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Abstract— Conventional pipelining consumed lots of

areas due to intermediate registers need to be inserted

between the stages. While wave-pipelining is a method

of the circuit design which implements pipelining in

logic without the use of intermediate latches or reg-

isters. However, to achieve the highest possible wave-

pipelining frequency, delay balancing is required that

will increase the area of a circuit. In this paper, we

propose a new pipeline synthesis method that reduces

the usage of intermediate registers by making use of the

multi-clock cycle path and the semi-synchronous circuit

technique. A multi-clock cycle path is introduced if an

intermediate register can be removed without an exces-

sive delay balancing. We will show the constraints that

need to be satisfied by a multi-clock cycle path in the

given clock period range. Also we will propose an algo-

rithm to reduce the usage of intermediate registers for

pipelined circuits.

I. Introduction

The sustained progress of VLSI technology leads to an
increasing wire delay, shrinking clock period and growing
chip size. In order to shrink clock period, circuit pipelin-
ing is one of the techniques that has been used. Pipelin-
ing is the method where a circuit is being divided into few
stages and the intermediate registers are inserted between
the stages to store the intermediate data. However, con-
ventional pipelining methods consumed lots of areas due to
intermediate registers need to be inserted between all the
stages. It may also increase the latency due to the setup or
hold time of the intermediate registers itself.

Recently, to overcome the above stated problem, several
researches on the wave-pipelining have been carried out
[6]. Wave pipelining is a method of speeding up the cir-
cuit without the insertion of intermediate registers. The
wave pipeline enjoys several advantages over the conven-
tional pipelining methods. It can achieve high clock period
without partitioning the logic and add the intermediate reg-
isters thereby reducing quantizations overhead associated
with the conventional pipeline as well as the clock buffers
and routing which reduce the layout congestion. However,
wave pipelining does require tighter timing constraints as
there are no intermediate registers to store the intermedi-
ate data. In the wave pipelining, there exists a number of
‘waves’ of the data at a time inside a circuit. Therefore to

avoid the data from collision with each other, delay balanc-
ing is required that will increase the area of a circuit.

In this paper, we discuss a new pipeline synthesis method
which implements the multi-clock cycle path technique to-
gether with the semi-synchronous method that reduces the
usage of intermediate registers compared to the conven-
tional pipelining methods. Normally, in a synchronous cir-
cuit, there are some cases where the multi-clock cycle path
technique will be used on certain path to achieve the target
clock period without the insertion of the intermediate regis-
ters. We discuss the constraints that need to be satisfied in
the semi-synchronous circuit method in order to implement
the multi-clock cycle path technique.

The algorithm that can reduce the usage of intermedi-
ate registers for a 2-stage pipelined circuit while the circuit
works correctly in the given clock period range will be pro-
posed. Also, we will discuss the constraints that need to be
satisfied in order to implement a 2-clock cycle path tech-
nique. Note that in general, a circuit will be designed to
achieve the target clock period range. Our algorithm will
remove all of the intermediate registers at first and then
recover back the intermediate registers to make the circuit
works correctly in the given clock period range. In this
paper, we show by the experiments that with few interme-
diate registers a 2-stage pipelined circuit will work correctly
in the given clock period range.

II. Preliminaries

We consider a circuit with a single clock consisting of reg-
isters and combinatorial circuits between them. The clock
timing s(u) of register u is defined as the difference in clock
arrival time between u and an arbitrary chosen reference
register. The set of clock timings is called a clock schedule.

We assume the framework that a circuit works correctly
with clock period T if the following two types of constraints
are satisfied for every register pair with signal propagation
[2].

No-Zero-Clocking(Setup) Constraint

s(u) − s(v) ≤ T − dmax(u, v)

No-Double-Clocking(Hold) Constraint

s(v) − s(u) ≤ dmin(u, v)
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Fig. 1. Timing chart for a single-clock cycle path.

where dmax(u, v) (dmin(u, v)) is the maximum (minimum)
propagation delay from register u to register v along a com-
binatorial circuit. See Fig. 1. More precisely, dmax(u, v) is
defined as

d
′
max(u, v) + setup(v) + dmax(v)

where d
′
max(u, v) is the maximum propagation delay from u

to v, setup(v) is the setup-time of register v, and dmax(v) is
the maximum delay of register v itself. Similarly, dmin(u, v)
is defined as

d
′
min(u, v) − hold(v) + dmin(v)

where d
′
min(u, v) is the minimum propagation delay from u

to v, hold(v) is the hold-time of register v, and dmin(v) is
the minimum delay of register v itself.

