
Proc. IEEE/ACM International Conference on Computer Aided Design 97, pp. 260–265

Clock-Tree Routing Realizing a Clock-Schedule

for Semi-Synchronous Circuits∗

Atsushi TAKAHASHI, Kazunori INOUE †‡, and Yoji KAJITANI

Dept. of Electrical and Electronic Engineering

Tokyo Institute of Technology

Tokyo 152, Japan

†Hitachi ULSI Engineering

3-1-1 Higashi-Koigakubo, Kokubunji

Tokyo 185, Japan

Abstract
It is known that the clock-period can be shorter than
the maximum of signal-delays between registers if the
clock arrival time to each register is properly scheduled.
The algorithm to design an optimal clock-schedule was
given. In this paper, we propose a clock-tree rout-
ing algorithm that realizes a given clock-schedule using
the Elmore-delay model. Following the deferred-merge-
embedding (DME) framework, the algorithm generates
a topology of the clock-tree and determines the loca-
tions and sizes of intermediate buffers simultaneously.
The experimental results show that this method con-
structs clock-trees with moderate wire length compared
with that of zero-skew clock-trees.

1 Introduction
In layout synthesis, the distribution of the clock is crit-
ical to the performance of sequential circuits. In the
complete-synchronous system, the clock is assumed to
be distributed periodically and simultaneously to ev-
ery register. Therefore, the clock-skew, the maximum
difference of delays to the clock pins on registers from
the clock source is a negative effect against speeding up
a sequential circuit. Thus efforts have been towards its
elimination. Surveys are found in [13, 5].

While, in the semi-synchronous system, the clock is
assumed to be distributed periodically to every regis-
ter, but not necessarily simultaneously. A clock-timing
of a register is the difference between clock-delays
to the register and to a reference register. A clock-
schedule is a set of clock-timings of registers. Given
signal-delays between registers, a clock-schedule that
realizes the minimum clock-period is called an optimum
clock-schedule. An optimum clock-schedule in a semi-
synchronous system is determined by a graph theoreti-
cal algorithm [21]. It is known that the clock-period of
an optimum clock-schedule is usually shorter than the
maximum signal-delay between registers. The mini-
mum clock-period is also obtained by a linear program-
ming [12], or by using the decision version of the prob-
lem with binary search strategy [8]. Similar discussions
are found in multi-phase clock-schedule [19, 15, 20].

The crucial problem in semi-synchronous system de-
sign is the layout realization of the clock-schedule. We

∗This work was supported in part by CAD21 and in part by
Grant-in-Aid for Scientific Research of the Ministry of Educa-
tion, Science and Culture of Japan.

‡This work was performed while the author was at TIT.

call a clock-tree that realizes the given clock-schedule
a schedule-clock-tree. In this paper, we propose a
schedule-clock-tree routing algorithm.

Neves and Friedman [16, 17, 18] proposed the meth-
ods that construct a topology of a schedule-clock-tree
and determine the specification of delay at each edge of
the clock-tree. However no specific routing algorithm
to embed the topology in the Manhattan plane is given.
The main target of their works is for hierarchical data
path design.

Zero-skew clock-tree routing is a kind of schedule-
clock-tree designs. Tsay [22] mentioned that there is
an algorithm for zero-skew clock-tree routing that can
be extended to general schedule-clock-tree design by
adding a fictitious delay element on each clock pin.
The deferred-merge embedding (DME) algorithm was
introduced for zero-skew clock-tree routing indepen-
dently by Edahiro [9, 11], Chao et al. [2, 3], and Boese
and Kahng [1, 3]. There are many related researches
using the DME framework [4, 6, 7, 14, 23, 24, 25]. Sur-
veys concerned with the DME framework and clock
synthesis are found in [13, 5].

