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Fault-Tolerant Graphs for Hypercubes and Tori*

Toshinori YAMADA', Koji YAMAMOTO", Nonmembers, and Shuichi UENO', Member

SUMMARY Motivated by the design of fault-tolerant mul-
tiprocessor interconnection networks, this paper considers the
following problem: Given a positive integer ¢ and a graph H,
construct a graph G from H by adding a minimum number
A (t, H) of edges such that even after deleting any ¢ edges from
G the remaining graph contains H as a subgraph. We estimate
A (t, H) for the hypercube and torus, which are well-known as
important interconnection networks for multiprocessor systems.
If we denote the hypercube and the square torus on N ver-
tices by Qn and Dy respectively, we show, among others, that
Alt,Qn) = O(tN log(@ + log 2e)) for any t and N (t = 2),
and A(1,Dy) = %’ for N even.

key words:  hypercubes, tori, edge-fault-tolerant graphs, matric
graphs, error-correcting binary linear codes

1. Introduction

Motivated by the design of fault-tolerant multiproces-
sor interconnection networks, this paper considers the
following problem: Given a positive integer ¢ and a
graph H, construct a graph G from H by adding a min-
imum number of edges such that even after deleting any
t edges from G the remaining graph contains H as a
subgraph. We construct such graphs by adding small
number of edges for the hypercube and torus, which
are well-known as important interconnection networks
for multiprocessor systems. Many related results can be
found in the literature [1]-[15],[17]-[23],[25]-[29].

Let G be a graph and let V (G) and E (G) denote
the vertex set and the edge set of G, respectively. If
SCE(G), G\ S is the graph obtained from G by delet-
ing the edges of S.

Let ¢t be a positive integer. A graph G is called
a t-EFT (t-edge-fault-tolerant) graph for a graph H if
G\ S contains H as a subgraph for every SC E (G),
with |S| < ¢. Let A (¢, H) denote the minimum number
of edges added to H to construct a ¢-EFT graph for H
with |V (H)| vertices.

Let Py, Cn, Ly, Dy, By, and @y denote the
path, cycle, square grid, square torus, complete binary
tree, and hypercube on NN vertices, respectively. The
following results can be found in the literature.
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Theorem I: [23],[27]A(t, Py) = [$(t—1)N]+1 (t <
N —2).
Theorem IL: [23],[27] A(t,Cy) = [5&tN] (¢t <
N —3).
Theorem IIL: [18] A(1,Ly) < 2v/N.
Theorem IV: [26] 3(N +1) < A(1,By) £ 15(N +
1) —2.
Theorem V: [18],[217,[26] A(1,Qn) = .

In this paper, we generalize Theorem V and show
that

Alt,Qn) = O (tNlog <@ + c>> (1

for any ¢ and N (¢t > 2), where ¢ = log 2e. We also show
that A(1, Dy) = & if N is even. Some generalizations
of the latter result are also mentioned.

We introduce in Sect.2 matric graphs associated
with binary matrices as a generalization of hypercubes.
The upper bound of A(¢,Qy) in (1) is proved by con-
structing a {-EFT matric graph for @ associated with
a basis matrix of an error-correcting binary linear code.
It is interesting that the {-EFT matric graph for Qu
proposed here has a strong fault-tolerance property. We
show that even after deleting %tN edges of ¢ different
dimensions from a ¢-EFT matric graph for Qu, the re-
maining graph still contains Q5 as a subgraph. An
essentially same construction is proposed in[13] inde-
pendent of this paper.

2. Hypercubes and Matric Graphs

The n-cube (n-dimensional cube), denoted by @ (n), is
defined as follows: V (@ (n)) = {0,1}™; E(Q(n)) =
{(u,v)|u,v € V(Q (n)), w (udv) = 1}, where @ denotes
bit-wise addition modulo 2 and w (z) is the Hamming
weight of vector x, that is the number of I’s which z
contains. It is easy to see that @ (n) is connected and
[V(Q(n))| = 2™ Since the degree of each vertex of
Q(n)isn, |[E(Q(n))] =n2""1. Anedge (z,y) is called
an i-edge (i-dimensional edge) if z and y differ in only
the i-th bit. The number of i-edges of Q (n) is 2" 1.
It is easy to see that the graph obtained from @ (n) by
deleting all i-edges is consisting of two disjoint copies
of (n — 1)-cubes. A graph G is called a hypercube if G
is isomorphic to @ (n) for some n.
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Let M be an (m,n)-binary matrix, which is an m
by n matrix consisting of 0’s and I’s. Let r; and ¢;
denote the i-th row and the j-th column of M, respec-
tively. Define R (M) = {ry,rq,...,rn} and C (M) =
{017 €2y, cn}-

