
Fast Monotonic Via Assignment Excluding Mold Gates

for 2-Layer Ball Grid Array Packages

Yoichi TOMIOKA† Atsushi TAKAHASHI†

† Department of Communications and Integrated Systems

Tokyo Institute of Technology

2–12–1–S3-58 Ookayama, Meguro–ku, Tokyo 152-8552, Japan

{yoichi,atsushi}@lab.ss.titech.ac.jp

Abstract— Ball Grid Array packages in which I/O

pins are arranged in a grid array pattern realize a num-

ber of connections between chips and a printed circuit

board, but it takes much time in manual routing. We

propose a fast routing method for 2-layer Ball Grid Ar-

ray packages to support designers. Our method obtains

a via assignment which distributes wires evenly on top

layer and has high completion ratio of nets by improving

via assignment iteratively.

I. Introduction

In current VLSI circuits, there can be hundreds of re-
quired I/O pins. Instead of Dual In-line Package (DIP) or
Quad Flat Package (QFP), in which the number of avail-
able I/O pins is small, Ball Grid Array (BGA) packages
are used to realize the huge number of connections between
VLSI chips and printed circuit boards (PCBs).

Since the structure of a basic BGA package is symmetri-
cal, symmetrical radial wiring can be applied if a netlist is
not specified. In many instances, however, a netlist is given
and this may change frequently though positions of most
pads are usually fixed in advance because package design
is processed concurrently with chip design and PCB design
or follows them.

The first approach for BGA package routing was pro-
posed in [1] and was improved in [2]. In these approaches,
it is assumed that there is a single routing layer, and that
a netlist is not given. These approaches generate a netlist
and a global route for each net. Each net connects a finger
and a ball. The objective is to balance the congestion over
the routing area and shorten the wire length of each net.
Since a netlist is usually given in package routing design,
these approaches are primarily used for package architec-
ture design or flip-chip bonding design. For a given netlist
in two-layer BGA model, as shown in Figure 1, global rout-
ing on layer 1 may be possible by using these algorithms
if a candidate of via positions is considered as a ball. The
feasibility of the global routes on layer 2, however, is not
guaranteed.

Algorithms for multi-layer Pin Grid Array (PGA) and
BGA routing have been proposed in [3] and [4], respec-
tively. These algorithms first assign each net to a layer and
then generate routes in each layer. However, neither the
feasibility of the routes from the finger of each net to the

assigned layer nor the routes from the assigned layer to the
ball of the net are guaranteed. These routes require vias
that are large compared to the wire width, and these algo-
rithms omit the via assignment planning, which is the most
difficult part of package routing.

A via assignment and global routing method for single-
chip two-layer BGA packages that considers total wire
length and wire congestion have been proposed as the first
stage of package substrate routing in [5], and this method
has been improved in [6]. In these papers, the concepts
of monotonic global routing and monotonic via assignment
focusing mainly on layer 1 are introduced. In the method,
a via assignment is iteratively improved to minimize the
maximum wire congestion on layer 1 while the total wire
length on layer 2 is kept to be small enough.

Though the methods in [5] and [6] achieves small total
wire length and congestion, several enhancements are re-
quired in order to use the method in actual package routing
design. In the method, since the via of a net is placed near
the ball of the net, the wire of each net on layer 2 is short
and the routing on layer 2 seems not to be difficult. How-
ever, there is no guarantee that 100% routing on layer 2 is
possible. Moreover, in package substrate, various kinds of
obstacles exist. For example, mold gates from which resin
is poured into the package are placed on layer 1. In the
region at which a mold gate placed, routing on layer 1 is
not allowed but routing on layer 2 is allowed. Mold gates
make it difficult to generate 100% routing since the via of
a net may be placed away from its ball if the ball is under
a mold gate. Even if the evaluation of a via assignment
by cost function is better, it can not be adopted if 100%
routing is impossible.

In this paper, we propose a fast via assignment method
which is an enhancement of the method proposed in [6]
and which takes the existence of mold gates into account.
In our proposed method, the maximum wire congestion on
layer 1 and the wire length of a net on layer 1 and layer
2 are minimized. Though our via assignment method is
based on the via assignment modification proposed in [6],
the computational complexity to obtain the maximum gain
is improved from O(N2) to O(N), where N is the number
of grid nodes. Though a via assignment obtained by fast
via assignment may not realize all routes on layer 2, it is
expected that the high completion ratio of nets is achieved
since the total wire length on layer 2 is kept to be small

chip

via

solder ball

bonding fingerbonding wire

plating lead

layer 1

layer 2

to ring

mold gate

chip

solder ball

bonding finger

bonding wire

plating lead

layer 1

layer 2

Fig. 1. A model of 2-layer BGA package.

enough. In order to confirm the routability of layer 2, a
routing graph which corresponds to routing region on layer
2 is introduced, and routing on layer 2 is realized on it.

