
Network-Flow Based Delay-Aware Circuit Partitioning Algorithm

Masato INAGI Atsushi TAKAHASHI
Department of Communications and Integrated Systems,

Tokyo Institute of Technology

Abstract

We propose a delay-aware circuit partitioning algo-
rithm under I/O pins and size constraints. These
two constraints are essential in multi-device imple-
mentation. The partitioning in multi-device imple-
mentation affects the delay much, since the propaga-
tion delay of inter-device connection is considerably
larger than that of intra-device connection. Many ap-
proaches without considering delay fail to obtain a
reasonable solution. Our partitioning algorithm is an
enhancement of a partitioning algorithm based on flow
network without considering delay, called PART. The
idea of our enhancement is the reflection of timing
slack into the flow network in order to avoid cutting
tighter slack net. Our algorithm is implemented and
applied to benchmark circuits. In experiments, we ob-
served that the maximum propagation delay between
registers is shorter and the number of subcircuits is
smaller compared with PART.

1 Introduction

As the size of a circuit to be implemented becomes
larger, a circuit partitioning is required in the circuit
layout or in implementing the circuit into MCM or
FPGAs. In this paper, we discuss the partition prob-
lem to implement the circuit into multi-devices, e.g.
multi-FPGAs. If the size of circuit is too large to
implement in a single device, then the circuit must
be partitioned into subcircuits to fit devices. In such
cases, the size and I/Os of each subcircuit must not
exceed the capacity of the device. The number of sub-
circuits is an objective of partitioning to reduce the
cost of implementation. The circuit speed in multi-
device implementation is usually much slower than
that in single-device implementation since the prop-
agation delay of the inter-device connection is larger
than that of intra-device connection. In order to keep
the circuit speed as fast as possible in multi-device im-
plementation, the delay should be taken into account
in partitioning.

The partitioning algorithms proposed in [6, 8] are

based on a min-cut algorithm of a flow-network. In
[6, 8], a circuit is transformed into a flow-network, and
the subcircuits satisfying the size and I/O constraints
are extracted repeatedly according to a min-cut of the
flow-network. In the transformation to flow-network,
each net is transformed into a local structure whose
flow capacity is one. The flow capacity of each lo-
cal structure corresponds to the I/O which is required
when the corresponding net becomes inter-connection.
Therefore, the size of min-cut which corresponds to
the max-flow of the flow-network is equal to the num-
ber of I/Os of the extracted subcircuit. In each extrac-
tion, these algorithms enumerate a number of subcir-
cuits satisfying the size and I/O constraints, and then
select the largest one. However, these algorithm does
not take the circuit speed into account.

In this paper, we propose a delay-aware partitioning
algorithm which is an enhancement of the algorithm
PART proposed in [8]. In our algorithm, a circuit
is transformed into a flow-network as in PART. The
principal diffence between our algorithm and PART
is the definition of flow capacity of a local structure.
In our transformation of a net into a local structure,
the flow capacity is determined according to the delay-
slack of the net. The local structure corresponding to
a net with small delay-slack has the large flow capac-
ity. Then the net with small delay-slack will not be
included in a min-cut.

The rest of the paper is organized as follows. We
define the graph model of a circuit in Section 2. We
propose our algorithm in Section 3, and show exper-
imental results in Section 4. Finally, the conclusions
are described in Section 5.

2 Preliminaries

2.1 Circuit Model

We consider synchronous circuits whose flip-flops are
triggered by a clock simultaneously. A circuit C is
modeled as a hypergraph G(V, E) which is called a
circuit graph. V = Vgate ∪ VFFin ∪ VFFout ∪ VPI ∪
VPO is the set of vertices of G where Vgate, VFFin,

－ 201 －

第16回　回路とシステム
（軽井沢）ワークショップ

The 16th Workshop on Circuits and Systems

in Karuizawa, April 27, 28, 2003

VFFout, VPI , VPO correspond to the gates, the input
of flip-flops, the output of flip-flops, the primary input
and primary output of C, respectively. E = Esig ∪
Eio is the set of hyperedges of G where Esig and Eio

correspond to the internal signal nets and I/O nets,
respectively. That is, Eio = {e ∈ E| V (e) ∩ (VPI ∪
VPO) �= ∅} where V (e) denoted the set of vertices
incident to e.