The matric graph associated with an (m,n)-binary
matrix M, denoted by G (M), is defined as follows:
V(G(M)) = {0,1}"; any two vertices u and v are
joined by |[{r € R(M)|r = u @ v}| parallel edges.
An edge (u,v) of G(M) is said to be of dimension
r(e R(M)) if r = udv. Forr € R(M), E(r) is
the set of all edges of dimension r of G(M). For
SCR(M), E(S) = U,cg E(r). Since each vertex of
G (M) is incident to an edge of dimension r for any
r € R(M), the degree of each vertex of G (M) is m.
Thus |E (G(M))| = m2*~*. For SCR(M), let M \ §
denote the matrix obtained from a binary matrix M by
deleting the rows of S. It is easy to see the following
two lemmas from the definition of the matric graph.
Lemma 1: If I, is the (n,n)-unit matrix, G (I,) =
@ (n). Moreover the edges of dimension 7; of G (I,,)
correspond to the i-edges of Q (n).

Lemma 2: G(M\S)=G(M)\ E(S).

Lemma 3: If a binary matrix M has a column consist-
ing of 0’s, G (M) is disconnected.

Proof: - Assume that ¢; = 0 for some {. Define V) =
{veV(G(M))v; =0} and Vi = {v € V(G (M))|v; =
1}, where v; denotes the i-th bit of v. (Vo, V4) is a par-
tition of V (G (M)). Since ¢; = 0, there exists no edge
joining a vertex in V and a vertex in V3. Hence, G (M)
is disconnected. ad
Lemma 4: If M’ is a matrix obtained from an (m,n)-
binary matrix M by elementary column operations,
G (M) is isomorphic to G (M).

Proof: It suffices to prove the following: (mcxlvii) If
M’ is a matrix obtained from M by exchanging column
¢, with column ¢;,, 1 < j; < jp < n, then G (M)
is isomorphic to G (M); (mexlviii) If M’ is a matrix
obtained from M by adding ¢;, to ¢;,, j1 =+ j2, then
G (M) is isomorphic to G (M).

Proof of (mcxlvii): Let ¢y be a mapping of V (G (M))
to V (G (M,)) such that ©1 (U) = (’Ul, ey Vg —1,Vj,,
Ujiqis -+ > Ujae1, Uy, Ujatl, - - -, Un ). If 01 () = 1 (v),
then u; = v;(1 £ § £ n), and so v = v. Thus,
1 is a one-to-one mapping. Since |V (G(M)) =
V(G (M'))| = 2", ¢ is a bijection. Let v} denote the
i-th row of M'. If r; = (z1,22,...,%y), 7} = (21,...,
Lj1—1, Lo Lji41se 3 Ljo—19 Ly Ljo1y--- ,.’.En). Since
u®wv = r; if and only if @1 (u) & @1 (v) =71, (u,v) €
B (G (M)) if and only if (i1 (), o1 (v)) € E (G (M),
Thus G (M") is isomorphic to G (M).

Proof of (mcexlviii): Let o be a mapping of V (G (M))
toV (G (Ml)) such that s (’U) = (’Ul, cey Ui -1,V @
Vjos Uji 415+ -+ ,jn) If 25] (u) = L2 (’U), then Uj = Uy (j =l=
J1) and uj, @ vy, = v;, ®vy,. Since uj, = vj,, we
obtain uj;, = v;,, and so v = v. Thus @2 is a bijec-
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tion. If r; = (z1,22,..., %), 75 = (@1,...,Tj 1,25, D
Loy Tjrt1s---%n). Since u ® v = r; if and only if
02 (u) & w2 (v) = rf, (u,v) € E(G(M)) if and only
if (g2 (u), 2 (v)) € E(G(M')). Thus G(M') is iso-
morphic to G (M). O
Theorem 1: For any (n,n)-binary matrix M, G (M) is
isomorphic to @ (n) if and only if M is non-singular.

Proof: If M is non-singular, we can obtain the unit
matrix I, from M by elementary column operations.
Thus, G (M) is isomorphic to Q (rn) by Lemmas 1 and
4. ‘
If M is singular, then we can obtain a matrix with a
column consisting of 0’s from M by elementary column
operations. Thus, G (M) is not isomorphic to @ (n),
since G' (M) is disconnected by Lemmas 3 and 4. 0O

Corollary 1: For any (m,n)-binary matrix M, G (M)
contains @) (n) as a subgraph if and only if the rank of
M is n.