II. Preliminary

A. Problem definition

In this paper, we consider a basic model of BGA pack-
age as shown in Figure 1. Our BGA package model has two
routing layers and single chip which is smaller than package
size. A bonding finger, which we will refer to as a finger, is
connected to the chip by a bonding wire. Bonding fingers
are placed on the perimeter of a rectangle enclosing the chip
on layer 1. A solder ball, which we will refer to as a ball,
is an I/O pin of the package, and is connected to the PCB.
Solder balls are placed in a grid array pattern on layer 2.
There are connection requirements between bounding fin-
gers and solder balls. The connection requirement is called
a net, and is realized by wires on each layer and vias which
connect wires on different layer. The number of vias to be
placed in the area surrounded by four adjacent balls is at
most 1. Mold gates are in some corners of top layer to pour
resin into the package. In the region at which a mold gate
placed, routing on layer 1 is not allowed but routing on
layer 2 is allowed. Also, a via is not allowed in the region
at which a mold gate placed.

Ring structure which is used for electric plating sur-
rounds the package. Each net should be connected to the
ring in order to enable electric plating to protect its wires.
The extra connection to the ring of a net is called a plating
lead. The ring is cut when the package is used. A plating
lead is redundant for operation, but is normally used to
reduce the fabrication cost and to improve the reliability.

The routing area of a package is usually divided into sec-
tors. Our approach is applied to each sector. In the follow-
ing, we focus on the bottom sector as shown in Figure 2.

In this paper, we assume that a net consists of a finger
and a ball. Nets are labeled according to the order of fingers
on the perimeter from the left to the right as n1, n2, n3,

Since the radius of a ball is large compared to the interval
of the balls, the number of possible routes between adjacent
balls on layer 2 is at most one. Therefore, routes on layer 2
should be short and most of plating leads should be routed
on layer 1. For this reason, we restrict the route of each net
so that it has only one via, the wire on layer 1 connects the

n1 n7 n27

v7

b7

chip

via
solder ball mold gate

dummy via

bonding finger

x

y

Fig. 2. Bottom sector.

finger of the net and the ring through the via of the net,
and the wire on layer 2 connects the ball and the via of the
net as in [5] and [6].

The set of candidate locations of vias which include the
locations within a mold gate is represented by the via grid
array N. The interval of via grid array N is the same as that
of the balls, and is unit length as shown in Figure 2. An
element in N is called a grid node. We assume the number
of possible routes on layer 1 between two vias placed in
adjacent grid nodes under a design rule is at most h where
h is the number of rows of balls.

The ball and the via of net ni are denoted by bi and
vi, respectively. The positions of bi and vi are denoted by
(xb

i , y
b
i) and (xv

i , yv
i), respectively.

Let V be the set of vias of the nets. A via assignment to
N is represented by bijection Φ : V ∪ E → N, where E is
the set of dummy vias.

The routing problem for a two-layer BGA package is de-
fined as follows:

A routing problem for 2-layer BGA

Input: Fingers, balls, and netlist (Connection Re-
quirements between fingers and balls)

Output: A via assignment Φ, corresponding routing
on layer 1, and routing on layer 2

Objective: Minimize total wire length and maxi-
mum wire congestion

Constraint: All nets are realized, and vias are
placed out of mold gates.

B. Monotonic via assignment

If the route of each net on layer 1 from its finger to the
outer ring intersects every horizontal grid line only once,
then the route is said to be monotonic. Otherwise, it is said
to be non-monotonic. It is clear that a monotonic routing
is possible for via assignment Φ if and only if xv

i < xv
j is

satisfied for any pair of nets ni and nj (i < j) such that
yv

i = yv
j . A via assignment is said to be monotonic if a

monotonic routing of layer 1 is possible without considering
the wire congestion [5, 6].