In a conventional zero-skew based synchronous circuit,
the maximum signal propagation delay between registers
gives a lower bound for the clock period. Therefore, the
multi-clock cycle path is often used in a circuit in order
to avoid this kind of lower bound of the clock period. The
constraints for a multi-clock cycle path are defined similarly
as a single-clock cycle path.

No-Zero-Clocking(Setup) Constraint

s(u) − s(v) ≤ aT − dmax(u, v)

No-Double-Clocking(Hold) Constraint

s(v) − s(u) ≤ dmin(u, v) − bT

where a and b are given constant (b < a). Note that for a
single-clock cycle path, a and b are given as 1 and 0, respec-
tively. Note that this formulation enables us to handle the
circuit with multi-clocks that have different clock periods.

In this paper, we assume that the clock timing of each
register is controlled as we design. If b is 0 for each path,
the feasible clock period has no upper bound. That is, if
T is feasible then for any T

′
(T

′ ≥ T ) is feasible. However,
the feasible clock period has an upper bound if b is not 0
for some paths. For the circuit consists of single-clock cy-
cle path only, the delay variation and clock jitter do not
effect too much because there are no upper bound of the
feasible clock period. We can set the target clock period
by considering these effects. We can obtain a circuit tol-
erable to these effects by setting target clock period small

enough. However, if a circuit contains a multi-clock cycle
path, we cannot obtain a circuit tolerable to delay varia-
tion and clock jitter by setting the target clock period small
enough only, because there is an upper bound of the fea-
sible clock period. So, to use the multi-clock cycle path
technique, we need to design a circuit that works correctly
within the clock period range.

These constraints are represented by the constraint
graph. The constraint graph G(V, E) of a circuit is de-
fined as follows: a vertex v ∈ V corresponds to a register;
a directed edge (u, v) ∈ E corresponds to either type of
constraints; edge (u, v) corresponding to the setup (hold)
constraint is called setup-edge (hold-edge), and the weight
w(u, v) of (u, v) is aT − dmax(u, v)(dmin(u, v) − bT ). It is
known that the constraints can be satisfied if and only if
the constraint graph contains no negative weight cycle [4].

Let G be the constraint graph of a circuit and Tmin(G)
be the minimum feasible clock period of the circuit under
the assumption that the clock-timing of each register can
be controlled as we design.

If the clock schedule is given, by checking Hold and Setup
constraints, the upper and lower bound of feasible clock
period of the clock schedule is obtained in O(m) where m
is the number of register pairs with signal propagation.

III. Proposed Algorithm

We propose an algorithm that reduces the usage of inter-
mediate registers while the circuit works correctly with the
given clock period range T S

min and T S
max.

In this paper, we consider the 2-stage pipelined circuit
with I/O pins. The clock timing for I/O pins (vertices in
and out in constraint graph) are fixed to 0. Therefore, the
in and out vertices in the constraint graph can be combined
to one vertex. The input of our algorithm is the constraint
graph of 2-stage pipelined circuit with intermediate regis-
ters that works correctly with the clock period TS

min, and
our target is to get a circuit with smaller area that works
correctly with the given clock period range [TS

min,T S
max]. At

first, our algorithm will remove all the intermediate regis-
ters and intermediate registers will be inserted to the circuit
to satisfy the constraints.

A. Scheduling

When we remove the intermediate register v from the
pipelined circuit as shown in Fig. 2, the circuit contains
a 2-clock cycle path as shown in Fig. 3. Then the total
propagation delay from register u to w will be changed as
follows.