Proof: If the rank of M is n, then there exists S C
R (M) with |S| = m — n such that M \ S is an (n,n)-
binary non-singular matrix. Thus, G (M \ S) is isomor-.
phic to @ (n) by Theorem 1, and so G (M) contains
Q (n) as a subgraph by Lemma 2.

If the rank of A is less than n, we can obtain a ma-
trix with a column consisting of 0’s from M by elemen-
tary column operations. Thus, G (M) is disconnected
by Lemmas 3 and 4. Since |V (G (M))| = [V (Q (n))] =
2", we conclude that G (M) does not contain @ (n) as
a subgraph. a

3. t-DFT Matric Graphs for Hypercubes

Let M be an (m,n)-binary matrix. G (M) is called
a t-DFT (t-dimension-fault-tolerant) matric graph for
Q(n) if G(M)\ E(S)(= G(M \ S)) contains Q (n)
as a subgraph for any SC R(M), with |S| < t. De-
fine A(t,n) = min{|E (G (M))| - |E(Q(n))| | G(M) :
t-DFT matric graph for Q (n)}. Since the degree of
each vertex of G (M) is m, the problem of finding A (¢, n)
is equivalent to the one of finding the minimum num-
ber of rows of a binary matrix M such that G (M) is a
t-DFT matric graph for @ (n). The following theorem
characterizes the t-DFT matric graph for Q (n).
Theorem 2: For any (m,n)-binary matrix M, G (M)
is a t-DFT matric graph for @ (n) if and only if the
Hamming weight of any linear combination of C (M)
is at least ¢ + 1.

Proof: Assume that there exists a linear combination
of C'(M) such that its Hamming weight is at most ¢.
Then we can obtain a matrix M’ with a column (say,
the j-th column) of Hamming weight at most ¢t from M
by some elementary column operations. Let S be the
set of rows of M corresponding to the rows S of M’
whose j-th bits are 1’s. Since the j-th column of M’\ S’
is consisting of 0’s, G (M’ \ S") does not contain Q (n)
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as a subgraph by Corollary 1. Since G (M \ S) is iso-
morphic to G (M'\ S") by Lemma 4, and |S| = |S'| < ¢,
we conclude that G (M) is not a t+~-DFT matric graph
for @ (n).

Conversely, assume that the Hamming weight of
any linear combination of C' (M) is at least ¢+ 1. Then
C (M \ S) is linearly independent for any S C R (M)
with |S| < ¢, and the rank of M\ S isn. Thus G (M\ S)
contains @ (n) as a subgraph by Corollary 1, and we
conclude that G (M) is a t-DFT matric graph for Q (n).

O

Theorem 2 means that for any (m, n)-binary matrix
M, G (M) is at-DFT matric graph for Q (n) if and only
if C (M) is a basis of an n-dimensional binary vector
space such that the Hamming weight of any non-zero
vector is at least ¢t + 1. Thus ¢-DFT matric graphs can
be characterized by error-correcting binary linear codes.
Theorem 3: For any (m,n)-binary matrix M, G (M)
is a t-DFT matric graph for @ (n) if and only if C (M)
is a basis of an n-dimensional binary linear ¢ode with
minimum distance at least £ + 1.

The following bounds for the existence of n-
dimensional binary linear codes with minimum distance
at least ¢ + 1 are well-known. (See[24], for example.)
Theorem VI: If there exists an n-dimensional binary
linear code with minimum distance at least ¢ + 1 and
length m, then

L3]
m
()
i=0

Theorem VII: There exists an n-dimensional binary
linear code with minimum distance at least ¢ + 1 and
length m for which the following inequality holds:

i—1
m—mn m
s §(7)

The inequalities of Theorems VI and VII are well-
known as Hamming bound and Varsharmov-Gilbert
bound, respectively. It should be noted that Theorem
VII is proved constructively. In what follows, we esti-
mate A(¢,n) from Theorems 3, VI, and VII. We need a
few lemmas.

Lemma 5: Forl<k<m,
m\k a m (™
(&)= (7)== (%)

k
Proof: Let S(m, k)= Z ( T > Then
=0

Mmmg<2>

m(m—1)---(m—k+1)
k!