Given a monotonic via assignment, monotonic routing on
layer 1 is uniquely determined. The via assignment shown
in Figure 3 is monotonic, and its routing is unique. For ex-

v1

v2

v3 v4

v5 v6

v7

v8 v9

v10

v11

n1 n2 n11

vertical grid line

horizontal grid line

Fig. 3. A monotonic routing corresponding to a monotonic via
assignment.

ample, three vias v5, v6 and v10 are assigned on the middle
row in Figure 3. The route of nets n1, n2, n3, and n4 in
monotonic routing need to pass to the left of v5 as shown
in Figure 3.

C. Evaluation of a via assignment

The wire length and wire congestion are targets in the
optimization of a via assignment as in [6]. In this section,
indices of a via assignment which are used in the evaluation
of the via assignment is explained briefly.

The number of wires on layer 1 between v and the via
above v is denoted by cuta(v). If no via exists above v,
cuta(v) is zero. Details are explained in [6]. The Manhattan
distance between via v and the ball of the net is denoted
by d(v).

The wire congestion of layer 1 between v and the via to
the left of v is denoted by densityl(v). That is, densityl(v)
is the number of wires of layer 1 between them over the
distance between them. If no via exists to the left of v

and v is in the routing region, then densityl(v) is the wire
congestion of layer 1 between v and the left boundary of
routing region. If no via exists to the left of v and v is
within the mold gates, then densityl(v) is the number of
wires of layer 1 which pass to the left of v over the distance
between v and the left boundary of the sector. Similarly,
densityr(v) is defined.

The balance of wire congestion of v is denoted by F (v).
That is, F (v) = |densityl(v) − densityr(v)|.

The illegality of via v is denoted by obs(v). That is, if
v is on a mold gate, obs(v) = 1. Otherwise, obs(v) = 0.
obs(v) is used to move vias out of a mold gate.

D. Modifications

There are many ways to modify a via assignment. In [6],
three simple modifications are proposed which are listed
below.

(EXC) Two adjacent vias on a vertical grid line are ex-
changed

(ROT) Three vias on a unit square on the via grid array
are rotated

EXC ROT MSEQ

i

i

ii

i i

j

j

j

j

j j

k

k

k

k

l

l

m

m

Fig. 4. Examples of three modifications.

(MSEQ) Vias are moved to their adjacent grid nodes on
a via grid array one by one until reaching a grid node
without a via in which the direction of every horizontal
movement of vias is either left or right and that of every
vertical movement is either above or below.

Examples of above three modifications is shown in Fig-
ure 4.

III. Outline of our method

Fast Monotonic Via Assignment (FMVA) : Firstly,
an initial monotonic via assignment is generated by the
method proposed in [5]. Then, the initial via assignment
is iteratively improved under the monotonic condition to
minimize the maximum wire congestion on layer 1 while
the total wire length on layer 2 is kept to be small enough.

FMVA is based on the method proposed in [6]. Three
types of modification EXC, ROT, and MSEQ are used. In
each iteration, a modification with the maximum gain on
EXCs, ROTs, and MSEQs is applied to the current via as-
signment to improve the total wire length and the wire con-
gestion. Though the initial via assignment has vias placed
on a obstacle, all vias are moved to routing region in this
iterative modification. In [6], it takes O(|N|2) time to find
an MSEQ with the maximum gain. However, we will show
that it can be obtained in O(|N|). Therefore, each iteration
takes only O(|N|) time.

After a via assignment is obtained by FMVA routing on
layer 2 is realized. The routing graph corresponding to a
routing problem on layer 2 is introduced, and routes are
generated on it.

IV. Fast monotonic via assignment method

A. Cost of a via assignment

The routing cost for monotonic via assignment used in [6]
is extended to move vias out of mold gate since the initial
via assignment may have vias on a mold gate.

The routing cost for monotonic via assignment Φ, which
is denoted by COST1(Φ).

cuta(v), d(v), F (v), and obs(v) are the number of wires
on layer 1 between via v and the via above v, the Manhattan
distance between via v and the ball of the net, the balance
of wire congestion, and the illegality of via, respectively.
They are included in the routing cost, and it is defined as
follows:

COST1(Φ) =
∑

v∈V

(α1cuta(v) + β1d(v) + γ1F (v) + δ1obs(v))

where α1, β1, γ1, and δ1 are coefficients. Note that δ1 is set
to much lager than the others in order to obtain a feasible
via assignment.

B. The maximum gain computation

In our method, a modification with the maximum gain
under the monotonic condition is selected and applied to
the current via assignment. The number of patterns on
EXCs and ROTs is O(|N|), which is small enough to enu-
merate all the patterns, while the number of patterns on
MSEQs is exponential in the terms of the number of grid
nodes. In order to find a MSEQ with the maximum gain
in polynomial time, the cost graphs are used.