A partition of a circuit graph G(V, E) is a decompo-
sition of V into subsets V1, V2, . . . , Vm, and VPI ∪VPO

such that
⋃m

i=1 Vi = Vgate∪VFFin∪VFFout , Va∩Vb = ∅
(1 ≤ a, b ≤ m and a �= b), and two vertices corre-
sponding to the input and output of a flip-flop are in
Vi (1 ≤ i ≤ m).

The size size(Vi) of Vi is defined as
∑

v∈Vi
size(v)

where size(v) is the size of circuit element correspond-
ing to v in V . The number io(Vi) is the number of I/Os
of subcircuit corresponding to Vi which is defined as

io(Vi) = |{e ∈ E| (V (e)∩Vi �= ∅)∧(V (e)∩V \Vi �= ∅)}|.

Let d(v) be the delay of a circuit element v and
d(v′, v) be the delay of a signal delay from v ′ to v.
d(v′, v) increases if v′ and v belong to different subcir-
cuits.

Let Vfi(v)(Vfo(v)) be the set of fan-in (fan-out) ver-
tices of v. The ASAP(v) is defined as

ASAP(v) ={
max

v′∈Vfi(v)
(ASAP(v′) + d(v′, v) + d(v)) (v /∈ Vin)

0 (v ∈ Vin)

where Vin = VPI ∪ VFFout.
The minimum clock period of the completely-

synchronous circuit (the delay of the combinational
circuit) is maxv∈Vfo(ASAP(v)).

The problem is to find a better decomposition of V

such that size(Va) ≤ limsize and io(Va) ≤ limio where
limsize and limio are the maximum size and I/Os of
subcircuit which can be implemented into a device.
The first objective of the problem is the number of
subcircuits and the second objective function is the
delay of the resultant circuit.

2.2 Hyper Flow Transformation

Hyper Flow Transformation which transforms a cir-
cuit graph G(V, E) to the flow graph Gf (Vf , Ef) is
used in [4, 8] and our algorithm.

Hereinafter, the flow edge which has direction from
va to vb is denoted as (va, vb), and the flow edge
(va, vb) with capacity c is denoted as (va, vb):c. Let
cap(e) be the capacity of a flow edge e. For the set
Vs ⊂ Vf of vertices, the set of edges from Vs to Vf \Vs

consists of a cut between Vs and Vf \ Vs. Let cap(Vs)
be the sum of capacity of edges from Vs to Vf \ Vs

The set of edges from Vs to Vf \ Vs consists of a s-t
cut if the source vertex vs ∈ Vs and the sink vertex
vt �∈ Vs.

Hyper Flow Transformation transforms every in-
ternal signal net e ∈ Esig into a local structure of
the flow graph by Yang-Wong transformation(Y-W
Trans.[4, 7]).

An example of transforming a net with 3 terminals
is shown in Fig.1. As shown in Fig.1, in the local
structure of flow graph for e, two vertices connected by
an edge with finite capacity are added. The capacity
of the other edges is ∞.

v v

v

e

v v

v

1 2

3

1 2

3

v

vf2

f1

cap=a(e)

cap=infinity

Y-W TRANS.

G Gfinin

Figure 1: Yang-Wong Transformation

Let Vs be the set of vertices of the flow graph that
contatins vs but not vt. Vs is said to be legal in terms
of the flow graph if cap(Vs) is finite and if a dummy
node of the local structure for e is contained in Vs

(Vf \Vs) if and only if V (e)∩Vs �= ∅ (V (e)∩(Vf \Vs) �=
∅). A legal Vs is said to be feasible if size(Vs) ≤ limsize

and cap(Vs) ≤ limio.
Let V ′ be any non-empty proper subset of V (e),

max-flow value from V ′ to V (e) \ V ′ is equal to the
capacity of the edge connecting two vertices. Thus
we define the capacity of the edge with finite capac-
ity in the local structure as the capacity of the local
structure.

Note that cap(Vs) is equal to io(Vs) if Vs is legal
and cap(e) = 1 for each edge e connecting two dummy
vertices.

The details of Hyper Flow transformation is de-
scribed as follows.