[SEY

Qm—n 2
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> (ﬁ)k .
~\k
The right inequality is proved by induction on m
and k.
(1) Since S (m,1) =m+1 < 2m and S (k, k) = 2k,
the claim is true if k =1 or m = k.
(2) Let 2 £ £ < m, and assume that the claim is
true for S (m, k'), S (m'k), and S (m/, k') with m > m/
and k > k’. Since

(7)= () (75
(1<i<m—1),
S(m,k)=5(m—-1,k)+S(m—1,k—1). Thus,

s (7542 (2
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Lemma 6: [16] For any positive integer m and k where
m =k,

m em\k
< k )é (T) ‘
Lemma 7: Let y = 2. If z —logz < y, then z <
y+2logy.
Proof: Assume that z > y + 2logy = 2 and let
g(z) = z —logz. Since g(z) is an increasing function
for z > 2,,and z > y + 2logy > 2,

g(z)—y > g(y+2logy) —y

= 2logy —log (y + 2logy)

y2

= log —%——
y -+ 2logy

Since y? = y + 2logy for any y = 2, z — logz > v,
which is a contradiction. O

Theorem 4: Let M be an (m,n)-binary matrix. If
G (M) is a t--DFT matric graph for @ (n) (¢ = 2), then

wone|ifmo2])

Proof: 1f G (M) is a t-DFT matric graph for Q (n),
C (M) is a basis of an n-dimensional binary linear code
with minimum distance at least ¢ + 1 by Theorem 3.
Thus, by Theorem VI and Lemma 5, we have

3 ()= (3)

where k = [%]. Hence
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m~ngklog%gklog%
[

Theorem 5: There exists an (m,n)-binary matrix M
such that G (M) is a ¢-DFT matric graph for Q (n)
(t 2 2) and ‘

mZn+c(t—1)+2(—1)log <Zﬁ—1+c),

where ¢ = log 2e.

Proof: By Theorems 3 and VII, there exists an (m, n)-

binary matrix M such that G (M) is a t-DFT matric
-1

graph for Q (n) (¢t > 2) and 2™ " < Z ( T > Thus,
=0

by Lemmas 5 and 6,

gm—n < 2em \'
—A\t—-1 ’

i.e.
m—-n<({t—1) (log +10g2e>,
ie.
renci log renril-Sroncy +ec.
Since ¢ > 2, by putting z = ;; and y = ;%5 + ¢ in

Lemma 7, we obtain

n

n
t_l_t_1+c+2log<—t_1+c>.

Hence
mEZn+ct—1)+2(—1)log (%4‘0).
[
Since the numbers of edges of G (M) and Q (n) are
m2"~1 and n2" !, respectively, we obtain the following
theorem from Theorems 4 and 5.
Theorem 6:

EJ 2" Liog (n/ EJ) < A(t,n)
< (t—1)27? {210g (% + c) + c} :

where ¢ > 2 and ¢ = log 2e.

If t < 2n, bounds above are optimal to within
a constant factor, and we have A(t,n) = ©O(t2""!
log(% +¢)). If t = 2n, the upper bound above is
O (2" 'log (2 +¢)) = O(t2"'). We have a trivial
lower bound of t2"~* since the degree of each vertex of
a t-DFT matric graph is at least n + ¢. Thus our upper
bound is also optimal to within a constant factor even
if t > 2n. In summary, we have the following theorem.
Theorem 7: A(t,n) = O(t2" 'log (% +¢)) (t = 2,
¢ = log 2e).
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4. t-EFT Graphs for Hypercubes

Since a ¢-DFT matric graph for @ (n) is also a t-EFT
graph for Q (n), we have A(¢,Q (n)) < A(t,n). Thus
we obtain the following theorem from Theorem 6
Theorem 8 A(f,Q (n)) = O (12" tlog (% +¢)) (t =
2, ¢ = log 2e).

On the other hand, we have the following lower
bound ‘

Alt,Q(n)) = 27, 2)

since the degree of each vertex of a t-EFT graph for
@ (n) is at least n +¢. It is an interesting open problem
to close the gap between the bounds in Theorem 8 and
(2). It should be noted that if ¢ = Q(n), then the upper
bound in Theorem 8§ is optimal to within a constant
factor. ‘
If M is the (n + 1,n)-binary matrix obtained from
I, by adding a row consisting of 1’s, then M satisfies
the condition of Theorem 2 for ¢ = 1. Thus, we have

2" < A(1L,Q (n) £ A(L,n) < 277L

which means Theorem V.

5. t-EFT Graphs for Tori

The Cartesian product of graphs G and H is the graph
G x H with V(G x H) = V(G) x V(H), in which
(u,v) is adjacent to (v/,v') if and only if either v = u’
and (v,v') € E(H) or v = v/ and (u,v) € E(G).

D (mi,mq,...,mg) = Cpy X Cpy X -++ X Cpy, 18

called a d-dimensional torus. We denote an element of
21
7

V(Cmy) XV (Ciy) X - - X V (Chyy) by , where
g

1, €V (Cp,) fork=1,2,...,d.