A cost graph is a directed acyclic graph (DAG), and has
some sources and sinks. All sources in the graph corre-
spond to the start vias of MSEQs, and all sinks in the graph
correspond to the end dummy vias of MSEQs. Every di-
rected path from source to sink corresponds to a MSEQ,
and the length of the path corresponds to the gain on the
MSEQ. The type of an MSEQ is either above-left, above-
right, below-left, or below-right since the directions are re-
stricted. An MSEQ with the maximum gain is obtained by
generating cost graphs for each type and searching a longest
path on the graphs.

In [6], the cost graph for every MSEQ beginning with a
via is constructed and a longest path in each cost graph
is obtained. A longest path of DAG can be obtained in
O(n + m), where n and m are the numbers of vertices and
edges, respectively. Since the numbers of vertices and edges
in a cost graph for each via are O(|N|), a longest path is
obtained in O(|N|) for each cost graph. The maximum gain
on MSEQs can be obtained in O(|N|2) since the number of
cost graphs is O(|N|).

In the following, we show that the cost graphs begin-
ning with different vias can be combined. Since just four
cost graphs are constructed where the numbers of vertices
and edges are O(|N|), a MSEQ with maximum gain can be
obtained in O(|N|).

An MSEQ M is represented by a sequence of vias, where
the last via is dummy.

Let g(M) be the gain of an MSEQ M that is defined
by COST (Φ)−COST (Φ′), where Φ′ is the via assignment
obtained from Φ by applying M . For any MSEQ M , g(M)
can be represented as the sum of local gains gM (v), where
v is a via contained in M . gM (v) can be calculated if the
subsequence of M which consists of four vias around v is
known, as described in [5]. Namely, even if two MSEQs M1

and M2 begin with different vias, gM1
(v) and gM2

(v) are
the same if the subsequences of M1 and M2 around v are
the same.

ConstructCostGraph(A via assignment Φ)

X ← V ∪ E

C ← the set of vias

s.t. no via in X exists in above-right of them

while C �= ∅ do

select v from C

Let vn be the via above or to the right of v

Let vp be the via lower or to the left of v

Let vpp be the via lower or to the left of vp

if v is dummy then

generate feasible vertices (∅, vp, v) and (vpp, vp, v)

else

if (∅, v, vn) exists then

generate (∅, ∅, v)

generate an edge from (∅, ∅, v) to (∅, v, vn)

if (vp, v, vn) exists then

generate feasible vertices (∅, vp, v) and (vpp, vp, v)

generate edges from these vertices to (vp, v, vn)

X ← X\{v}

C ← the set of vias

s.t. no via in X exists in above-right of them

done

Fig. 5. Algorithm of cost graph construction for above-right
direction.

B1

B2

L1L2

S

A1

R1v

vn

vp

vpp

Fig. 6. Vias used to calculate gM (v).

Each vertex of a cost graph is labeled by the sequence of
three vias. In a cost graph, a subsequence (vpp, vp, v, vn) of
M corresponds to vertex (vpp, vp, v), vertex (vp, v, vn), and
the edge between them with weight gM (v), where vn is the
next via of v in M , vp is the previous via of v in M , and vpp

is the previous via of vp in M . Note that only vn is allowed
to be dummy.

The algorithm of the above-right type cost graph con-
struction is shown in Figure 5. In a cost graph, the num-
ber of vertices in which v is the last element of label is
at most seven. Note that a vertex is not generated if a
via assignment becomes non-monotonic when the modifi-
cation corresponding to the vertex is applied. The number
of edges incident from a vertex is at most two. There-
fore, the numbers of vertices and edges of a cost graph are
O(|N|). For example, in the via assignment shown in Fig-
ure 6, labels in which v is the last element are (L2, L1, v),
(S, L1, v), (S, B1, v), (B2, B1, v), (∅, L1, v), (∅, B1, v), and
(∅, ∅, v). The edges incident from (L2, L1, v) are (L1, v, A1)
and (L1, v, R1). Therefore, a modification with the maxi-
mum gain on MSEQs can be obtained in O(|N|).

ball vertex

via vertex
extra vertex

(a) Without a via (b) With a via

Fig. 7. Routing subgraphs on layer 2.

TABLE I
The initial cost.