The DME algorithms consist of two phases, the
bottom-up phase of topology generation and the top-
down phase of embedding the topology on the Man-
hattan plane. The most successful DME algorithm,
called the clustering-based DME algorithm [10], con-
structs a topology of clock-tree by merging a pair of
nearest-neighbors in bottom-up phase. The connection
between two subtrees seldom makes a detour since any
two subtrees are usually balanced. Thus the small total
connection length is achieved. However, in schedule-
clock-tree routing, the required connection length of-
ten differs significantly from the Manhattan distance
between roots of two subtrees because two subtrees
may be unbalanced due to the clock-timing assigned
to each register.

A schedule-clock-tree routing algorithm proposed in
this paper follows the clustering-based DME algorithm
in [10]. However, the proposing algorithm selects a
merging pair such that the required connection length
is small in the way as used in [3]. Moreover, the buffer
insertion and sizing are considered in bottom-up topol-
ogy generation phase in the way as used in [23, 4]. In
the top-down phase of embedding, each internal vertex
of the clock-tree is embedded in the Manhattan plane
so that the connection length from the parent vertex is
minimized.

1

vp0

pi

time

reference clock pinreference clock-delay

d(p)i

τ()v

τ()v,p i

clock source

clock pin

Figure 1: Delays in a schedule-clock-tree.

The experimental results showed that this method
constructs a schedule-clock-tree with the moderate
wire length compared with that of a zero-skew clock-
tree. For randomly generated pin locations and
clock-schedule, the total connection length was about
1.8 times larger than that of a zero-skew clock-tree.

The rest of the paper is organized as follows. In
Section 2, we give basic definitions and the overview of
the problem. The generation of merging-segment is dis-
cussed in Sections 3. The definition of the merging-cost
of a merging-segment is given in Section 4. The out-
line of the proposed algorithm SCT-Routing is given
in Section 5. In Section 6, we describe the buffer in-
sertion and sizing procedure. The experimental results
are presented in Section 7. Section 8 is the conclusion.

2 Preliminaries
Assume that locations of the clock source pin p0 and
clock pins on registers P = {p1, p2, . . . , pn} on the
Manhattan plane, and a clock-schedule S of registers
are given. We construct a clock-tree T that realizes S
using the Elmore-delay model.

A clock from p0 arrives at each clock pin pi with
some delay which is called the clock-delay of pi. To de-
scribe the clock-schedule we take an arbitrary (maybe
an imaginary) register as the reference register such
that it is ticked by a clock with the reference clock-
delay. Then pin pi is ticked d(pi) time after the refer-
ence clock pin is ticked. d(pi) is called the clock-timing
of pi. In this paper, we choose the reference regis-
ter so that the clock-timing d(pi) of each register is
non-negative. If the reference clock pin is ticked on
time (. . . ,−t, 0, t, 2t, . . .) where t is the clock-period
of the circuit concerned, then pi is ticked on time
(. . . ,−t + d(pi), d(pi), t + d(pi), 2t + d(pi), . . .).

A clock-tree T is a rooted binary tree whose root
corresponds to p0 and n leaves correspond to pins in
P . For a given schedule S, T is called a schedule-clock-
tree of S if S is realized by T . A subtree Tv is defined
as the subtree of T rooted by a vertex v in T . Let τ (v)
be the difference of the reference clock-delay from the
clock-delay to v in T , and τ (v, pi) be the propagation
delay from v to a pin pi in Tv. In a schedule-clock-tree,
τ (v) = τ (v, pi)− d(pi) for any pin pi in Tv. See Fig. 1.

The delay model is analyzed in the following. Let r
and c denote the resistance and capacitance per unit
length of wire, respectively. Let v1 and v2 be the chil-
dren of v on T , and l1 and l2 be the wire length from
v to v1 and v2, respectively.

