep the number of clusters small.

In Step 7, a register moved from the original cluster
is returned to it if possible. A register moved from the
original cluster might be returned to it if other registers
are moved from it.

The consistent set of ranges of clusters are obtained
by using feasible schedule s when Step 2 is executed. It
is also updated when the cluster accepts a register at
Step 4, but postponed when a register is removed from
the cluster for the computation time. The consistent
set of ranges of registers are obtained by using feasible
schedule s′ when Step 3 is executed.

2760
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

An illustrative example of final clustering is shown
in Fig. 6. From the initial cluster associated with rhom-
bus X, three registers are removed to relax the tim-
ing constraints, while two registers within surrounding
eight rhombuses of rhombus X are included to the clus-
ter. A new cluster associated with rhombus X which
contains three registers within adjacent nine rhombuses
of rhombus X is created. Each final cluster consists of
registers within adjacent nine rhombuses.

Although the number of registers in S might not
be important to get an optimal clustering, the size of
S is small in most cases since the graph obtained by
deleting non-critical edges seldom become complicated
one. In case that the setup and hold times of registers
are taken into account, the weight of a hold-edge might
be negative, and a critical cycle consisting only of hold-
edges might exist. In such case, the clock schedule s′ is
obtained using the constraint graph obtained by reduc-
ing the weight of each edge by δ. However we use the
constraint graph obtained by reducing the clock period
by δ since it is easy to obtain.

4. Experiments

In the circuit performance optimization in semi-
synchronous framework, we expect that a composition
of block level local optimizations will be comparable to
the whole chip level global optimization. Thus, the al-
gorithm CBCS is applied to three circuits from industry
which are parts of a chip designed in 0.25 [µm] technol-
ogy. The statistics are shown in Table 1. In Table 1,
“area,” “#reg,” “max-d,” and “min-clk” are the lay-
out area, the number of registers, the maximum signal
propagation delay between registers, and the minimum
clock period in semi-synchronous framework, respec-
tively. The percentages in “max-d” are the ratios from
“min-clk.”

In experiments, the maximum radius of a clus-
ter is set 300 [µm] in order to neglect routing delay in
0.25 [µm] technology. The timings of inputs and out-
puts of a circuit are constrained to be equal.

The clustering results are shown in Table 2. In
Table 2, “Initial,” “Middle,” and “Final” correspond
to the initial clustering, the clustering before Step 7,

Table 1 Circuit statistics.

circuit area [µm2] #reg max-d [ps](%) min-clk [ps]
C1 728 × 710 888 11569 (139.0) 8323
C2 1518 ×1510 5363 11911 (102.2) 11655
C3 1950 ×1909 7672 11808 (123.6) 9552

and the final clustering, respectively. “clk,” “#clst,”
“#move,” “time” are the achieved clock period, the
number of cluster, the number of registers moved from
initial clusters, and the computational time by Athlon
1.4 [GHz], respectively. The percentages in “clk” are
the ratios from “min-clk” in Table 1. The clustering
result of circuit C1 is shown in Fig. 7. In Fig. 7, the
registers in each final cluster are plotted by the same
symbol. The registers in each area of the oblique lattice
form an initial cluster.

The clock period achieved in average is about 13%
shorter than that achieved by a zero-skew clock tree,
and about 4% longer than the theoretical minimum
without considering the realization of clock schedule.
The computational time for C2 is especially small since
the minimum clock period is achived in early stages.

In order to confirm the quality of clustering, the
clock trees are constructed by the algorithm for low
power proposed in [1].

In clock tree synthesis, seven types of buffers are
used. We adopt a linear delay model and a linear power
model of a buffer, that is, they are a constant times the
load capacitance of a buffer plus a constant. The load
capacitance of a buffer is the sum of the capacitance
of wire and the input capacitance of the driven buffers.
Constants are fitted to 0.25 [µm] technology. We as-
sume that there are no obstacles in routing and clock
buffer insertion. The clock source is located at the lower

Fig. 7 Clustering result (49 clusters).