#net C D F OBS. C+D+F

data1 316 255 316 398.72 21 969.72
data2 192 447 192 706.00 16 1345.00
data3 160 370 168 503.55 20 1041.55
data4 160 353 164 471.42 16 988.42
data5 160 276 160 457.07 14 893.07

V. Routing on layer 2

The routing graph representing routing resource on layer
2 is constructed. The structure of it is changed depending
on a via assignment. The routing graph has ball vertices,
via vertices, and extra vertices. A ball vertex and a via
vertex correspond to a ball and a via, respectively. The
number of routes intersecting between two adjacent balls
is at most one since ball radius is so big. A subgraph of
a routing graph in Figure 7(a) corresponds to a grid in
which a ball exists in each corner and to which a via is
not assigned. A subgraph of a routing graph in Figure 7(b)
corresponds to a grid to which a via is assigned.

A global routing on layer 2 is obtained by using a rip-
up and reroute technique on the routing graph. A shortest
path of each net is sequentially generated on the routing
graph regarding the routes of the other nets as obstacles.
If the route of a net can not be found, then a shortest path
is generated in the graph without other routes, and the
routes of the other nets which intersect the found shortest
path are ripped up. Whenever a route is ripped up, the
weight of each vertex on the ripped up route and on the
found shortest path is increased to avoid iterations such as
the routes of two nets are alternately generated and ripped
up.

VI. Experiments and Results

We implemented the proposed method in the C++ lan-
guage and applied it to several test cases having mold gates
as shown in Figure 2. The number of rows of balls is 4 in
all data. The program ran on a personal computer with a
3.4GHz CPU and 1 GB of memory.

In our experiment, the number of used edges on routing
graph is used as the total wire length of routing on layer 2.
α1, β1, and γ1 are set to 1. δ1 is set to much larger than
the others.

In the tables, C, D, F, and OBS. are
∑

cuta(v),
∑

d(v),∑
F (v), and

∑
obs(v), respectively, and C+D+F is the

sum of them.

Let MAX be the allowable congestion of layer 1 to satisfy
the design rule. MAX is depending on h. If densityl(vi) ≤
MAX , then the violation between vi and the via to the left
of vi is 0. Otherwise, the violation is densityl(vi)−MAX .
Let ∆ be the sum of the violations for a whole via grid. U
is the number of unconnected nets for routing on layer 2.

In order to confirm the speed-up of gain computation,
the gain computation proposed by [6] is also implemented,
and is denoted by OLD in TABLE II.

The initial cost and the result of each data are shown in
Table I and II, respectively. All data is divided into four
sectors, and each method is applied to them.

The final solution for most inputs is improved drastically
as shown in Table II. Although the method proposed in [6]
needs 45 second for data1, our proposed method obtains
the identical output within 3 second due to improvement
of the computational complexity of each iteration.

The initial routes for data4 is shown in Figure 8, and the
final solution is shown in Figure 9. Unconnected nets are
connected by straight line in Figure 9. Mold gates are not
drawn in these figures.

Though our method does not realize all net, the number
of unconnected nets is small. Therefore, it is expected that
all nets can be realized if small modification is applied to
the obtained via assignment in the post-processing. But,
this is in our future works.

In addition, though most wires are distributed evenly,
there exist places with high wire congestion near mold
gates. This is caused by that moving vias out of mold
gates has priority over improving or maintaining the wire
congestion and the distance between a via and a ball in the
first phase. These bad effects will be relaxed if the initial
via assignment in which vias are placed out of a mold gate
is created with the routability analysis, and the wire con-
gestion on layer 1 can be improved if parts of plating leads
is realized on layer 2. But, these are in our future works.

VII. Conclusion

We proposed a monotonic via assignment method which
is an enhancement of the method based on [6] and which
takes the existence of mold gates into account. We showed
that a modification with the maximum gain is obtained in
O(|N|), though it takes O(|N|2) times in [6]. Moreover, we
gave a routing graph for routing on layer 2, and routing
design on both layers is generated.

In our experiments, our method obtains a via assignment
which distributes wires evenly faster than the method pro-
posed in [6], and most of nets are realized for the assign-
ment. Our proposed method explores monotonic via as-
signments effectively.

In our future work, we will propose the method to create
the initial via assignment in which vias are placed out of a
mold gate with the routability analysis. Moreover, we will
consider how to apply modifications to improve routability.