Theorem 9: If m; and my are even, A(1, D (mq, ms))
=, where N = |V (D (m1,ms))| = my x ma.

Proof: Let V(C,,, ) =1{0,1,...,mp — 1} fork=1,2.
In what follows, we denote D (mq,mg) by D.

Let G be the graph obtained from DD by connect-
. i1 . i1 + 2mq) mod my
ne { 9 ] with { Eig + §m2§ mod my
11 =0,1,...,m1 — 1,92 =0,1,...,mo — 1. It is easy to
verify that |E (G)| — |E(D)| = &, since G is obtained
from D by connecting each vertex with the unique far-
thest vertex in D by an edge. We will show that G is a
1-EFT graph for D.

Let ¢ be any edge of G. If e ¢ E (D), it is
trivial that G\ {e} contains D as a subgraph. We
show that G \ {e} contains D as a subgraph for any
e € E (D). We assume without loss of generality that

= ([ ] ]3]

V(D) to V (G) such that

by an edge for

). Let ¢ be a mapping from
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U Zf,UEI/l7
: .1
b:vi— [(zl—l—zml)modml} if eV,

3 .
§m2—22—1

where
i1 1 0<d1<my — 1,

IO (R ey
and Vo = {v € V(D) | v ¢ Vi}. Notice that
(V1,V3) is a partition of V (G). It is easy to see that
dp(v) € Vi ifv eV, and ¢ (v) € V, if v € V5. Thus
¢ (u) + ¢ (v)ifu + v, which means that ¢ is a one-to-
one mapping.

Now we show that (¢ (u), ¢ (v)) € E(G) — {e} for
any (u,v) € E (D). There are five cases.

Case 1) u,v € V;: In this case, ¢ (u) = u, ¢ (v) = v.
Thus (¢ (u), ¢ (v)) € E(G) — {e}.

_ 271 . 21 1 .
Case 2) u = iz},v— i2+1}(2m2§22§
. %
my — 2): In this case, ¢(u) = [ 2’241-1 o (v) =

</
1
1 Y A 1 3 .
[ b }, where 7] = (i1 +5my) mod my, i = $my —iz —
2

2. Since Jmy < i < ma—2, (¢ (u), 6 (v)) € E (G)—{e}.
Case 3) u = { i1 },v _ [ (1'1+1)‘modm1 }
2 19
In this case, ¢(u) =
. d | |
z’; i|’¢(v): { (0 + )i/;no m :|,Wherez'1*(7,1+

my) mod my, iy = 3my — iy — 1. Thus (¢ (u), ¢ (v)) €

mo g ig é mg—l)Z
>/

—
N[

NP

E(G) - {e). | |
Case 4) u = [ m;il } ,U = { @01 }: In this case,
pw=| rFmmedms | o)~ | o] Ths

(6 (u), ¢ (v)) € B (G) — ) |
Case 5) u — {1 1 } v - [ 1 ]:

5’[7’?,2 -1 %m2
. _ i _
In this case, ¢(u) = Imy—1 | ¢(v) =

(21 + %ml) mod m;

mo — 1
{e}.
Thus (¢ (u), ¢ (v)) € E(G) — {e} for any (u,v) €
E (D), and we conclude that G \ {e} contains D as a
subgraph. O
Theorem 9 can easily be generalized to the higher
dimensional case.

| Ths (6 ). 00) € B(@) -

Theorem 10: If my is even for any k(k = 1,2,

.oyd), A(L,D(my,my,...,mg)) = &, where N =

‘V(D (ml,mg,.‘.,md))| =171 X My X -+ X Mgy.
Proof: Let V(Cn,) = {0,1,...,my; — 1} for
E = 1,2,...,d. In what follows, we denote

D (my,ma,...,mq) by D.
Let G be the graph obtained from D by connect-
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i1 (31 + Ltmy) mod my

. 7;2 . (Z2 + -2—77’7,2) mod mao

ing ) with by an edge
td (ig + $maq) mod mg

fori, =0,1,...,mg — 1,k = 1,2,...,d. It is easy to
verify that |E (G)| — |E(D)| = £, since G is obtained
from D by connecting each vertex with the unique far-
thest vertex in D by an edge. We can easily prove that
G is a 1-EFT graph for D by a similar argument as the
proof of Theorem 9, and we omit the details. t

We can prove that A (1,D (mqy,ma,---,mg)) <
dN in general, and A(2,D (mq,ms)) < %N for even
my, my = 6, but the proofs are rather complicated and
are omitted here.
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