Hyper-Flow Transformation[7]

input: a circuit graph G(V, E)

output: a flow graph Gf(Vf , Ef)

1. Vf = {vt} ∪ {vs} ∪ V v
f ∪ V d

f , where

(a) vs is the source vertex and vt is the termi-
nal vertex of Gf

－ 202 －

(b) V v
f = V

(c) V d
f =

⋃
e∈Esig

{vf1(e), vf2(e)}

2. Ef = Ee
f ∪Eio

f ∪ EFF
f ∪ Et

f ∪ Es
f , where

(a) Ee
f is a set of edges representing internal

nets
{(vf1(e), vf2(e)):a(e)|e ∈ Esig}
∪ {(v, vf1(e)):∞|e ∈ Esig ∧ v ∈ V (e)}
∪ {(vf2(e), v):∞|e ∈ Esig ∧ v ∈ V (e)}
where a(e) is a constant.
(Y-W Trans.)

(b) Eio
f is a set of edges representing I/O nets

(Eio
f = {(va, vio(e)):∞|e ∈ Eio ∧ va ∈

V (e) \ {vio(e)}})
(c) EFF

f is a set of edges to prevent from
dividing the circuit between FF’s input
and output
(EFF

f = {(vi, vo):∞, (vo, vi):∞|vi(∈
VFFin) and vo(∈ VFFout) belong to the
same flip-flop })

(d) Et
f is a set of edges that connect I/O and

sink vt (Et
f = {(vf , t):1|vf ∈ VPI ∪ VPO})

(e) Es
f = φ

Note that, in this transformation, Es
f is ∅. The flow-

network for circuit extraction is completed by adding
infnite capacity edges from vs in the partitioning algo-
rithm. Note that the size of mincut depends on how
edges from vs are added.

An edge contained in a minimum s-t cut of Gf cor-
responds to either the finite capacity edge of a local
structure or an edge from I/O to sink vt. If the cir-
cuit corresponding to the source part of a minimum
s-t cut of Gf is extracted as a subcircuit, then the sub-
circuit should have I/O corresponding to each edge in
the minimum s-t cut. When the capacity of each lo-
cal structure is 1, the number of I/Os of subcircuit is
equals to the number of edges in the minimum s-t cut
and the maximum flow of Gf . In this case, by com-
puting maximum flow after adding edges from vs, we
can determin whether a subcircuit that satisfies I/O
constraints can be extracted or not.

An example of Hyper Flow Transformation is shown
in Fig.2.

2.3 Min-Cut Partitioning Algorithm

In this section, we explain the outline of the network-
flow based partitioning algorithm PART[8], on which
our proposing algorithm is based. PART divides a cir-
cuit into subcircuits under the size constraint and the
I/Os constraint. The objective of PART is to minimize
the number of subcircuits. PART iteratively extracts

ts

:I/O vertex :Gate vertex

:Dummy vertex

:cap = a(e)

:cap = infinity

Hyper-Flow Trans.

Flip-Flop

:FF-i/o vertex

G:

Gf:

Gate

I/O

Figure 2: Hyper Flow Transformation

the subcircuits as large as possible, not to violate the
size and the I/O constraints.

Algorithm PART[8]

Input a circuit graph G(V, E)

Output a partition of G ,{V1, V2, · · · , Vm}

1. m ← 1 (m represents the number of subcircuits)

2. If V is feasible then Vm ← V , output
{V1, V2, . . . , Vm} and stop

3. j ← 0. Transform G(V, E) into a flow
graph Gf(Vf , Ef) by Hyper-Flow Transforma-
tion where a(e ∈ Esig) = 1, and G0

f = Gf .

4. Let Gj+1
f be the flow graph obtained from Gj

f by
adding edge (vs, v

′
j+1):∞ where v′j+1 is a vertex

adjacent to an I/O vertex (VPI ∪ VPO) but not
vs in Gj

f .

5. If there is no feasible vertex set whose capacity
is equal to the max-flow value of Gj+1

f , then
goto step 8.

6. j ← j + 1. Let V ′
j be a feasible vertex set

whose size is maximum among legal vertex sets
in terms of Gj

f whose capacity is equal to the
max-flow value of Gj

f .

7. Get V ′′
j by expanding V ′

j as large as possible
by expansion procedure EXPAND (see [8] for
detail).

