Theoretical
Computer Science

A N

ELSEVIER Theoretical Computer Science 137 (1995) 253-268

Mathematical Games
Mixed searching and proper-path-width*®

Atsushi Takahashi®*, Shuichi Ueno?, Yoji Kajitani*®

*Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 Qokayama,
Meguro-ku, Tokyo 152, Japan
School of Information Science, Japan Advanced Institute of Science and Technologv, East 15 Asahidai,
Tatsunokuchi-cho, Ishikawa 923-12, Japan

Received July 1992; revised April 1994
Communicated by E.R. Berlekamp

Abstract

This paper considers a mixed search game, which is a natural generalization of edge-search
and node-search games extensively studied so far. We establish a relationship between the
mixed-search number of a graph G and the proper-path-width of G introduced by the authors
in a previous paper. We also prove complexity results.

1. Introduction

This paper considers a new version of search game, called mixed searching, which is
a natural generalization of edge searching and node searching extensively studied so
far. We establish a relationship between the mixed search number of a simple graph
G and the proper-path-width of G introduced by the authors in[18]. We also prove
complexity results.

Search games were first introduced by Breisch [5] and Parsons [12]. An undirected
graph G is thought of as a system of tunnels. Initially, all edges of G are contaminated
by a gas. An edge is cleared by some operations on G. A cleared edge is recontaminated
if there is a path from an uncleared edge to the cleared edge without any searchers on
its vertices or edges.

In edge searching, the original search game variant, an edge is cleared by sliding
a searcher along the edge. A search is a sequence of operations of placing a searcher on

* A preliminary version of this paper appeared in [20].
* Corresponding author. E-mail: atushi@ss.titech.acjp.

0304-3975/95/809.50 © 1995—Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00160-X

254 A. Takahashi et al. [Theoretical Computer Science 137 (1995) 253-268

a vertex, deleting a searcher from a vertex, or sliding a searcher along an edge. The
object of such an edge search is to clear all edges by a search. An edge search is optimal
if the maximum number of searchers on G at any operation is minimum over all edge
searches of G. This number is called the edge search number of G, and is denoted by
es(G). La Paugh [9] proved that there exists an optimal edge search without recon-
tamination of cleared edges. This means that the problem of deciding whether
es(G)< k is in NP. Megiddo et al. [10] showed that the problem of computing es(G) is
NP-hard for general graphs but can be solved in linear time for trees.

Another variant called node searching was introduced by Kirousis and Papadimit-
riou [8]. In node searching, an edge is cleared by placing searchers at both its ends
simultaneously. A node search is a sequence of operations of placing a searcher on
a vertex or deleting a searcher from a vertex so that all edges of G are simultaneously
clear after the last stage. A node search is optimal if the maximum number of searchers
on G at any operation is minimum over all node searches of G. This number is called
the node search number of G, and is denoted by ns(G). Kirousis and Papadimitriou
proved the following results: (1) There exists an optimal node search without recon-
tamination of cleared edges; (2) the problem of computing ns(G) is NP-hard for
general graphs; (3) ns(G)— 1 <es(G)<ns(G)+1 [8].

The path-width of a graph G, denoted by pw(G), was introduced by Robertson and
Seymour [13]. (The definition of path-width is given in Definition 1.} The unexpected
equality ns(G)=pw(G)+ 1 was mentioned by Mohring [11], and implied by Kirousis
and Papadimitriou [7]. This provides a linear time algorithm to compute ns(G) for
trees [11,16].

Mixed searching, a natural generalization of edge searching and node searching,
was introduced by Bienstock and Seymour [2], and independently by the authors
[19]. In mixed searching, an edge is cleared by placing searchers at both its ends
simultaneously or by sliding a searcher along the edge. A mixed search is a sequence of
operations of placing a searcher on a vertex, deleting a searcher from a vertex, or
sliding a searcher along an edge so that all edges of G are simultaneously clear after
the last stage. A mixed search is optimal if the maximum number of searchers on G at
any operation is minimum over all mixed searches of G. This number is called the
mixed search number of G, and is denoted by ms(G). Bienstock and Seymour [2] and
the authors [19] independently proved that there exists an optimal mixed search
without recontamination of cleared edges. Bienstock and Seymour characterized the
mixed search number of a graph with minimum degree at least two by means of the
concept of crusade, which is a sequence of sets of edges.

The proper-path-width of a graph G, denoted by ppw(G), was introduced by the
authors in [18]. (The definition of proper-path-width is given in Definition 1) We
prove in Section 2 that the problem of computing ppw(G) is NP-hard for general
graphs but can be solved in linear time for trees. In Section 3, we characterize the
mixed search number of a simple graph by means of the proper-path-width. That is,
we establish the equality ms(G)=ppw(G), so the problem of computing ms(G) is also
NP-hard for general graphs but can be solved in linear time for trees.

A. Takahashi et al./ Theoretical Computer Science 137 (1995) 253-268 255
2. Proper-Path-Width

Graphs we consider have at least one edge and may have loops and multiple edges
unless otherwise specified. Let G be a graph, and V(G) and E(G) denote the vertex set
and edge set of G, respectively.