Let C(v) be the total load capacitance of v including

wire capacitance as well as gate capacitance. Then
C(v) is calculated by

C(v) =

{

ci if v = pi,
cbuf if a buffer is inserted into v,
C∗(v) otherwise,

where C∗(v) = C(v1) + C(v2) + c(l1 + l2), and ci and
cbuf are the load capacitance of pin pi and the input
capacitance of the inserted buffer, respectively. Simi-
larly, τ (v) is calculated by

τ (v) =

{

−d(pi) if v = pi,
τ∗(v) + τbuf if a buffer is inserted into v,
τ∗(v) otherwise,

where τ∗(v) = rl1
(

cl1
2 + C(v1)

)

+ τ (v1) and τbuf is the
internal delay of the inserted buffer.

Here, similar to the zero-skew routing [22], the fol-
lowing equation derived from π-model is assumed to
be satisfied in a schedule-clock-tree:

τ∗(v) = rl2

(

cl2
2

+ C(v2)

)

+ τ (v2). (1)

A location of v is called a delay-balance-point of two
subtrees if Eq. (1) is satisfied when the wire length
connecting to the root of each subtree is equal to the
Manhattan distance.

In our algorithm, we list, if exist, delay-balance-
points of two subtrees such that the required connec-
tion length is equal to the Manhattan distance be-
tween the roots of two subtrees as the candidates of
the parent vertex locations of two subtrees. If there
is no such point, we list the candidate location of ei-
ther child such that the distance between two children
is minimal as the (candidate) parent vertex location.
We call such a set of candidate locations of the par-
ent vertex v a merging-segment of two subtrees, and
denoted by ms(v). For the clock pin pi, the merging-
segment ms(pi) is defined as the location of pi.

3 Generating Merging-Segment
Let l denote the Manhattan distance between merging-
segments ms(v1) and ms(v2). By Eq. (1) assuming
l1 + l2 = l, we have that

l1 =
τ (v2) − τ (v1) + rl(C(v2) + cl/2)

r(cl + C(v1) + C(v2))
.

If 0 ≤ l1 ≤ l then no detour is requested to connect two
subtrees and there are delay-balance-points of two sub-
trees Tv1

and Tv2
with the minimum connection length

which form ms(v) of Manhattan arc with ±1 slope. In
case that l1 < 0 or l1 > l, we conclude that the two
subtrees are too much out of balance. If l1 < 0 then we
place v on the root v1 expecting to minimize the total
connection length. The connection between v and v2
makes a detour. The required connection length l′2 is

l′2 =

√

(rC(v2))2 + 2rc(τ (v1) − τ (v2)) − rC(v2)

rc
.

If l1 > l then we place v on the v2, and the length l′1
of the connection between v and v1 is

l′1 =

√

(rC(v1))2 + 2rc(τ (v2) − τ (v1)) − rC(v1)

rc
.

In either case, the merging-segment ms(v) of two sub-
trees consists of a single location which is contained in
either ms(v1) or ms(v2).

2

4 Merging-Cost of Merging-Segment
The merging-cost of two merging-segments consists
of the required wire length connecting two merging-
segments and the buffer insertion penalty.

The required wire length connecting two subtrees
Tv1

and Tv2
tends to be large as the difference between

τ (v1) and τ (v2) is large although v1 is near v2. In
zero-skew routing by nearest-neighbors strategy as in
[10], the connection seldom makes a detour since the
difference between τ (v1) and τ (v2) is relatively small.
However, in schedule-clock-tree routing, we should take
the detour into account. Thus we take the required
connection length rather than the distance as the part
of the merging-cost.

The clock-tree without any intermediate buffers is
impractical since the load capacitance of the clock
source is too large. Intermediate buffers are inserted
into the clock-tree for the purpose to separate capac-
itances, to reduce clock-delays and total power dissi-
pation, and to improve the reliability against process
variations. Moreover, it is possible to reduce the total
connection length by buffer insertion.

We insert one buffer into a vertex if the load capac-
itance of the vertex exceeds the predefined value clim.
Otherwise, we determine whether to insert a buffer or
not according to a cost since excessive buffer insertion
may cause negative effects such as area or power dissi-
pation by the buffers. We introduce the buffer insertion
penalty P (v) of subtree Tv

P (v) =

{

log clim

2C∗(v)
if a buffer is inserted into v
and 2C∗(v) < clim,

0 otherwise.