TABLE II
The result of the first modification

Final Solution Fast Monotonic Via Assignment
COST Violation #Modification Exe. time [sec]

C D F OBS. C+D+F (imp.) ∆ U EXC ROT MSEQ ALL OLD FMVA

data1 118 412 233.98 0 763.98 (21.2%) 2.80 11 11 0 48 59 44.96 2.58
data2 147 284 349.67 0 780.67 (41.9%) 47.6 3 20 5 32 57 8.37 0.86
data3 81 255 165.52 0 501.52 (51.8%) 7.28 5 16 5 57 78 10.58 1.29
data4 63 241 171.40 0 475.40 (51.9%) 11.5 3 21 2 45 68 9.57 1.09
data5 68 216 153.45 0 437.45 (51.0%) 7.14 0 12 2 41 55 8.33 0.85

c2

d3

b4

d4

a6a8

c6 c5

a7

d5

b5

d6

a9

b8 b7

d9

c7

a11

c8c9

a10

d8

a13

b10

a12

c11

b11

d11

c10c12

b13

a14 a0a1

b2

a3

b1b3

a4

c3

101112131420 1622 1723 18192430 2531 2632 2834 29354041 3642 3743 38444647 01245678

10

11

12

13

14

20

16

17

22

23

18

24

19

30

25

31

26

32

28

29

34

40

35

36

41

42

37

38

43

44

46

47

0

1

2

4

5

6

7

8

10

11

12

13

14

20

16

17

22

23

18

24

19

30

25

31

26

32

28

29

34

40

35

41

36

42

37

38

43

44

46

47

0

1

2

4

5

6

7

8

10 11 12 13 14 2016 2217 2318 2419 3025 26 31 3228 3429 4035 4136 37 42 4338 44 46 470 1 2 4 5 6 7 8

b4 b5

c3

b7

a4 a6a5

c6c5

d5

b6

d8d6

a9a7

d7

a10

c8c7

a11a8

c10c9

d11d9 d10

c11 c12

b11 b12

a14

b13

a0

b1

a1

b2

a2 a3

d4

c2

a3

d5

c3

c4a4

a6

c5

c6

a8 d8

b6

a9

a5

c8

b7

d6

c7

c9

a10

b8

a11

b10

b9 d9

c11

c12a12

b11

a14

d11

a13 b13

a0

d3

a1

b2

b3

d4

a2 c2

b4

a5

c3

b5

b6d6

d3

c6

b7

d5 c5

d8

a6

a8

a7

d10

d7

c9

c8

d9 a9

b11

b9

c11

b10

c12

a10c10

b12 a12

a13

a14

a0

a1

a2

b1

c2

d4 a4

b2

Fig. 8. The initial routes on layer 1 for data4. Fig. 9. The output routes for data4.

Acknowledgements

This research was partially supported by Grant-in-Aid
for Scientific Research (C) (18500034) and Grant-in-Aid for
JSPS Fellows (19·9340).

References

[1] M.-F. Yu and W. W.-M. Dai, “Single-Layer Fanout Routing and
Routability Analysis for Ball Grid Arrays,” in Proceedings of
International Conference Computer-Aided Design, pp. 581–586,
1995.

[2] S. Shibata, K. Ukai, N. Togawa, M. Sato, and T. Ohtsuki, “A BGA
Package Routing Algorithm on Sketch Layout System,” The jour-
nal of Japan Institute for Interconnecting and Packaging Elec-
tronic Circuits, vol. 12, no. 4, pp. 241–246, 1997. (In Japanese).

[3] C.-C. Tsai, C.-M. Wang, and S.-J. Chen, “NEWS: A Net-Even-
Wiring System for the Routing on a Multilayer PGA Package,”
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 17, no. 2, pp. 182–189, 1998.

[4] S.-S. Chen, J.-J. Chen, C.-C. Tsai, and S.-J. Chen, “An Even
Wiring Approach to the Ball Grid Array Package Routing,” in
Proceedings of International Conference on Computer Design,
pp. 303–306, 1999.

[5] Y. Kubo and A. Takahashi, “A Via Assignment and Global Rout-
ing Method for 2-Layer Ball Grid Array Packages,” IEICE Trans-
actions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E88-A, no. 5, pp. 1283–1289, 2005.

[6] Y. Kubo and A. Takahashi, “Global Routing by Iterative Improve-
ments for 2-Layer Ball Grid Array Packages,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), vol. 25, no. 4, pp. 725–733, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [594.992 841.890]
>> setpagedevice