Definition 1 (Takahashi et al. [18]). Let Z =(Xy, X5, ..., X,) be a sequence of subsets
of V(G). The width of & is max; ;.| X;|— 1. Z is called a proper-path-decomposition
of G if the following conditions are satisfied:

(i) for any distinct i and j, X; & X;

(i) Uiy Xi=V(G);

(iii) for any edge (u,v)e E(G), there exists an i such that u,ve X;;

(iv) for all ,m and n with 1 <I<m<n<r, Xin X, S X

(v) for all ,m and n with I <I<m<n<r, | XinX,|<|X | —2.
The proper-path-width of G, denoted by ppw(G), is the minimum width over all
proper-path-decompositions of G. If & satisfies (i){iv), & is called a path-decomposi-
tion of G. The path-width of G, denoted by pw(G), is the minimum width over all
path-decompositions of G. A (proper-)path-decomposition with width k is called
a k-(proper-)path-decomposition.

We first show that the path-width and proper-path-width of a graph may differ by
at most one.

Theorem 1. For any graph G, pw(G)< ppw(G) < pw(G)+ 1.

Proof. The first inequality follows from the definition.

To prove the second inequality, we show that a proper-path-decomposition of
G with width at most k+1 can be obtained from a k-path-decomposition of G. Let
(Xi.X5,...,X,) be a k-path-decomposition of G. If | X;nX,|=|X;|—1 for some [and
n(I<i<i<ngyr), let Xj=X;_;uX;; otherwise let X;=X;. It is easy to see that the
sequence X' =(X1, X5, ..., X;) satisfies conditions (ii)}—(iv) in Definition 1. If X=X
and X}, =X;UX;4,; (1<i<r) then X;=X},,, otherwise X;Z X;.;. Let Z be the
sequence obtained from 2 by deleting every X} such that X;= X;,,. We show that
Z is a proper-path-decomposition of G with width at most k + 1. It is easy to see that
& also satisfies conditions (ii)—(iv) in Definition 1. To verify condition (i), assume that
X;= X for some distinct i and j. Since X;ZX;, X;=X;_;uX; If i>j then
XinX;_1=(X;-1uX;)nX;_;<X; by condition (iv) in Definition 1. Since
XinX;cX;, we have X;SX;=X;nX;cX; However, this is contradicting to
X;£X;. Similarly, if i<j then X;=X;=X;_;, and we have i=j—1. Moreover
Xi=X;, for otherwise X;_; =X;_,;. However, & does not contain such X;. Hence
& satisfies condition (i) in Definition 1. To verify condition (v), first, assume that
Xi=X;_1vX; (1 <i<r). By condition (i) in Definition 1, | Xj|=|X;- 10X = | X;|+ 1.
Since X')nX,=X;nX,-; (1<l<n<r) by condition (iv) in Definition 1,

256 A. Takahashi et al. [Theoretical Computer Science 137 (1995) 253-268

[XinX,|<|XinX,-1|<|X;|—1 for any [and n (1 <I<i<n<r) by condition (i) in
Definition 1. Hence, | X;nX,|<|X||—2 for any [and n (1 <I<i<n<r). Next, assume
that X;=X; (1 <i<r). Notice that | X;_;nX,,{|<|X;|—2 by the definition of X}. By
the construction of %, we have Xj,;=X;;,. Since X;nX,cX;_ nXi,,S
X;_1nX;4y, we have | X)nX,|<|X;|—2=|X}|—2 for any | and n (I1<iI<i<n<r).
Thus, Z satisfies condition (v) in Definition 1. Finally, we show that the width of & is
at most k+1. If X;=X; ,uX; then |X,nX,|=|X;|—-1 for some [and
n (1 <l<i<n<r) by the definition of X;. Since X;n X, < X;_;nX; by condition (iv) in
Definition 1, we have X,nX,=X;_;nX,, for otherwise, | X;_;nX;|=|X;| contradic-
ting to condition (i) in Definition 1. Thus, | X;—X;_{|=|X;—(X;nX,)|=1, and
[Xi|=|X;_1uX;]=|X;_;|+1<k+2. If X;=X, then |X||=|X;|<k+1. Hence, the
width of & is at most k+1. [

As an example, path-decomposition and proper-path-decomposition of the graph
shown in Fig. 1(a) are shown in Fig. 1(b) and (c), respectively.
It is not difficult to see the following lemma.

Lemma 1. (1) & satisfies condition (iv) in Definition 1 if and only if each vertex of
G appears in consecutive X;’s.

(2) A path-decomposition & satisfies condition (v) in Definition 1 if and only if
[X;o1nXi+1| <] Xi|—2 holds for any i with 1 <i<r.

A k-(proper-)path-decomposition (X, X,,...,X,) is said to be full if | X;|=k+1
(I<igr)and | X;nX 4, |=k (1 <j<r—1). An example of full proper-path-decomposi-
tion is shown in Fig. 1(d).

Lemma 2. If a graph G has a k-path-decomposition =(X 1, X 5, ..., X,) such that
(*) | XioinXip | <k—1 (I<i<r),

then G has a full k-proper-path-decomposition.

Proof. Let =(X,X,,...,X,) be a k-path-decomposition of G satisfying () such
that ¥0_, (] Xj|—k) is maximum. We shall show that 2 is a full k-proper-path-
decomposition of G. In the following, X ;=0 if j<0 or j>r.