P (v) controls the buffer insertion when the load capac-
itance is small. The cost depends on this penalty, but
also depends on the required connection length.

For a pair of two subtrees, there are four situations
with respect to the buffer insertion into the roots of
two subtrees. We select one situation for the pair by
the procedure mentioned in Section 6.1. The insertion
depends on the combination of two subtrees. Note that
the buffer is inserted into the root of a subtree or not is
fixed when the subtree is merged to the other subtree.

Moreover, we assume that the inserting buffer can be
selected from various sizes of buffers {b1, b2, . . . , bm}.
The input capacitance of each buffer is cbuf . The in-
ternal delay of each buffer depends on its load capac-
itance. However, we assume that for any buffers bi

and bj (i < j), the internal delays τbufi
and τbufj

sat-
isfy τbufi

> τbufj
for the same load capacitance. The

detailed sizing procedure for two subtrees are described
in Section 6.2.

The merging-cost mc(v) of two subtrees Tv1
and Tv2

is defined following the situation selected by the pro-
cedure in Section 6,

mc(v) = l + β(P (v1) + P (v2))

where l and β denote the required connection length
and the constant coefficient, respectively. Note that
either P (v1) or P (v2) is 0 since we insert buffers into
both roots of two subtrees only if the total load capac-
itance of each subtree exceeds clim.

Algorithm Topology Generation:
1. K := {ms(pi)|1 ≤ i ≤ n};
2. While (|K| > 1){
3. G(V, E) := GRAPH(K);
4. Repeat MID(1, |K|/k, |K| − 1) times {
5. Find e(v1, v2) from G(V, E) such that the

weight is minimum;
6. If ({ms(v1), ms(v2)} ⊆ K) {
7. Compete ms(v) from ms(v1) and ms(v2);
8. K := (K − {ms(v1), ms(v2)}) ∪ {ms(v)};

}
9. Delete e(v1, v2) from G(V, E);

}
}

Figure 2: The bottom-up phase of SCT-Routing.

5 Schedule-Clock-Tree Routing
The proposing schedule-clock-tree routing algorithm
SCT-Routing follows the DME framework.

In the bottom-up phase of topology generation, the
tree of merging-segments are constructed which repre-
sent possible locations (merging-segment) of vertices in
a schedule-clock-tree.

Let K denote a set of merging-segments which ini-
tially consists of all the clock pin locations, that is,
K = {ms(pi)}. The algorithm iteratively finds the pair
in K, that is, ms(v1) and ms(v2), such that the weight
of edge e(v1 , v2) is minimal in the merging-cost graph
whose vertices correspond to K and weight of the edge
represents the merging-cost of two merging-segments.
The edge set of the merging-cost graph consists of the
edges e(vi, vj) such that the merging-cost of ms(vi)
and ms(vj) is minimal over all ms(vj) or minimal over
all ms(vi) (i 6= j). A new merging-segment ms(v) is
computed for vertex v from delay-balance-points of two
subtrees Tv1

and Tv2
. K is updated by adding ms(v)

and deleting both ms(v1) and ms(v2). After n−1 oper-
ations, K consists of the merging-segment for the root
of the topology.

The bottom-up phase is shown in Fig. 2. In the al-
gorithm, GRAPH(K) represents a merging-cost graph
generation and MID(a, b, c) is a function that returns
the middle value of a, b and c. The merging-cost graph
is updated after several mergings for speed-up.

In the top-down phase of embedding, the exact loca-
tions of vertices are determined in the reverse order of
the bottom-up phase. First, the location of the root v
of the tree of merging-segments is determined on the
merging-segment ms(v) so as to minimize the Man-
hattan distance from the clock source pin. Once the
location of a vertex is determined, the locations of its
children on merging-segments are easily determined so
as to minimize the Manhattan distance from the par-
ent vertex location. The top-down phase is shown in
Fig. 3.