Table 2 Clustering result.

circuit Initial Middle Final
#clst clk [ps] (%) #clst #move #clst #move clk [ps] (%) time [s]

C1 37 10154 (122.0) 47 86 47 82 8446 (101.5) 81
C2 138 11670 (100.1) 138 2 138 2 11655 (100.0) 128
C3 220 11307 (118.4) 224 87 223 80 10533 (110.3) 1650

SAITOH et al.: A CLUSTERING BASED FAST CLOCK SCHEDULE ALGORITHM FOR LIGHT CLOCK-TREES
2761

Table 3 Clock tree statistics.

circuit clustering clock period wire length (intra, inter) #buf power
[ps] (%) [µm] (%) [µm], [µm]) [µW/MHz] (%)

C1 Final 8446 (101.5) 28427 (—) (19319, 9108) 80 60.5 (—)
9000 (108.1) 27995 (98.5) (19319, 8677) 73 58.4 (96.6)
10000 (120.1) 27249 (95.9) (19319, 7931) 59 56.6 (93.7)
11569 (139.0) 26733 (94.0) (19319, 7414) 51 55.3 (91.5)

(zero skew) 11569 (139.0) 27440 (96.5) (19319, 8121) 78 58.5 (96.8)
Initial 10146 (121.9) 22694 (79.8) (15410, 7284) 58 50.4 (83.4)

11569 (139.0) 22194 (78.1) (15410, 6784) 47 48.8 (80.3)
(zero skew) 11569 (139.0) 22510 (79.2) (15410, 7100) 65 50.6 (83.8)

Flat 8391 (100.8) 39857 (140.2) (—, 39857) 207 76.4 (126.4)
11569 (139.0) 29156 (102.6) (—, 29156) 138 57.5 (95.1)

(zero skew) 11569 (139.0) 35066 (123.4) (—, 35066) 163 65.6 (108.5)
Industry 11569 (139.0) 25947 (91.3) (,) 84 62.8 (103.9)

C2 Final 11655 (100.0) 120614 (—) (90285, 30329) 217 302.3 (—)
Initial 11670 (100.1) 120468 (99.9) (90045, 30423) 219 302.5 (100.1)
Flat 11655 (100.0) 174760 (144.9) (—,174760) 834 353.6 (117.0)

C3 Final 10533 (110.3) 194469 (—) (146405, 48063) 459 451.7 (—)
Initial 11307 (118.4) 193697 (99.6) (140370, 53326) 374 438.6 (97.1)
Flat 9552 (100.0) 326989 (168.1) (—,326989) 1559 858.1 (190.0)

left corner of the layout area.
The clock tree algorithm consists of intra-cluster

routing and inter-cluster routing. In intra-cluster rout-
ing, CRBST [18] is used to obtain a small Steiner tree
with radius constraint. In CRBST, the maximum al-
lowable path length from the source to sinks can be
set by a parameter. In order to make the routing de-
lay negligible, we set the maximum radius of a cluster
as the maximum allowable path length for each inter-
cluster routing. The position of the register which is
nearest to the center of gravity point of a cluster is
used for the position of the source of the cluster. In
inter-cluster routing, the clock timing of each cluster
within the consistent range is achieved by the modified
SC [13]. The modified SC is based on Differed-Merge-
Embedding strategy with buffer insertion. In the bot-
tom up merging phase, a pair that can be merged by
a short interconnection with lower power is selected
recursively. The maximum path length from a driv-
ing buffer and the maximum driving capacitance of a
buffer are also constrained in inter-cluster routing. We
can obtain several clock tree by setting the target clock
period. The larger target clock period is, the smaller
the wire length and power consumption of clock tree is
since the consistent ranges of clusters become large.

In Table 3, the statistics of clock trees are shown.
The columns consist of the type of clustering, the tar-
get clock period, the total wire length, the number of
inserted buffers, and the power consumption.

The clock trees in “Final” and “Initial” are ob-
tained by the final clustering and the initial clustering,
respectively. The clock trees in “Flat” are obtained
without clustering. In the clock tree algorithm, intra-
clustering routing is skipped. The zero skew clock trees
are obtained by setting clock input timings of all regis-
ters to be equal. The clock tree “Industry” comes from
an industry. In the comparison between “Industry” and
others, there are several differences about conditions.

For example, relatively rough delay model is used in
our experiments. Though we believe that the result is
not affected significantly.

The clock trees obtained by clustering are better
than those in “Flat” with respect to both wire length
and power consumption. In constructing a clock tree in
“Flat,” the clock schedule is determined without con-
sidering the locations of registers. So many buffers are
used and the wire length and power consumption are
large. With respect to the wire length and the power
consumption, the clock trees in “Initial” are better than
others. But the minimum clock period obtained by
clustering “Initial” is larger than that obtained by clus-
tering “Final.” Whenever clustering is modified in or-
der to achieve shorter clock period, the required wire
length and power consumption are increased since the
radius of each cluster becomes large or the number of
clusters is increased. By using the clustering “Final,”
the shorter clock period can be achieved. In construct-
ing a clock trees in “Final” in “C1,” the shorter we set
the target clock period, the larger wire length is and
the higher power consumption is. The clock routing
becomes harder as the clock period was shorter since
the consistent range of each register becomes narrower.