Assume that | X;|<k for some i2<i<r). If | X;_,nX;|=k—1,let veX;,_; —X;_,.
Notice that v¢X;, for otherwise |X;_;nX;|>k since X, ,nX;=X;_;nX;, and
Xi;—12X;, contradicting to condition (i) in Definition 1. If |X,;_,nX;|<k—1, let
veX;_;—X;. In either case, we have v¢ X; and | X;_,n(X;u{v})|<k—1. By Lemma
1(1), v¢X;4,, and so |[(X;u{v})nX;+2|<k—1. Thus, the sequence X' =
(X1, Xa o0 Xio 1, X0{v}, Xi41,- . -, X,) satisfies condition (*) and conditions
(iHiv) in Definition 1. To verify condition (i), assume that X ;= X,u{v} for some
J(#1). Since vé\J7,_;; Xp,j<i. Thus j=i—1 since X ;=X ;n(X;u{v})=X;_ ;. There-
fore, (X1,X,, ..., X2, X;0{v},Xi4y, ..., X,) is a k-path-decomposition of G satisfy-

A. Takahashi et al. [Theoretical Computer Science 137 (1995) 253-268 257

2 4 9 10

{=e-)
{==)

{#v-)

(d) A full proper-path-decomposition of ¢

Fig. 1. Path-decompositions.

ing condition (). But this is contradicting to the choice of & since | X; _;|<k. Thus Z"
is a k-path-decomposition of G. But again this is contradicting to the choice of Z.
Thus | X;|=k+ 1 for any i 2 <i<r). Since (X,, ..., X ;) is also a path-decomposition of
G, | Xi|=k+1foranyi(1<i<r).

Assume next that |X;nX;;,|<k—1 for some i (I<i<r—1). If
|Xi-10Xis1]=k—1, let veX;—X;_,; otherwise let veX;—X;;,. In either case,
we have v¢X;y; and |X; (X u{v})<k=1 If X nX;iso|=k let
ue(X;y1nX;42)— X, Note that (X, 1nX;1;)—X;#0 since |[X;1nXii,|=
k>k—121X:0 X4 1) If | Xio10Xi42| <k, let ueX; 41 —X;. In either case, we have
[(Xis1—{u})NXii2l<k—1. Since v¢()]_;;, X; and u¢|)i_, X;, the sequence

258 A. Takahashi et al./ Theoretical Computer Science 137 (1995) 253-268

X'=X1,.... X0, (X4 19{v})—{u}, Xis1, ..., X,) satisfies condition () and conditions
(ii)—(iv) in Definition 1. To verify condition (i), assume that X;=(X;u{v})—{u} or
(Xiu{v})—{u}=X; for some j (1<j<r). Since |[(X;u{v})—{u}|=|X;|=k+1,
X;=(X;u{v})—{u}. Then j=i or j=i+l, since if j<i,
X;i=X;n((X;u{v})—{u})= X;; otherwise, X;,=((X:v{v})—{u})nX;=X;y,. But
this is contradicting to v#u or the assumption that | X;nX;;,|<k—1. Thus &’
satisfies condition (i) in Definition 1, and " is a k-path-decomposition of G satisfying
condition (*). But this is contradicting to the choice of % since
[(Xiu{v})—{u}l=k+1. Thus | X;n X, |=k for any i (1<i<g<r—1).

Therefore ¥ is a full k-path-decomposition of G satisfying (%), and so a full
k-proper-path-decomposition of G by Lemma 1(2) since |X;_;nX;4,i<k—1=
| Xi|-2 (<i<r) O

Lemma 3. For any graph G with ppw(G)=k, there exists a full k-proper-path-decompo-
sition of G.

Proof. A k-proper-path-decomposition (X, X,,...,X,) of G is a k-path-decomposi-
tion satisfying condition (*) in Lemma 2. Thus we obtain the lemma from Lemma 2.
0

A graph obtained from connected graphs H,, H,, and H; by the following

construction is called a star-composition of H,, H,, and Hj:
(i) Choose a vertex v;eV(H;) for i=1, 2, and 3.

(i) Let v be a new vertex not in H,, H,, or H;.

(iii) Connect v to v; by an edge (v,v;) for i=1, 2, and 3.
We define the family @, of trees recursively as follows:

(i) @,={K,, 3}, where K, 3 is a complete bipartite graph shown in Fig. 4(a).

(i) If &, is defined, a tree T'is in Q, ., if and only if 7 is a star-composition of three

(not necessarily distinct) trees in £2;.

A graph H is a minor of G if H is isomorphic to a graph obtained from a subgraph of
G by contracting edges.

The following theorems were proved by the authors in [18], in which Theorem
C was used to prove Theorem A.

Theorem A (Takahashi et al. [18]). For any tree T and an integer k (k > 1), ppw(T) <k
if and only if T contains no tree in Q as a minor.

Theorem B (Takahashi et al. [18]). (1) The number of vertices of a tree in £ is
(3112 (k=1).
(2) |= (k) (k=1).

Theorem C (Takahashi et al. [18]). For any tree T and an integer k (k>=1),
ppw(T)=k+1 if and only if T has a vertex v such that T\{v} has at least three

A. Takahashi et al./ Theoretical Computer Science 137 (1995) 253-268 259

connected components with proper-path-width k or more, where T\{v} is the graph
obtained from T by deleting v.

A k-cligue of a graph G is a complete subgraph of G on k vertices. For a positive
integer k, k-trees are defined recursively as follows: (1) the complete graph on k vertices
1s a k-tree; (2) given a k-tree Q on n vertices (n > k), a graph obtained from Q by adding
a new vertex adjacent to the vertices of a k-clique of Q is a k-tree on n+1 vertices.
A k-tree Q is called a k-path if either |V (Q)|<k+1 or Q has exactly two vertices of
degree k. A partial k-path is a subgraph of a k-path. A graph is said to be simple if it has
neither loops nor multiple edges.