6 Buffer Insertion and Sizing
6.1 Buffer Insertion
For each pair of two subtrees, there are four situations
with respect to the buffer insertion into the roots v1

3

Algorithm Topology Embedding:
1. Choose the location of the root v of the tree of

merging-segments from ms(v) such that the Man-
hattan distance from the clock source pin is mini-
mal. Connect the clock source pin and v.

2. Local-Embedding(v);

Procedure Local-Embedding (v):
1. If (v has children) {
2. Choose the locations of children v1 and v2 from

ms(v1) and ms(v2), respectively, such that the
Manhattan distance from v is minimal. Connect
v and v1. Connect v and v2;

3. Local-Embedding(v1);
4. Local-Embedding(v2);

}

Figure 3: The top-down phase of SCT-Routing.

and v2 of two subtrees. However, we consider at most
two situations for each pair. In the following, we show
the procedure that determines the situation for each
pair depending on whether C∗(v1) and C∗(v2) exceed
clim or not.

In case that neither C∗(v1) nor C∗(v2) exceeds clim,
the cost without buffer insertion is first calculated,
which is the required connection length. If no detour
is requested, the procedure adopts this situation, that
is, a buffer is inserted into neither root of the subtree.
Otherwise, the connection to either v1 or v2 makes a
detour. Without loss of generality, we assume that the
connection to v1 makes a detour. Then the cost when
the buffer is inserted into v1 is calculated, which is
l′ + βP (v1) where l′ is the required connection length.
Then, the procedure selects the lower cost situation.

In case that C∗(v1) exceeds clim, but C∗(v2) does
not, the cost when a buffer is inserted into v1 is first
calculated, which is the required connection length. If
no detour is requested, the procedure adopts this situa-
tion. Otherwise, we calculate the cost when the buffer
is inserted into both v1 and v2, which is l′ + βP (v2)
where l′ is the required connection length. Then the
procedure selects the lower cost situation. The pro-
cedure similarly selects the situation when C∗(v2) ex-
ceeds clim, but C∗(v1) does not.

In case that both C∗(v1) and C∗(v2) exceed clim, the
procedure selects the situation that buffers are inserted
into both v1 and v2. The cost is the required wire
length.

6.2 Buffer Sizing
First, we consider the case that a buffer is inserted into
v1, but not into v2. By Eq. (1) assuming l1 + l2 = l,
we have that

l1 =
τ (v2) − (τ∗(v1) + τbuf) + rl(C(v2) + cl/2)

r(cl + cbuf + C(v2))

where τbuf is the internal delay of the inserted buffer.
If τbuf ≤ τ (v2)− τ∗(v1) + rl(C(v2) + cl/2) then l1 ≥ 0,
that is, no detour is requested to connect v and v2.
Similarly if τbuf ≥ τ (v2)− τ∗(v1)− rl(cbuf + cl/2) then
if l1 ≤ l, that is, no detour is requested to connect v
and v1.

Table 1: Statistics of the tested examples.

data # of pins width [µm] height [µm]

r1 267 6998 7000
r2 598 9401 9313
r3 862 9700 9850
r4 1903 12697 12698
r5 3101 14292 14522

The internal delay of a buffer is related to the size of
the buffer. The size and power dissipation of a buffer is
small when the internal delay is large. To minimize the
detour and the size and power of a inserted buffer, we
insert a buffer such that the internal delay is maximal
unless the connection from v to v2 makes a detour.
Similarly, we select a buffer inserting into v2 when no
buffer is inserted into v1.

Next we consider the case that buffers are inserted
into both v1 and v2. The required connection length
from v to v1 (v2) depends on both inserted buffers. If
C∗(v1) or C∗(v2) does not exceed clim, then we first
select the buffer of the root whose load capacitance ex-
ceeds clim by the above procedure assuming no buffer is
inserted into the other. And then, we select the buffer
of the other root by the above procedure. Otherwise,
we test the inserted buffers pair into v1 and v2 from the
maximum delay buffer to the minimum delay buffer for
v1, and from the minimum delay buffer to the maxi-
mum delay buffer for v2. We select the first pair such
that the connection from v to v2 makes no detour.