Before removing the intermediate register v

dmax
b (u, w) = d

′
max(u, v) + setup(v) + dmax(v)

+ d
′
max(v, w) + setup(w) + dmax(w)

dmin
b (u, w) = d

′
min(u, v) − hold(v) + dmin(v)

+ d
′
min(v, w) − hold(w) + dmin(w)



After removing the intermediate register v

dmax
a (u, w) = d

′
max(u, w) + setup(w) + dmax(w)

dmin
a (u, w) = d

′
min(u, w) − hold(w) + dmin(w)

When d
′
max(u, w) = d

′
max(u, v) + d

′
max(v, w) and

d
′
min(u, w) = d

′
min(u, v) + d

′
min(v, w), the difference of to-

tal propagation delay between before and after removing
the intermediate register v is as follows.

dmax
b (u, w) − dmax

a (u, w) = setup(v) + dmax(v)
dmin

b (u, w)− dmin
a (u, w) = dmin(v) − hold(v)

Since our problem is to make the circuit works correctly
with the given clock period range [T S

min, T S
max], the con-

straints for a 2-clock cycle path that is obtained by remov-
ing the intermediate register v can be defined as follows.

No-Zero-Clocking (Setup) Constraint

s(u) − s(w) ≤ 2TS
min − dmax(u, w)

No-Double-Clocking (Hold) Constraint

s(w) − s(u) ≤ (dmin(u, w) − δ) − TS
min

where δ is the difference between the given maximum and
minimum clock period (δ = T S

max − TS
min). See Fig. 4.

The constraints for a single-clock cycle path can be de-
fined as follows.

No-Zero-Clocking (Setup) Constraint

s(u) − s(w) ≤ TS
min − dmax(u, w)

No-Double-Clocking (Hold) Constraint

s(w) − s(u) ≤ dmin(u, w)

If the above stated constraints are satisfied for a circuit,
the circuit will work correctly within the clock period range
[T S

min, T S
min + δ]

B. Necessary condition for 2-clock cycle path

Theorem 1 A circuit does not work correctly with the
clock period range [T S

min, T
S
max], unless the following con-

straints are satisfied.

TS
max ≤ dmin(in, u) + dmin(u, w) + dmin(w, out) (1)

TS
min ≥ dmax(u, w)− dmin(u, w) + δ (2)

where (in, u), (u, w), (w, out) corresponds to the path from
in to register u, the 2-clock cycle path from register u to
register w, the path from register w to out, respectively.

Proof : Let consider the constraint graph shown in Fig. 3.
Note that vertices in and out can be combined to one vertex
because the clock timing for input and output pins are fixed
to 0. Therefore path (in, u, w, out) will be a cycle. So the
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Fig. 2. The circuit before removing the intermediate register v :
single-clock cycle-path
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Fig. 3. The circuit after removing the intermediate register v :
2-clock cycle-path

total weight of the cycle (in, u, w, out) must be larger than
or equal to 0 unless the circuit will not work correctly with
clock period TS

max. See Fig. 3.
0 ≤ dmin(in, u) + dmin(u, w) − T S

max + dmin(w, out).
Let consider the constraint graph shown in Fig. 5. The

total weight of cycle (u, w, u) must be larger than or equal
to 0 unless the circuit will not work correctly with clock
period TS

min. See Fig. 5.
0 ≤ 2T S

min − dmax(u, w) + dmin(u, w) − δ − TS
min.

C. Algorithm

Inputs : Constraint graph Gin of a 2-stage pipelined cir-
cuit with intermediate registers, the target minimum
(maximum) Clock Period T S

min (TS
max)

Outputs : Constraint graph Gout of the circuit after re-
moving the intermediate registers

Step 0 : Remove all of the intermediate registers. Let G0

be the constraint graph of the obtained circuit.

Step 1 : Insert the intermediate registers to the 2-clock
cycle paths that violate the constraints shown in in-
equalities (1) and (2) and update the constraint graph.
If there is no more 2-clock cycle path, output the con-
straint graph and terminate. Otherwise, let G1 be the
constraint graph of the obtained circuit and go to the
next step.
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Step 2 : Let Tcheck(G1) = max( max
(u,w)∈E1(G1)

dmax(u, w),

max
(u,w)∈E2(G1)

dmax(u, w)
2

), where dmax(u, w) is the max-

imum delay of the register pair with signal propaga-
tion, E1(G1) is the set of single-clock cycle path and
E2(G1) is the set of 2-clock cycle path. Let Wmin(G1)
be the total minimum delay from in to out that con-
tains the 2-clock cycle path. If the circuit does not
work correctly with the clock period Tcheck(G1), in-
sert the intermediate register to the 2-clock cycle path
which corresponds to an edge contained in the path
that determines Wmin(G1) and update the constraint
graph. Repeat until the obtained circuit works cor-
rectly with the clock period Tcheck(G1). If there is no
more 2-clock cycle path, output the constraint graph
and terminate. Otherwise, let G2 be the constraint
graph of the obtained circuit and go to the next step.