Theorem 2. For any simple graph G and an integer k (k= 1), ppw(G)<k if and only if
G is a partial k-path.

Proof. Suppose that ppw(G)=h<k. There exists a full h-proper-path-decomposition
X=(X;,X5,....X,) of G by Lemma 3. If r=1 then G is a subgraph of a complete
graph on h+ 1 vertices, and so we conclude that G is a partial h-path. Thus we assume
that r>2. We construct an h-path H from & as follows:
(i) Let v; be a vertex in X;nX,. Define that Q, is the complete graph on
X, —{vy}.

(i)) Define that Q, is the h-path obtained from Q; by adding v, and the edges

connecting v; and the vertices in Xy —{v,}.

(i) Given Q; (2<i<r), define that Q;,, is the h-path obtained from Q; by adding

v;eX;—X;_, and the edges connecting v; and the vertices in X;—{v;}.

(iv) Define H=0Q, , ;.

From the definition of full A-proper-path-decomposition, v; 2<i<r) in (iii) is
uniquely determined. Since X;—{v;} = X,;_; (2<i<r), the induced subgraph of Q; on
X;—{v;} is an h-clique of Q; (2<i<r), and the induced subgraph of Q;,, on X; is
(h+1)-clique. Thus H is an h-tree. Notice that v;€X;,; (2<i<r—1), for otherwise
| X:—-1nX;+1|=h. Since only the vertex in X, — X, and », have degree h, H is an
h-path. Furthermore, we have V(H)=V(G) and E(H)= E(G) from the definitions of
proper-path-decomposition and Q;. Thus G is a partial h-path, and so a partial k-path.

Conversely, suppose, without loss of generality, that G is a partial h-path (h<k)
with n (n>h) vertices and H is an h-path such that V(H)=V(G) and E(H)2 E(G).
Since a graph obtained from an h-path by deleting a vertex of degree A, if exists, is also
and h-path, H can be obtained as follows.

(i) Denote by Q, =R, the complete graph on h vertices.

(i) Given Q; and R; (1 <i<n—h), denote by Q; ., the h-path obtained from Q; by
adding vertex v;¢Q; and the edges connecting v; and the vertices of R;, and let
R;+y be an h-clique of Q;, that contains v;.

(iii) Define H=0Q,_+,.

We define X;=V(R)u{v;} (1<i<n—h)and ¥ =(X,, X5, ..., X,-y). [t is easy to see
that | X;|=h+1 for any i, YI_} X;=V(H), and each vertex appears in consecutive

260 A. Takahashi et al. [Theoretical Computer Science 137 (1995) 253-268

X;s. Thus & satisfies conditions (ii) and (iv) in Definition 1, and the width of & is h.
Since v;€X;—X;_;and 0# V(R)—V(R)SX,;_,—X;, X; € X,;_,and X;_, £ X, for
any i. Thus X ;& X ; for any distinct i and j, for otherwise X;=X;nX;S X, (i<j) or
X:=X;nX;= X, (i>]). Hence & satisfies condition (i) in Definition 1. Each edge of
H either connects v; with a vertex in V(R;) for some i or connects vertices in V(R;). So,
both ends of each edge of H is contained in some X;. Thus Z satisfies condition (iii) in
Definition 1. Since V(Ri+1)=Xi"X;+1, | XinXi41|=|V(Ri+1)|=h for any i with
I<i<n—h Since X1 —X;—1={vi, 41}, | Xic10Xisq|=h—1=]X;|-2 (I<i<
n—h). Thus the sequence Z is a full A-proper-path-decomposition of H from Lemma
1(2). Therefore, we have that ppw(G)<ppw(H)<h<k. U

Arnborg et al. [1] proved that the problem of deciding, given a graph G and an
integer k, whether G is a partial k-path is NP-complete. Thus we immediately have the
following by Theorem 2.

Theorem 3. The problem of computing ppw(G) is NP-hard.

It should be noted that Theorem A together with Robertson and Seymour’s results
on graph minors [14,15] provides O(n?) algorithm to decide, given a tree T on
n vertices, whether ppw(T) <k for any fixed integer k, although it is not practical even
if we could solve MINOR CONTAINMENT (see [6], for example) efficiently, because
[Q4|=(k!)? as is shown in Theorem B(2).

We show a practical algorithm to compute ppw(T') for trees 7 based on Theorem C,
and prove the following.

Theorem 4. For any tree T, the problem of computing ppw(T) is solvable in linear time.

Proof. Our algorithm to compute ppw(T) is shown in Figs. 2 and 3. The outline of the
algorithm is as follows.

We define the path-vector po(v, T)=(p, c, n) for any tree 7 with a vertex ve V(T) as
the root to compute ppw(T). p describes the proper-path-width of 7. ¢ and n describe
condition of 7 as follows: If there exists ue V(7T)—{v} such that T\{u} has two
connected components with proper-path-width ppw(7’) and without v, than ¢=3 and
n is the path-vector of the connected component of 7\ {u} containing v; Otherwise, c is
the number of the connected components of T\{v} with proper-path-width ppw(T)
and n=nul. It should be noted that for any vertex ue V(T) the number of connected
components of T\{u} with proper-path-width ppw(T) is at most two from Theorem
C. Notice also that if there exists u such that 7\{u} has two connected components
with proper-path-width ppw(7T’) and without v then u is uniquely determined. If there
is no such u then the number of connected components of 7\{w} with proper-path-
width ppw(T) and without v is not more than the number of connected components of
T\{v} with proper-path-width ppw(T). In the following, we denote an element x in
pu(v, T) by pv(v, T)|x, where x is either p, ¢ or n.