7 Experimental Results
The proposed schedule-clock-tree routing algorithm
SCT-Routing is implemented in C++. We test it on
five different examples used in [22], though the loca-
tion and load capacitance of each pin are randomly
generated. The statistics of the examples are shown in
Table 1. The load capacitance ci of pin pi is ranged
from 30 to 80 fF. The buffer size is chosen from 20 vari-
eties and the maximum load capacitance of buffers clim

is 2 pF. The process parameters are set to r = 60 mΩ
and c = 0.04 fF. We use the algorithm parameters
β = 1000, k = 2.

7.1 Schedule-Clock-Tree Algorithms
Our SCT-Routing and the clustering-based DME algo-
rithm (developed for zero-skew routing) in [10], called
ZS-Routing here, are applied to schedule-clock-tree
routing. The results are shown in Table 2.

In Table 2, ZS and ZS+S correspond to ZS-Routing.
SCT and SCT\B correspond to SCT-Routing, but no
intermediate buffers are inserted in SCT\B. The clock-
timing of each register is set to 0 ns in ZS, while either
0.0 ns, 0.5 ns, 1.0 ns, 1.5 ns, or 2.0 ns is assigned to reg-
isters in the other cases. The total connection length,
the total connection length over that in ZS, the clock-
delay from the clock source pin to a reference clock
pin, and the numbers of inserted intermediate buffers
are shown in columns “len”, “ratio”, “d”, and “buf”,
respectively.

The results show that the simple nearest-neighbors
strategy, adopted in [10], is not well applicable for
schedule-clock-tree generation. The resultant total

4

Table 2: The results of ZS-Routing and SCT-Routing.

ZS ZS+S SCT\B SCT

algorithm ZS-Routing SCT-Routing
buffer no intermediate buffers with intermediate buffers

clock-timing 0 [ns] from 0 to 2 [ns] by 0.5 [ns] step

data len [µm] d [ns] len [µm] ratio d [ns] len [µm] ratio d [ns] len [µm] ratio d [ns] buf

r1 147,392 1.82 3,947,102 26.78 13.02 310,379 2.11 4.13 266,514 1.81 4.78 62
r2 294,797 6.07 9,034,421 30.65 51.08 636,612 2.16 7.44 543,183 1.84 6.35 129
r3 366,265 5.85 13,139,596 35.87 83.45 815,826 2.23 7.38 679,889 1.86 6.93 177
r4 727,893 21.75 28,361,307 38.96 198.30 1,514,973 2.08 21.75 1,310,030 1.80 9.17 350
r5 1,063,507 38.52 45,920,134 43.18 327.47 2,195,560 2.06 50.56 1,886,817 1.77 5.16 515

Figure 4: A zero-skew clock-tree layout of the exam-
ple r1 by ZS-Routing.

connection length of the schedule-clock-tree is more
than 25 times larger than that of the zero-skew clock-
tree. A zero-skew clock-tree layout of the example r1
by ZS-Routing is shown in Fig. 4 for a reference.

The total connection lengths of both SCT\B and
SCT are far smaller than that of ZS-Routing for the
same input data. Inserted intermediate buffers re-
duce both the total wire lengths and clock-delays. The
clock-delay reductions are significant for large clock-
tree. The total connection length by SCT-Routing is
about 1.8 times larger than that of the zero-skew clock-
tree. A schedule-clock-tree layout result of the example
r1 by SCT-Routing is shown in Fig. 5.

7.2 Clock-Schedule Dependence
When the variation of clock-timings assigned to each
register is large, the total connection length of SCT-
Routing is large. In Table 3 the results when either
clock-timing from 0 to 2 ns by 1 ps step is assigned
to each register are shown. The average wire length
ratio is 2.63 with respect to ZS-Routing for zero-skew
routing. Although the numbers of inserted buffers are
increased, the clock-delays are almost same compared
with the results in Table 2.