The layout of the clock tree that achieves the clock
period 8446 [ps] is shown in Fig. 8. In Fig. 8, the reg-
isters, the clock source and sources of clusters, intra-
cluster routing, and inter-cluster routing are written in
crosses, rectangles, solid lines, and dotted lines, respec-
tively.

5. Conclusion

In this paper, we proposed a fast clock-scheduling al-
gorithm that achieves a smaller clock period and that
takes the register locations into account. In experi-
ments, the clock period is reduced about 13% compared
to the complete synchronous framework. The cost of

2762
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

Fig. 8 Clock tree layout (8446 [ps]).

clock tree that realizes the obtained clock schedule is
shown to be comparable to the zero skew tree in exper-
iments.

For the future works in order to obtain further
smaller clock tree, it is necessary to determine the clock
timing of a cluster and its consistent range by taking
the characteristics of the clock tree and its construction
algorithm into account.

Acknowledgments

The authors are grateful to Professor Yoji KAJITANI,
the University of Kitakyushu, Dr. Masahiko TOYO-
NAGA, Kochi University, Mr. Keiichi KUROKAWA,
and Mr. Takuya YASUI, Matsushita Electric Indus-
trial Co., Ltd., for their helpful comments, Mr. Ha-
jime YAMAZAKI, Tokyo Institute of Technology, for
his help in experiments. This work is part of a project
of CAD21 at Tokyo Institute of Technology.

References

[1] M. Azuma, M. Saitoh, and A. Takahashi, “A clock tree
routing algorithm for low power using feasible range of clock
schedule,” IPSJ SIG Notes, vol.2000, no.79, pp.63–68, 2000.

[2] K.D. Boese and A.B. Kahng, “Zero-skew clock routing trees
with minimum wirelength,” Proc. IEEE 5th ASIC Conf.,
pp.1.1.1–1.1.5, 1992.

[3] T.H. Chao, Y.C. Hsu, and J.M. Ho, “Zero skew clock
net routing,” Proc. 29th Design Automation Conference
(DAC), pp.518–523, 1992.

[4] T.H. Chao, Y.C. Hsu, J.M. Ho, K.D. Boese, and A.B.
Kahgn, “Zero skew clock routing with minimum wire-
length,” IEEE Trans. Circuits & Syst., vol.39, no.11,
pp.799–814, 1992.

[5] Y. Chen, A.B. Kahng, G. Qu, and A. Zelikovsky, “The
associative-skew clock routing problem,” Proc. Interna-
tional Conference on Computer-Aided-Design (ICCAD),

pp.168–172, 1999.
[6] J. Cong, A.B. Kahng, C.K. Koh, and C.W.A. Tsao,

“Bounded-skew clock and Steiner routing under Elmore de-
lay,” Proc. International Conference on Computer-Aided-
Design (ICCAD), pp.66–71, 1995.

[7] J. Cong and C.K. Koh, “Minimum-cost bounded-skew clock
routing,” Proc. International Symposium on Circuits and
Systems (ISCAS), vol.1, pp.215–218, 1995.

[8] R.B. Deokar and S.S. Sapatnekar, “A graph-theoretic
approach to clock skew optimization,” Proc. Interna-
tional Symposium on Circuits and Systems (ISCAS), vol.1,
pp.407–410, 1994.

[9] M. Edahiro, “A clustering-based optimization algorithm in
zero-skew routings,” Proc. 30th Design Automation Con-
ference (DAC), pp.612–616, 1993.

[10] M. Edahiro and T. Yoshimura, “Minimum path-length
equi-distant routing,” Proc. Asia-Pacific Conference on Cir-
cuits and Systems (APCCAS), pp.41–46, 1992.

[11] J.P. Fishburn, “Clock skew optimization,” IEEE Trans.
Comput., vol.39, no.7, pp.945–951, 1990.

[12] D.J.H. Huang, A.B. Kahng, and C.W.A. Tsao, “On the
bounded-skew routing tree problem,” Proc. 32nd Design
Automation Conference (DAC), pp.508–513, 1995.