－ 203 －

8. If j = 0 then output “infeasible” and stop.

9. Let Vm be a feasible vertex set whose size is
maximum among V ′′

1 , V ′′
2 , . . . , V ′′

j .

10. V ← V \ Vm, m ← m + 1 and goto step 2.

In steps 6 and 9, ties are broken by the minu-
mum io(V ′) followed by the maximum primIo(V ′)
where primIo(V) is the number of original I/Os of
the subcircuit that corresponds to V .

We explain the part of the process which extracts a
subcircuit from the remaining circuit V in the follow-
ing.

PART constructs a flow graph G0
f = Gf(Vf , Ef) by

transforming G(V, E). And a number of flow graphs
G1

f(V 1
f , E1

f), G2
f(V 2

f , E2
f), . . . , Gj

f(V j
f , Ej

f)(Ei+1
f ←

Ei
f + {(vs, v

′
i+1):∞}) are constructed where v′i+1 is

a vertex adjacent to an I/O vertex (VPI ∪ VPO) but
not vs in Gi

f , and j is the maximum number of i

such that the max-flow of Gi
f is less than limio . v′1

is selected from vertices with the maximum degree
which are adjacent to an I/O vertex (VPI ∪VPO), and
v′i(i = 2, . . . , j) is a vertex with minimum distance
measured by the lenth of undirected shortest pass
between vs and v′i in Gi−1

f If the max-flow of G1
f is

larger than limio, the algorithm fail a partitioning the
circuit and stop. For G1

f , G2
f , . . . , Gj

f , an candidate
of subcircuit V ′′

1 , V ′′
2 , . . .V ′′

j is obtained respectively,
and an best V ′′

i is applied as an adopted subcircuit
Vm. To obtain V ′′

i which has small number of I/Os,
PART search mincuts of Gi

f and the best subcircuit
V ′

i extracted by an mincut is selected. And V ′
i is

expanded as V ′′
i , as large as possible by expansion

procedure EXPAND[?] based on n-th mincut. Note
that v′1, v′2, . . . , v ′

i are always included in V ′′
i because

the addition of an edge (vs, v
′
i):∞ fix v′

i to source part
of mincuts.

3 Delay-Aware Partitioning Al-
gorithm

The objective of PART is to minimize the number of
the subcircuits only. We propose the improved algo-
rithm of PART to obtain the partitioned circuit which
has shorter clock period without increase of the num-
ber of the subcircuits.

In our algorithm, we define slack which represents
the delay margin and partition the circuit so that the
net with less slack avoids crossing over different sub-
circuits.

Considering the fact that the larger the flow capac-
ity of the net e is, the less likely the min-cut includes
e, we reflect slacks to the flow graph.

3.1 Slack

We define the slack, that is the delay margin, of each
net, as follows.

We define ALAP(v), which represents latest output
time of v without increase of clock period, as

ALAP(v) ={
min

v′∈Vfo(v)
(ALAP(v′) − d(v′) − d(v, v′)) (v /∈ Vout)

T (v ∈ Vout)

where Vout = VPO ∪ VFFin.
If the output of the gate vo(∈ Vfo(e)) is fixed be-

fore the time ALAP(vo) even after partitioning, the
clock period does not change. If the output of the
gate vi(= vfi(e)) is fixed at the time ASAP(vi),
the permissible delay between vi and vo is at most
(ALAP(vo)− d(vo))−ASAP(vi). Considering the de-
lay d(vi, vo) of the internal net e, the slack between vi

and vo is defined as

slackio(vi, vo)

= ALAP(vo) − ASAP(vi) − d(vo) − d(vi, vo).

Taking into account the all vo(∈ Vfo(e)), permissi-
ble additional delay is at most

min
vo∈Vfo(e)

(slackio(vi, vo)).

Therefore, the slack of net e slacksig(e) is defined as
follows.

slacksig(e) = min
vo∈Vfo(e)

(slackio(vi(e), vo))

The above equation is developed as follows.

slacksig(e)

= min
vo∈Vfo(e)

(ALAP(vo) − ASAP(vi(e))

−d(vo) − d(vi(e), vo))

= min
vo∈Vfo(e)

(ALAP(vo) − d(vo) − d(vi(e), vo))

−ASAP(vi(e))

= ALAP(vi(e)) − ASAP(vi(e))

3.2 Delay-Aware Hyper-Flow Trans-
formation

We explain the diffeence between our algorithm and
PART in the following.