A. Takahashi et al. [Theoretical Computer Science 137 (1995) 253-268 261

Procedure MERGE(P,, P)

Input: P, (path-vector of tree T, rooted at s)

P, (path-vector of tree T; rooted at ¢)
Output: the path-vector of tree rooted at s
obtained from T, and T; by adding an edge (s,1).

1. if P|p> Bip then
.1 if P,Jc <2 then P, :=(p,c, nul);
.2 else if PJ|n*|p < B|p then P, :=(p+1,0,nul);
.3 else if P,|n"|p= Filp then
1.3.1 if Pn%le > 2 or Pjc>2 then P,:= (p+ 1,0,nul);
1.3.2 else Pn":= (p,c + 1,nul);
1.4 else if P,|n"|c <2 then Pn* := (p,c, nul);
1.5 else if Pn"|c =3 then

1.5.1 P,In*|n := MERGE(P,n*|n, P);

1.5.2 if Pn*|n|p= P|n"|p then P, := (p+ 1,0,nul);

endif

1.6 return(P,);
2. else if P|p= F|p then

2.1 if PJc>2 or Pjc>2 then P, :=(p+1,0,nul);
2.2 else P, :=(p,c+ 1,nul);

2.3 return(P,);
3. else if P,jp < Pp then
1 if Pc <1 then P, :=(p, 1, nul);
2 else if Pjc =2 then P, := (p,3, B.);
.3 else if P,|p > P|n*|p then P :=(p+1,0,nul);
4 else if P,|p= P|n*|p then
3.4.1 if Pjc>2 or Pn*|c > 2 then P, :=(p+ 1,0, nul);
3.4.2 else Pn":=(p,Plc+ 1, nul);
3.5 else if Fn"Jc <1 then Bn*:= (p, 1, nul);
3.6 else if Fjn*|c=2 then Bn*:=(p,3,P,);
3.7 else if F|n*jc=3 then

o

3.7.1 PBjn*|n:= MERGE(P,, Pn"|n);
3.7.2 if Pn"|nlp = FBln*|p then P = (p+1,0,nul);
endif
3.8 return(P);
endif
END

Fig. 2. Procedure MERGE: The algorithm to compute the path-vector of the join of two subtrees.

Let T, be a tree with root ve V(T;) and P, be the path-vector of T,. We recursively
define T;,; and P, ; (1 <i<!) while P;|c =3 as follows: let u;€ V'(T;) be the vertex such
that 7;\{u;} has two connected components with proper-path-width ppw(7;) and
without v, T; , be the connected component of 7;\{u;} containing v as the root, and
P, be the path-vector of T}, ;. We call such path-vectors Py, P,, ..., P, the chain of
the path-vector P,. We define b, n*, b*, and btm in the chain of P as follows: define
that P;|b=P,_, (2<i<l); define that P;|n*=P;if i=1or Pi|p<P;_,|p—1 (2<i<])
where j is the maximum integer such that j—i=P;|p— P;|p; define that P;|b*=P; if
P;|n* is defined and P;|n* = P;; define that P |btm= P,. Thus we extend a path-vector

262 A. Takahashi et al.] Theoretical Computer Science 137 (1995) 253-268

Procedure LMERGE(P,, P,)
[nput: P, (path-vector of tree T, rooted at s)
P, (path-vector of tree T rooted at ¢)
Output: the path-vector of tree rooted at s
obtained from 7, and T, by adding an edge (s,?).
1. if P,|p> Plp and P,jc =3 then
1.1 if P,|btm|b*|p > Plp then let P’ be P,|btm|b;
1.2 else
let P’ be the path-vector P in the chain of P, such that P|n* is defined
and Plp > P|p > P|n"|n|p;
1.3 P':= MERGE(P', P,);
1.4 return{ P,);
endif
2. if P|p< Plp and Plc=3 then
2.1 if P|btm|b*|p > P,|p then let P’ be P|btm|b*;
2.2 else
let P’ be the path-vector P in the chain of P, such that P|n* is defined
and Pip > P,|p > P{n*|n|p;
2.3 P':= MERGE(P,, P');
2.4 return(P,);
endif
3. return(MERGE(P,, P));
END
Procedure DFS(s)
Input: a vertex s
Output: the path-vector of the maximal subtree rooted at s
1. P,:=(1,0,nul); /* path-vector of a tree with one vertex s */
2. for all childrent of s in T do
2.1 P,:= DFS(t);
2.2 P,:= LMERGE(P,, P);
endfor
3. return(P,);
END
Procedure MAIN(T)
Input: atree T
Output: the proper-path-width of T
1. Let r be a vertex in V(T');
2. po(r,T) := DFSC 1);
3. return(po(r,T)|p);
END

Fig. 3. The algorithm to compute ppw(T).

as pu(v, T)=(p,c,n,b,n* b*, btm). This is the same technique to reduce the time to
traverse the chain as used in [10].