[13] K. Inoue, W. Takahashi, A. Takahashi, and Y. Kajitani,
“Schedule-clock-tree routing for semi-synchronous cir-
cuits,” IEICE Trans. Fundamentals, vol.E82-A, no.11,
pp.2431–2439, Nov. 1999.

[14] I.S. Kourtev and E.G. Friedman, “Clock skew scheduling
for improved reliability via quadratic programming,” Proc.
International Conference on Computer-Aided-Design (IC-
CAD), pp.239–243, 1999.

[15] K. Kurokawa, T. Yasui, M. Toyonaga, and A. Takahashi, “A
practical clock tree synthesis for semi-synchronous circuits,”
IEICE Trans. Fundamentals, vol.E84-A, no.11, pp.2705–
2713, Nov. 2001.

[16] E.L. Lawler, Combinatorial Optimization, Networks and
Matroids, Holt, Rinehart and Winston, New York, 1976.

[17] X. Liu, M.C. Papaefthymiou, and E.G. Friedman, “Max-
imizing performance by retiming and clock skew schedul-
ing,” Proc. 36th Design Automation Conference (DAC),
pp.231–236, 1999.

[18] H. Mitsubayashi, A. Takahashi, and Y. Kajitani, “Cost-
radius balanced spanning/Steiner trees,” IEICE Trans.
Fundamentals, vol.E80-A, no.4, pp.689–694, April 1997.

[19] M. Saitoh, M. Azuma, and A. Takahashi, “Clustering based
fast clock scheduling for light clock-tree,” Proc. Design Au-
tomation and Test in Europe Conference and Exhibition
(DATE), pp.240–244, 2001.

[20] A. Takahashi, K. Inoue, and Y. Kajitani, “Clock-tree rout-
ing realizing a clock-schedule for semi-synchronous cir-
cuits,” Proc. International Conference on Computer-Aided-
Design (ICCAD), pp.260–265, 1997.

[21] A. Takahashi and Y. Kajitani, “Performance and reliability
driven clock scheduling of sequential logic circuits,” Proc.
Asia and South Pacific Design Automation Conference (AS-
PDAC), pp.37–42, 1997.

[22] M. Toyonaga, K. Kurokawa, T. Yasui, and A. Takahashi, “A
practical clock tree synthesis for semi-synchronous circuits,”
Proc. ACM International Symposium on Physical Design
(ISPD), pp.159–164, 2000.

[23] J.G. Xi and W.W.M. Dai, “Jitter-tolerant clock routing in
two-phase synchronous systems,” Proc. International Con-
ference on Computer-Aided-Design (ICCAD), pp.316–320,
1996.

[24] J.G. Xi and W.W.M. Dai, “Useful-skew clock routing with
gate sizing for low power design,” Proc. 33rd Design Au-
tomation Conference (DAC), pp.383–388, 1996.

SAITOH et al.: A CLUSTERING BASED FAST CLOCK SCHEDULE ALGORITHM FOR LIGHT CLOCK-TREES
2763

[25] T. Yoda and A. Takahashi, “Clock schedule design for
minimum realization cost,” IEICE Trans. Fundamentals,
vol.E83-A, no.12, pp.2552–2557, Dec. 2000.

Makoto Saitoh received his B.E.,
M.E. degrees in electrical and electronic
engineering from Tokyo Institute of Tech-
nology, Tokyo, Japan, in 1999, and 2001,
respectively. He currently works at Fu-
jitsu Corporation. His research interests
are in VLSI design automation.

Masaaki Azuma received his B.E.
and M.E. degrees in electrical and elec-
tronic engineering from Tokyo Institute
of Technology, Tokyo, Japan, in 1999 and
2001, respectively. He currently works for
Japan Patent Office. He is an assistant
examiner in the field of the transmission
circuitry.

Atsushi Takahashi received his B.E.,
M.E., and D.E. degrees in electrical and
electronic engineering from Tokyo Insti-
tute of Technology, Tokyo, Japan, in
1989, 1991, and 1996, respectively. He
had been with the Tokyo Institute of
Technology as a research associate from
1991 to 1997 and has been an associate
professor since 1997. He is currently with
Department of Communications and Inte-
grated Systems, Graduate School of Sci-

ence and Engineering. His research interests are in VLSI layout
design and combinational algorithms. He is a member of the
Information Processing Society of Japan and IEEE.