We note that the max-flow value of the flow
graph depends on the flow capacity of the edge
(vfi(e), vfo(e)) ∈ Ef . In PART, every capacity of

－ 204 －

(vfi(e), vfo(e)) is 1. In our algorithm, hence nets with
small slack may be cut. the capacity is varied by the
function weight(slack(e)).

To assign the larger capacity to the smaller slack
net, the weight function of the slack x is defined as

weight(x) =
{

α − x + 1 (x < α)
1 (x ≥ α)

where α is a constant.
Yang-Wong∗ Transformation (Y-W∗ Trans.) is de-

fined as modified Yang-Wong Transformation, which
assigns weight(slack(e)) to (vfi(e), vfo(e)) for each
e(∈ Esig) (in PART, (vfi(e), vfo(e)):1). In our algo-
rithm, Y-W Trans. is replaced by Yang-Wong∗ Trans.
in Hyper Flow Transformation The example is shown
in Fig.3

v v

v

1 2

3

v

vf2

f1

cap=
 weight(slack(e))

cap=infinity

Gf
v v

v

e

1 2

3

G

Y-W TRANS.*

in in

Figure 3: Yang-Wong∗ Transformation

According to this modification, the max-flow value
is not equal to the number of I/Os of the subcircuit
extracted by the min-cuts. Therefore, we count up
the number of the I/Os of the subcircuit extract by
the min-cut and evaluate just the subcircuit which
satisfies the number of I/Os constraint.

Our algorithm generates some flow graphs by
adding edges one by one as step 4 of PART. How to se-
lect vertices v′1, v′2, . . . connected with vs by (vs, v

′
i):∞

is described as follows. v′1 ∈ V is a vertex with the
maximum degree which are adjacent to an I/O ver-
tex (VPI ∪ VPO), and v′i ∈ V (i = 2, . . . , j) is a vertex
with minimum distance measured by the lenth of undi-
rected shortest pass between vs and v′i in Gi−1

f If there
are a number of candidates of v′i, ties are broken by
the minimum ALAP(v′

i) − ASAP(v′i).

4 Experimental Results

We have implemented the algorithms and applied to
the ISCAS’85/’89 benchmark circuits shown in Ta-
ble.1. del is the clock period of the circuit imple-
mented in a chip using the PC with Athlon XP 1800+,

DDR-768MB memory. In our experiments, we set con-
straints and constants as follows.

• size constraint limsize = 200

• I/O constraint limio = 40

• delay of gate d(v(∈ Vgate)) = 1

• delay of I/O and FF d(v(∈ V \ Vgate)) = 0

• delay of inner net d(v, v′) = 0

• inter subcircuits delay d(v, v′) = 5

• size of gate and FF is 1

Table 1: Benchmark circuits

name # gate # net # I/O del
c499 202 243 73 21
c880 383 443 86 34
c1355 546 587 73 34
c1908 880 913 58 50
c3540 1669 1719 72 57
c5315 2307 2485 301 59
c6288 2416 2448 64 134
c7552 3512 3718 313 53
s510 217 236 26 14
s1196 547 561 28 34
s5378 2958 2993 84 31
s9234 5825 5844 41 59

We compared our algorithm(Our Algorithm) with
the conventional method (PART). ave. shows the aver-
age of ratios of results of the algorithm for each circuit
compared with PART. The results of the experiments
demonstrate that our algorithm generated the parti-
tioned circuit whose clock period is 80.7% compared
with PART, and whose number of subcircuits is 98.2%
compared with PART.

It is natural to think that the number of subcir-
cuits partitioned by the our algorithm will be larger
than the one of PART, since the our algorithm take
into account the delay of the circuit in addition to the
objective of PART. However, there is not so much dif-
ference between the results of the our algorithm and
PART at the terms of the number of the subcircuits.
The I/O nets tend to be on the min-cuts since the ca-
pacity of the flow edges which correspond to the inner
nets increase and the capacity of the flow edges which
correspond to the I/O nets does not increase. There-
fore, the increase of the number of I/Os of the sink side
remaining circuit can be avoided, and the increase of
the number of the subcircuits can be avoided. In this
reason, it is thought that it was possible to control the
number of the subcircuits.