In the procedure, we omit the description of substitutions for b, n*, b*, and btm in
the path-vector because no confusion is caused. Moreover, after substitutions, we can
update n*, b*, and btm in the path-vectors in the chain in constant time. So we also
omit the description of these operations. For the simplicity, if the substitution for
P uses P|x, we abbreviate P|x to x.

Suppose that a tree T, rooted at s is obtained from tree 7, rooted at s and tree T,
rooted at ¢ by adding an edge (s, t). Based on Theorem C, Procedure MERGE shown

A. Takahashi et al. | Theoretical Computer Science 137 (1995) 253-268 263

in Fig. 2 recursively calculates the path-vector of T, from the path-vector P, of T and
the path-vector P, of T, in O(a) time where a =max(ppw(T;), ppw(T;)). Note that the
time complexity of Procedure MERGE is O(1) except for recursive calls. Since the larger
proper-path-width of two merged trees is reduced by at least two whenever Procedure
MERGE Is recursively called, the number of recursive calls is at most a— 1.

In Procedure LMERGE shown in Fig. 3, we can determine P’ in O(b) time by using
btm and b* in the chain of the path-vector where b=min(ppw(T;), ppw(T,)). If P’ is
determined at 1.2 or 2.2 in Procedure LMERGE then the number of recursive calls of
Procedure MERGE is at most P’'|n*|n|p <b. Otherwise Procedure MERGE returns the
path-vector in O(1) time. Thus Procedure LMERGE calculates the path-vector of the
join of two subtrees in O(b) time. Procedure DFS shown in Fig. 3 computes the
path-vector of a maximal subtree rooted at s in T from the path-vectors of maximal
subtrees rooted at children of s in 7 by using Procedure LMERGE. Procedure MAIN
shown in Fig. 3 obtains the proper-path-width of T from the path-vector of T ob-
tained by Procedure DFS. The algorithm starts with the isolated vertices obtained
from T by deleting all edges in T and reconstruct T by adding edge by edge while
computing path-vectors of connected components.

Let S(T') denote the time required to compute the path-vector of 7, M(T,, T5)
denote the time required to obtain the path-vector of T from the path-vectors of
7, and T, by Procedure LMERGE. From Theorem B(l1), we have ppw(7T)=
O(log| ¥ (T)|). Thus we have the following:

S(TY<S(Ty)+S(T2)+M(Ty, T3)
<S8(T1)+S(T2)+ O(min(ppw(T1), ppw(T2)))
<S(T1)+5(T2)+Ollog(min(| V(T1)|, | V(T2)]))-
Notice that the recurrence defined by f(1)=1 and, for n>2,
f(n)= max (f0)+f(n—i)+[log;(min(i,n—)))
satisfies f(n)=O0O(n). An easy way to verify this is to prove that, for n>1,
f(n)<2n—1—[log,n| by a straightforward induction. Thus we can prove that the
time complexity of the algorithm is O(n) where n=|V (7). O
We should mention that for any tree T with n vertices and ppw(7T)=k, we can

construct in O(nlog n) time a k-proper-path-decomposition of 7" by a slight modifica-
tion of the algorithm shown in Figs. 2 and 3 [21].

3. Mixed Searching

In mixed search game, a graph G is considered as a system of tunnels. Initially, all
edges-are contaminated by a gas. An edge is cleared by placing searchers at both its

264 A. Takahashi et al. | Theoretical Computer Science 137 (1995) 253-268

ends simultaneously or by sliding a searcher along the edge. A cleared edge is
recontaminated if there is a path from an uncleared edge to the cleared edge without
any searchers on its vertices or edges.

Definition 2. A search is a sequence of the following operations: (a) placing a new
searcher on a vertex; (b) deleting a searcher from a vertex; (c) sliding a searcher on
a vertex along an incident edge and placing the searcher on the other end; (d) sliding
a searcher on a vertex along an incident edge; (¢) sliding a new searcher along an edge
and placing the searcher on its end; (/) sliding a new searcher along an edge.

The object of such a mixed search is to clear all edges by a search. A mixed search is
optimal if the maximum number of searchers on G at any operation is minimum over
all mixed searches of G. This number is called the mixed search number of G, and is
denoted by ms(G).

We first show a relation to edge searching and node searching: for any graph G,
es(G)—1<ms(G)<es(G) and ns(G)— 1 <ms(G)<ns(G). The edge search and node
search are special cases of the mixed search by definition. Thus we have ms(G)<es(G)
and ms(G) < ns(G). Using at most one more searcher to traverse an edge that is cleared
by placing searchers at both its ends, we can convert any mixed search to an edge
search. Thus es(G) <ms(G)+ 1. Similarly, using at most one more searcher to clear an
edge that is cleared by sliding a searcher along the edge, we can convert any mixed
search to a node search. Thus ns(G) <ms(G)+ 1. All four cases are possible as shown in
Fig. 4.

A crusade in G, introduced by Bienstock and Seymour [2], is a sequence (C,,
C,,...,C,) of subsets of E(G), such that C; =0, C,=E(G), and |C;—C;_,|<1 for
1<i<r. The crusade uses at most k searchers if the number of vertices which are ends
of an edge in C; and also of an edge in E(G)— C;is at most & for 1 <i<r. Bienstock and
Seymour proved the following theorem.

Theorem D (Bienstock and Seymour [2]). For any graph G with minimum degree at
least two, ms(G)< k if and only if there exists a crusade in G using at most k searchers.