Step 3 : Compute the minimum clock period Tmin(G2).
If Tmin(G2) > TS

min, insert the intermediate register to
the 2-clock cycle path which corresponds to a hold-edge
contained in the critical cycle of the constraint graph
G2

t , where t = Tmin(G2) and update the constraint
graph. Repeat until Tmin(G2) ≤ TS

min. If there is no
more 2-clock cycle path which corresponds to a hold-
edge contained in the critical cycle of the constraint
graph G2

t , output the constraint graph after inserted
all of the intermediate registers and terminate.
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Fig. 6. Pipelined circuit with intermediate registers and the
corresponding constraint graph G in , (Tmin(Gin) = 6)
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registers and the corresponding constraint graph G 0,
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D. Example

To explain the behavior of the algorithm, we apply it
to the pipelined circuit shown in Fig. 6. We fix the clock
timings of all input and output pins (in and out) to 0,
assume Setup and Hold Time for registers are 0 and the
maximum and minimum delay of an intermediate register
are 2 and 1, respectively. Then Tmin(Gin) = 6. Let TS

min

and T S
max be 7 and 9, respectively. The circuit after re-

moving the intermediate registers v0, v1, v2 is shown in
Fig. 7. Since dmin(in, u1) + dmin(u1, w1) + dmin(w1, out) =
2 + 3 + 2 = 7 < TS

max = 9, the intermediate register v1

is inserted. The circuit after inserting the intermediate
register v1 is shown in Fig. 8. When the algorithm pro-
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Fig. 8. Pipelined circuit after inserting the intermediate
register v1, changed the 2-clock cycle path minimum delay
dmin to dmin − δ and the corresponding constraint graph G 2,
(Tmin(G2) = 9)
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register v2 and the corresponding constraint graph G out,
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TABLE I

The changes of the clock period range

Number Of Clock Period Range

Intermediate Registers [T min, Tmax]

3(v0, v1, v2) [6, Infinite]

0 [6, 7]

1(v1) [9, 9]

2(v1, v2) [6, 9]

ceeds to step 3, we get Tmin(G2) = 9 from the critical cy-
cle (w2, v1, u2, w2) which is larger than T S

min = 7. There
is 2-clock cycle path (path (u2, w2)) which corresponds to
a hold-edge contained in the critical cycle (w2, v1, u2, w2)
of the constraint graph G2

9. Therefore, the intermediate
register v2 is inserted. The circuit after inserting the inter-
mediate register v2 is shown in Fig. 9. Since Tmin(G2) = 6
(critical cycle: (out, w2, v2, u2, in)) < TS

min = 7, so no more
intermediate register need to be inserted.

The changes of the clock period range and the number
of the intermediate registers for above example is shown in
Table I.

If we implement the complete-synchronous circuit
method (The clock timing for all registers are fixed to 0)
together with the 2-clock cycle path technique to the above
example, when we remove the intermediate register v0 (path
(u0, w0) will become a 2-clock cycle path) the clock period
range will be [10, 15]. So we cannot get the circuit that
works correctly within our target clock period range which
is [7, 9]. However, by implementing the semi-synchronous
circuit method together with the 2-clock cycle path tech-
nique we will get the smaller circuit (circuit without the
intermediate register v0) that works correctly within our
target clock period range.

IV. Experiments

The proposed algorithm was applied to 4-bit and 8-bit
2-stage pipelined adder circuits. The delay statistics of the
circuits are shown in Table II. Total number of the regis-
ters for 4-bit and 8-bit circuit are 21 and 41, respectively.
We used ROHM 0.35 process library for these experiments.

TABLE II

Delay of pipelined adder circuit

Bit 1st Stage[ns] 2nd Stage[ns]

min max min max

4 0.575 1.259 0.392 1.965

8 0.584 1.283 0.614 2.890

Results are presented in tables III, IV and V. In tables III,
IV and V, “[T S

min, T S
max]” and “ [Tmin(Gout), Tmax(Gout)] ”

are the target and output clock period range, respectively.
“#FF” is the number of registers. “#Int. FF” is the num-
ber of intermediate registers. “Area” is the sum of the gates
and registers area.