The maximum difference of clock-timings also af-

Figure 5: A schedule-clock-tree layout of the exam-
ple r1 by SCT-Routing.

fects the total connection length and clock-delay. In
Table 3 the results when either clock-timing from 0 to
10 ns by 2.5 ns step is assigned to each register are also
shown. The wire length ratios increase compared with
the results in Table 2, especially for small size data.
The clock-delays also increase although the number of
inserted buffers are small.

7.3 Schedule-Clock-Tree Consisting of
Zero-Skew Trees

If the set of pins is classified such that the clock-timing
of each class is same, it is possible to construct a
schedule-clock-tree as the sum of zero-skew clock-trees
each designed for each class.

In Table 4, the results for the same data used in
Table 2 are shown when we construct five zero-skew
clock-trees for the registers each assigned to the same
clock-timing by SCT-Routing. Although the numbers
of inserted buffers are relatively small, the total con-
nection length is larger than that of the original SCT-
Routing.

8 Conclusions
In this paper, we show that we can construct a
schedule-clock-tree for semi-synchronous circuit design

5

Table 3: The results of SCT-Routing for different clock-timings.

clock-timing from 0 to 2 ns by 1 ps step from 0 to 10 ns by 2.5 ns step
data len [µm] ratio d [ns] buf len [µm] ratio d [ns] buf

r1 343,853 2.33 4.09 227 411,754 2.79 28.05 22
r2 793,969 2.69 5.59 500 674,988 2.29 13.24 45
r3 995,917 2.72 7.67 704 849,932 2.32 13.79 59
r4 1,967,399 2.70 6.18 1556 1,593,813 2.00 15.03 133
r5 2,914,751 2.74 6.11 2502 2,299,953 2.16 21.28 198

Table 4: Schedule-clock-tree using zero-skew clock-
trees (clock-timings are from 0 to 2 ns by 0.5 ns step).

data len [µm] ratio buf

r1 308,366 2.09 10
r2 674,844 2.29 34
r3 863,385 2.36 52
r4 1,673,431 2.30 101
r5 2,422,248 2.28 162

with moderate wire length compared with that of a
zero-skew clock-tree.

It seems that the reliability of a general schedule-
clock-tree against the temperature or process variation
is inferior to that of a zero-skew clock-tree, since a
constructed clock-tree is unbalanced due to the clock-
timing difference. We should analyze the sensitivity of
the constructed schedule-clock-trees and improve our
algorithm to increase the reliability.

The generation of feasible buffer placement in our
algorithm is also the future work.

The performance of a constructed schedule-clock-
tree highly depends on a given clock-schedule. It
is possible to adopt techniques such as mentioned in
Section 7.3 depending on the given clock-schedule.
Another way is to restrict the variety of the clock-
schedules. It is apparent that there exists a clock-
schedule whose required wire length of clock-tree is far
smaller than that of a zero-skew clock-tree. We believe
that high-performance circuits with less wire length of
the clock-tree, can not be constructed without follow-
ing the concept of the semi-synchronous framework.
This paper includes a basic consideration for the semi-
synchronous system design.

References
[1] K. D. Boese and A. B. Kahng, “Zero-skew clock routing

trees with minimum wirelength,” in Proc. IEEE 5th ASIC
Conf., pp. 1.1.1–1.1.5, 1992.

[2] T. H. Chao, Y. C. Hsu, and J. M. Ho, “Zero skew clock net
routing,” in Proc. 29th DAC, pp. 518–523, 1992.

[3] T. H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese, and
A. B. Kahgn, “Zero skew clock routing with minimum wire-
length,” IEEE Trans. on Circuits and Systems, vol. 39,
no. 11, pp. 799–814, 1992.