－ 205 －

Table 2: experimental results
- PART Our Algorithm

name # of device del sec # of device del sec
c499 5 (100%) 36 (100%) 9.3 5 (100.0%) 36 (100.0%) 6.5
c880 6 (100%) 59 (100%) 26 4 (66.7%) 44 (74.6%) 40
c1355 5 (100%) 59 (100%) 155 5 (100.0%) 54 (91.5%) 121
c1908 7 (100%) 82 (100%) 233 6 (85.7%) 64 (78.0%) 161
c3540 15 (100%) 84 (100%) 1026 15 (100.0%) 72 (85.7%) 1124
c5315 22 (100%) 89 (100%) 1606 25 (113.6%) 98 (110.1%) 1995
c6288 13 (100%) 184 (100%) 3981 13 (100.0%) 186 (101.1%) 3811
c7552 28 (100%) 82 (100%) 2468 28 (100.0%) 70 (85.4%) 3500
s510 5 (100%) 43 (100%) 10 5 (100.0%) 31 (72.1%) 14
s1196 11 (100%) 79 (100%) 106 13 (118.1%) 79 (100.0%) 155
s5378 24 (100%) 66 (100%) 3227 22 (91.7%) 58 (87.9%) 2880
s9234 40 (100%) 109 (100%) 11655 41 (102.5%) 90 (82.6%) 13096
ave. 100% 100% 100% 98.2% 80.7% 111%

5 Conclusions

In this paper we proposed the delay-aware circuit par-
titioning algorithm based on the network-flow. Our
algorithm controls the cut of the slack-tight net by
reflecting the slack to the flow capacity of the partial
flow graph corresponding to the net. Our algorithm
generates the partitioned circuit whose number of the
subcircuits is nearly equal to the one generated by
PART, and whose clock period is shorter 11% than
that generated by PART.

An improvement of computation time, an improve-
ment of selection algorithm of vertices which are con-
nected by infinite capacity edges, and to find better
weight function of Yang-Wong∗ Transformation are in-
cluded in our future work.

Acknowledgement

The authors would like to express thanks to Dr. Kengo
R. Azegami for his valuable advice and support.

This work is a part of CAD21 project at Tokyo Institute
of Technology.

References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Net-
work Flows: Theory, Algorithms and Applications”,
Prentice Hall International Inc. 1993

[2] N. S. Woo and Jaeseok Kim, “An Efficient Method
of Partitioning Circuits for Multiple-FPGA Imple-
mentations”, Proceedings of DAC 1993, pp. 202-207

[3] C. J. Alpert and A. B. Kahng, “Recent Directions
in Netlist Partitioning: A survey”, Integration, the
VLSI Journal, No. 19, 1995, pp. 1-81

[4] H. H. Yang and D. F. Wong, “Efficient Network
Flow Based Min-Cut Balanced Partitioning”, IEEE

Transactions on Computer-Aided Design, Vol. 15,
No. 12, December 1996, pp. 1533-1540

[5] H. H. Yang and D. F. Wong, “Circuit Clustering
for Delay Minimization under Area and Pin Con-
straints”, IEEE Transactions on Computer-Aided
Design, Vol. 16, No.9, September 1997, pp. 976-96

[6] H. Liu and D.F. Wong, “Network-Flow-Based Mul-
tiway Partitioning with Area and Pin Constraints”,
IEEE Transactions on Computer-Aided Design,
Vol. 17, No. 1, January 1998, pp. 50-59

[7] K. R. Azegami, A. Takahashi and Y. Kajitani,
“Enumerating The Min-Cuts for Applications to
Graph Extraction under Size Constraints”, Pro-
ceedings of the IEEE ISCAS 1999, pp. VI.174-
VI.177

[8] K. R. Azegami, M. Inagi, A. Takahashi, and Y.
Kajitani, “An Improvement of Network-Flow Based
Multi-Way Circuit Partitioning Algorithm” IEICE
TRANS. FUNDAMENTALS, VOL.E85-A, NO.3,
pp.655–663, MARCH 2002.

－ 206 －