Moreover, they proved the following theorem by using the crusade.

Theorem E (Bienstock and Seymour [2]). For any graph, there exists an optimal
mixed search without recontamination of cleared edges,

This was proved independently by the authors in [19] using an optimal node search
without recontamination of cleared edges.
We obtain the following corollary from Theorem E.

Corollary 1. For any graph G, there exists an optimal mixed search without recon-
tamination of cleared edges such that it is a sequence of operations (a), (b), or (c) of

A. Takahashi et al. [Theoretical Computer Science 137 (1995) 253-268 265

-
Kis

(a) ms(K13) =2, es(K13) =2 ns(Ky3) =2 (b) ms(Ka) = 1, es(o) =1, ns(Ky) =2

G

Kys

(c) ms(Kjz3) =4 es{l33) =5, ns([33) =4 (d) ms((6) =2, ¢s(G) = 3, ns(G) =3

Fig. 4. Search numbers of graphs.

Definition 2, and satisfying the following two conditions:
(i) every vertex is visited exactly once by a searcher,
(11) every edge is visited at most once by a searcher.

A mixed search described above is said to be simple.

Bienstock and Seymour characterized the mixed search number of a graph with
minimum degree at least two by the concept of crusade as shown in Theorem D. In the
following, we characterize the mixed-search number of a simple graph by the proper-
path-width.

Theorem 5. For any simple graph G, ms{(G)=ppw(G).

Proof. Suppose that ppw(G)=k and &=(X{,X;,...,X,) is a full k-proper-path-
decomposition of G. If r=1 then let v, and u, be distinct vertices in X, and place
k searcher on the vertices of X; —{v, }. If (u;, v,)€ E(G), slide a searcher on u; to v, and
place it on v;. Otherwise, delete a searcher from u, and place a searcher on v,. This
defines a mixed search with k searchers. Thus we assume r > 2. We can obtain a mixed
search with k searchers as follows.

Step 1: Let v, be a vertex in X;nX,. Place the k searchers on the vertices of

X1—{v1}.

266 A. Takahashi et al./ Theoretical Computer Science 137 (1995) 253-268

Step 2. Letuy be a vertex in X, — X,. If (u;, v,)e E(G), slide a searcher on u, toward
vy and place it on v;. Otherwise, delete a searcher from u,; and place a searcher on v;.
Let i=1.

Step 3: Repeat Step 3 while i<r—2. Leti=i+1. Let u; be a vertex in X;— X;,, and
v; be a vertex in X;— X;_,. If (u;, v;)€ E(G), slide a searcher on u; toward v; and place it
on v;. Otherwise, delete a searcher from u; and place a searcher on v;.

Step 4: Let u, be a vertex in X,_;nX, and v, be a vertex in X,—X,_;. If
(u,,v,)eE(G), slide a searcher on u, toward v, and place it on v,. Otherwise, delete
a searcher from u, and place a searcher on v,.

From the definition of full k-proper-path-decomposition, both u; (1 <i<r—1) and
v; (2<i<r) are uniquely determined. It should be noted that ((X;— {v;})— {u;})o{vi}
=XinXip1=Xi1—{vi+1} and w4 €X; — {4, for 1<i<r—1. An edge with
both its ends in X;—{v;} (1<i<r) is cleared since the vertices in X;—{v;} have
searchers simultaneously in Step 1, 2, or 3. Also, an edge with both its ends in X, — {u,}
is cleared since the vertices in X, — {u,} have searchers simultaneously in Step 4. Since
G is simple, there exists at most one edge connecting u; and v; (1 <i<r), and each edge
(u;, v), if exists, is cleared by sliding a searcher along the edge. Thus all edges are
cleared at least once. Suppose that all edges connecting the vertices in { }; ;-1 X;
are clear and k searchers are placed on the vertices in X;— {v;}. Since u;#|)i+ 1 <<, X,
all edges incident to u; except for (u;,v;), if exists, are clear when a searcher
on u; is deleted or slid from wu;. Thus, when the searcher is placed on v, all
edges in (), ;<; X; are clear and k searchers are placed on the vertices in
Xi+1—{viy1}. Thus by induction no edge is recontaminated. Thus the search
above is indeed a mixed search with at most ppw(G) searchers, and we have
ms(G) < ppw(G).

Conversely, suppose that we have a simple mixed search & with k searchers. For
the ith operation of &, we define X; as follows:

(1) When a searcher is placed on (deleted from) a vertex, we define X; as the set of
vertices having searchers.

(2) When a searcher is slid from u to v, we define X; as the set consisting of u, v, and
the vertices having searchers.

Let =(X{,X,,...,X;) be the resulting sequence of sets of vertices. Since both
ends of an edge which is cleared in the ith operation are contained in X, all edges are
contained in some X;. Since & is simple, {), ;s X;=V(G) and each vertex of
G appears in consecutive X;’s. By the definition of X;, | X;|<k+1 for any i. Let
Z'=(X1,X5, ..., X;) be a maximal subsequence of & such that X;Z X} for any
distinct i and j. Notice that & satisfies conditions (i)—(iv) in Definition 1. We shall
show that k-path-decomposition 2" satisfies condition (x) in Lemma 2. If one of X;_,
Xi, and X;., is defined by (1), it is easy to see that | X;_n X |<k—1. Ifall X;_{,
X, and X, are defined by (2), then | X;|<k+1 and there exist distinct ¥ and v in
Xisuch that u¢ X}, ,, and v¢ X;_,. Thus we have | X;_;nX};,|<k—1. Therefore, Z’
satisfies condition () in Lemma 2, and there exists a full k-proper-path-decomposition
of G by Lemma 2. Thus ppw(G)<ms(G). [

A. Takahashi et al./ Theoretical Computer Science 137 (1995) 253-268 267

It should be noted that Theorems A and 5 provide a structural characterization of
trees 7 with ms(T)<k.
From Theorems 3-5, we have the following complexity results on ms(G).