[4] Y. P. Chen and D. F. Wong, “An algorithm for zero-skew
clock tree routing with buffer insertion,” in Proc. European
Design and Test Conf., pp. 66–71, 1996.

[5] J. Cong, L. He, C. K. Koh, and P. H. Madden, “Perfor-
mance optimization of VLSI interconnect layout,” INTE-
GRATION, the VLSI journal, vol. 21, pp. 1–94, 1996.

[6] J. Cong, A. B. Kahng, C. K. Koh, and C. W. A. Tsao,
“Bounded-skew clock and Steiner routing under Elmore de-
lay,” in Proc. 1995 ICCAD, pp. 66–71, 1995.

[7] J. Cong and C. K. Koh, “Minimum-cost bounded-skew
clock routing,” in Proc. ISCAS 95, vol. 1, pp. 215–218,
1995.

[8] R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic ap-
proach to clock skew optimization,” in Proc. ISCAS ’94,
vol. 1, pp. 407–410, 1994.

[9] M. Edahiro, “Minimum skew and minimum path length
routing,” NEC Research & Development, vol. 32, no. 4,
pp. 569–575, 1991.

[10] M. Edahiro, “A clustering-based optimization algorithm in
zero-skew routings,” in Proc. 30th DAC, pp. 612–616, 1993.

[11] M. Edahiro and T. Yoshimura, “Minimum path-length equi-
distant routing,” in Proc. APCCAS 92, pp. 41–46, 1992.

[12] J. P. Fishburn, “Clock skew optimization,” IEEE Trans. on
Computers, vol. 39, no. 7, pp. 945–951, 1990.

[13] E. G. Friedman, ed., Clock Distribution Networks in VLSI
Circuits and Systems: A Selected Reprint Volume. IEEE
Press, 1995.

[14] D. J. H. Huang, A. B. Kahng, and C. W. A. Tsao, “On the
bounded-skew routing tree problem,” in Proc. 32nd DAC,
pp. 508–513, 1995.

[15] D. A. Joy and M. J. Ciesielski, “Placement for clock period
minimization with multiple wave propagation,” in Proc.
28th DAC, pp. 640–643, 1991.

[16] J. L. Neves and E. G. Friedman, “Topological design of
clock distribution networks based on non-zero clock skew
specifications,” in Proc. 36th Midwest Symp. on Circuits
and Systems, pp. 468–471, 1993.

[17] J. L. Neves and E. G. Friedman, “Circuit synthesis of clock
distribution networks based on non-zero clock skew,” in
Proc. ISCAS ’94, vol. 4, pp. 175–178, 1994.

[18] J. L. Neves and E. G. Friedman, “Minimizing power dissi-
pation in non-zero skew-based clock distributionnetworks,”
in Proc. ISCAS ’95, vol. 3, pp. 1577–1579, 1995.

[19] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun, “Anal-
ysis and design of latch-controlled synchronous digital cir-
cuits,” in Proc. 27th DAC, pp. 111–117, 1990.

[20] T. G. Szymanski, “Computing optimal clock schedules,” in
Proc. 29th DAC, pp. 399–404, 1992.

[21] A. Takahashi and Y. Kajitani, “Performance and reliability
driven clock scheduling of sequential logic circuits,” in Proc.
ASP-DAC ’97, pp. 37–42, 1997.

[22] R. S. Tsay, “Exact zero skew,” in Proc. 1991 ICCAD,
pp. 336–339, 1991.

[23] A. Vittal and M. Marek-Sadowska, “Power optimal buffered
clock tree design,” in Proc. 32nd DAC, pp. 497–502, 1995.

[24] J. G. Xi and W. W. M. Dai, “Jitter-tolerant clock routing
in two-phase synchronous systems,” in Proc. 1996 ICCAD,
pp. 316–320, 1996.

[25] J. G. Xi and W. W. M. Dai, “Useful-skew clock routing
with gate sizing for low power design,” in Proc. 33rd DAC,
pp. 383–388, 1996.

6