The first and second experiments on 4-bit and 8-
bit adders are to see the effect of the minimum
clock period to the number of the intermediate regis-
ters. The target minimum clock period T S

min was set
to 110%, 120%, 130%,140%, 150%,160%,170%, 180% of the
minimum clock period Tmin(Gin) of the original circuit.
And the clock period range is 10% of the minimum clock
period of the original circuit. From the results, it is shown
that in most of the cases, by increasing the target mini-
mum clock period we can reduce more on the usage of the
intermediate registers.

The third experiment on 8-bit adder is to see
the effect of the clock period range to the num-
ber of the intermediate registers. The target mini-
mum clock period T S

min was set to 150% of the min-
imum clock period Tmin(Gin) of the original circuit.
And the clock period range are 0.00ns, 0.050ns, 0.100ns,
0.150ns, 0.200ns, 0.250ns, 0.300ns, 0.350ns. From the re-
sults, it is shown that in most of the cases, the increasing
of the clock period range is proportional to the number of
the intermediate registers.

V. Conclusions and Future Works

We show that the usage of intermediate registers on
pipelined circuit can be reduced by implementing the
2-clock cycle path technique together with the semi-
synchronous circuit method.

Our proposed algorithm only inserts the intermediate
register without considering the delay padding in order to
make the circuit works correctly within the target clock
period range. We believe that by considering the delay
padding together with the intermediate registers insertion,
the circuit will be more smaller.

As future works, the effect on the circuit area by the
combination of the delay padding together with the inter-
mediate registers insertion should be investigated.
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TABLE III

The effect of the minimum clock period to the number of

intermediate registers (4-bit adder).

T S
min

[TS
min

, T S
max] [Tmin(Gout), Tmax(Gout)] #FF #Int. Area

(%) (ns) (ns) FF (%)

100 [1.40, Inf.] [1.40, Inf.] 21 8 100

110 [1.54, 1.68] [1.54, 1.68] 13 0 75

120 [1.68, 1.82] [1.62, 1.82] 13 0 75

130 [1.82, 1.96] [1.82, 1.96] 13 0 75

140 [1.96, 2.10] [1.91, 2.10] 13 0 75

150 [2.10, 2.24] [1.98, 2.24] 13 0 75

160 [2.24, 2.38] [2.05, 2.38] 13 0 75

170 [2.38, 2.52] [2.38, 2.52] 14 1 78

180 [2.52, 2.66] [2.52, 2.66] 14 1 78

TABLE IV

The effect of the minimum clock period to the number of

intermediate registers (8-bit adder)

T S
min [TS

min , T S
max] [Tmin(Gout), Tmax(Gout)] #FF #Int. Area

(%) (ns) (ns) FF (%)

100 [1.71, Inf.] [1.71, Inf.] 41 16 100

110 [1.88, 2.05] [1.71, Inf.] 41 16 100

120 [2.05, 2.22] [1.71, Inf] 41 16 100

130 [2.22, 2.39] [1.71, Inf] 41 16 100
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min , T S
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(ns) (ns) (ns) FF (%)

[1.71, Inf.] [1.71, Inf.] 41 16 100
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0.25 [2.56, 2.81] [2.56, 2.81] 38 13 96

0.30 [2.56, 2.86] [2.56, 2.86] 40 15 99

0.35 [2.56, 2.91] [2.56, 2.91] 38 13 96

[2] J.P. Fishburn. Clock skew optimization. IEEE Trans. on Com-
puters, 39:945–951, 1990.

[3] A. Takahashi, K. Inoue, and Y. Kajitani. Clock-tree routing re-
alizing a clock-schedule for semi-synchronous circuits. In Proc.
1997 ICCAD, pages 260–265, 1997.

[4] A. Takahashi and Y. Kajitani. Performance and reliability driven
clock scheduling of sequential logic circuits. In Proc. ASP-DAC
’97, pages 37–42, 1997.

[5] A. Takahashi, W. Takahashi, and Y. Kajitani. Clock-routing
driven layout methodology for semi-synchronous circuit design.
In Proc. TAU ’97, pages 63–66, 1997.

[6] Woo Jin Kim and Yong-Bin Kim Clocking for correct function-
ality on wave pipelined circuits In SOC Conference, 2003. Pro-
ceedings. IEEE International , pages 161 - 164, Sept. 2003 .