Theorem 6. The problem of computing ms(G) is NP-hard for general graphs but can be
solved in linear time for trees.

We conclude with the following remarks:

1. Notice that Theorem 5 does not hold for multiple graphs. If G is the graph
consisting of two parallel edges, ppw(G) =1, and ms(G)=2. However we can prove
that ppw(G) <ms(G)< ppw(G)+ 1 for any multiple graph G.

2. Bodlaender and Kloks [4] showed an O(nlog? n) time algorithm to decide whether
pw(G) <k for any graph G and a fixed integer k. We can modify their algorithm to
decide whether ppw(G) <k for any graph G and a fixed integer k.

3. A relation between the mixed searching and another search games in which the
vertices must be cleared instead of edges [3,17] is mentioned in [19].

Acknowledgments

The authors would like to thank Prof. Berlekamp for his kind suggestions and an
anonymous referee for detailed comments which substantially improved the presenta-
tion of this paper.

References

[1] S. Arnborg, D.G. Corneil and A. Proskurowski, Complexity of finding embeddings in a k-tree, STAM
J. Algebraic Discrete Methods 8 (1987) 277-284.

[2] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms 12 (1991) 239-245.

[3] H.L. Bodlaender, Improved self-reduction algorithms for graphs with bounded treewidth, in: Proc.
Workshop on Graph-Theoretic Concepts in Computer Science WG 89, Lecture Notes in Computer
Science, Vol. 411 (Springer, Berlin, 1989) 232-244.

[4] H.L. Bodlaender and T. Kloks, Better algorithm for the pathwidth and treewidth of graphs, in: Proc.
18th Internat. coll. on Automata, Languages and Programming, Lecture Notes in Computer Science,
Vol. 510 (Springer, Berlin, 1991) 544-555.

[5] R.L. Breisch, An intuitive approach to speleotopology, Southwestern Cavers 6 (the Southwestern
Region of the National Speleological Society, 1967) 72-78.

[6] D.S. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 8 (1987) 285-303.

[71 L.M. Kirousis and C.H. Papadimitriou, Interval graphs and searching, Discrete Math. 55 (1985)
181-184.

[8] L.M. Kirousis and C.H. Papadimitriou, Searching and pebbling. Theoret. Comput. Sci. 47 (1986)
205-218.

[9] A.S. LaPaugh, Recontamination does not help to search a graph, J. ACM 40 (1993) 224-245.

[10] M. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson and C.H. Papadimitriou, The complexity of
searching a graph, J. ACM 35 (1988) 18-44.

[11] R.H. Mdhring, Graph problems related to gate matrix layout and PLA folding, in: G. Tinhofer, E.
Mayr, H. Noltemeier and M. Syslo. eds., Computational Graph Theory (Springer, Wien, computing
suppl. 7th ed. 1990} 17-51.

268 A. Takahashi et al.} Theoretical Computer Science 137 (1995) 253-268

[12] T.D. Parsons, Pursuit-evasion in a graph, in: Proc. Internat. Conf. on Theory and Applications of
Graphs, Lecture Notes in Mathematics, Vol. 642 (Springer, Berlin, 1976) 426-441.

[13] N. Robertson and P.D. Seymour, Graph minors. 1. Excluding a forest, J, Combin. Theory Ser. B35
(1983) 39-61.

[14] N. Robertson and P.D. Seymour, Graph minors. XII1. The disjoint paths problem, preprint, 1986.

[15] N. Robertson and P.D. Seymour, Graph minors. XVI. Wagner’s conjecture, preprint, 1987.

[16] P.Schefler, A linear algorithm for the pathwidth of trees, in: R. Bodendiek and R. Henn, eds., Topics in
Combinatorics and Graph Theory (Physica, Heidelberg, 1990) 613-620.

[17] S. Shinoda, On some problems of graphs — including Kajitani’s conjecture and its solution, in: Proc.
2nd Karuizawa Workshop on Circuits and Systems (1989) 414-418 (in Japanese).

[18] A. Takahashi, S. Ueno and Y. Kajitani, Minimal acyclic forbidden minors for the family of graphs
with bounded path-width, Discrere Math. 127 (1994) 293-304.

[191 A. Takahashi, S. Ueno and Y. Kajitani, Mixed-searching and proper-path-width, Tech. Report,
SIGAL 91-22-7, IPSJ, 1991.

[20] A. Takahashi, S. Ueno, and Y. Kajitani, Mixed-searching and proper-path-width, in: Proc. 2nd
Internat. Symp. on Algorithms, Lecture Notes in Computer Science, Vol. 557 (Springer, Berlin, 1991)
61-71.

[21] A. Takahashi, S. Ueno and Y. Kajitani, On the proper-path-decomposition of trees Tech. Report,
CAS 91-74, IEICE, 1991.

