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SUMMARY It is known that the problem of determining,

given a planar graph G with maximum vertex degree at most

4 and integers m and n, whether G is embeddable in an m x n
grid with unit congestion is NP-hard. In this paper, we show that
it is also NP-complete to determine whether G is embeddable in
a k x n grid with unit congestion for any fixed integer k£ > 3. In
addition, we show a necessary and sufficient condition for G to
be embeddable in a 2 x oo grid with unit congestion, and show
that G satisfying the condition is embeddable in a 2 x [V(G)|
grid. Based on the characterization, we suggest a linear time al-
gorithm for recognizing graphs embeddable in a 2 x co grid with
unit congestion.

key words: NP-completeness, graph embedding, congestion, grid,
VLSI layout

1. Introduction

The problem of efficiently implementing parallel algo-
rithms on parallel machines and the problem of effi-
ciently laying out VLSI systems onto VLSI chips have
been studied as the graph embedding problem, which is
to embed a guest graph within a host graph with certain
constraints and/or optimization criteria. For the former
problem, guest graphs and host graphs represent paral-
lel algorithms and parallel machines, respectively, and
the purpose is to minimize communication overhead,
such as dilation and/or congestion of the embedding.
For the latter problem, a guest graph represents connec-
tion requirements of a system and a host graph usually
represents a rectangular grid modeling wafer. In VLSI
layout, there are various criteria such as wire length,
wire congestion, crossing number, and the layout area.
We consider minimal congestion embeddings of
graphs into grids. The grids are well-known not only
as a model of VLSI chips but also as one of the most
popular processor interconnection graphs for parallel
machines. It is well-known that the minimal conges-
tion embedding is very important for a grid-connected
parallel machine that uses circuit switching for node-
to-node communication. In VLSI layout, the minimal
congestion embeddings are crucial in the sense that the
congestion is a lower bound for the number of layers.
Let G be a graph and let V(G) and E(G) denote
the vertex set and edge set of G, respectively. We denote
by A(G) the maximum degree of a vertex in G. An em-
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bedding (¢, p) of a graph G into a graph H is defined by
a one-to-one mapping ¢ : V(G) — V(H), together with
a mapping p that maps each edge (u,v) € E(G) onto a
path p(u,v) in H that connects ¢(u) and ¢(v). The con-
gestion of an edge ¢’ € E(H) under (¢, p) is the number
of edges e in G such that p(e) contains ¢’. The conges-
tion of an embedding (¢, p) is the maximum congestion
of an edge in H. The one dimensionaln-grid denoted by
M (n) is the graph with vertex set {0,1,...,n — 1} and
edge set {(4,i+1) | 0 <1 < n—2}. A Cartesian product
M (n1) x M(ns) is called a two dimensionaln, x na-grid
and denoted by M (n1,n2). We define that nyny is the
area of M(nyi,n2). M(2,n) is called an n-ladder and
denoted by L(n). The embedding of a graph G into
a two dimensional grid H is called a layout of G into
H if it has unit congestion. A layout (¢, p) of G into
H is said to be planar if p(e1) and p(ez) are internally
vertex-disjoint for any distinct e, e2 € E(G).

Formann and Wagner[1] showed that the follow-
ing problem is NP-complete.

GraPH Lavourt 1
Instance A planar graph G with A(G) < 4
and an integer A.
Question Does there exist a layout of G into
the grid of area at most A?
Kramer and Leeuwen[3] showed that GRAPH LAYOUT
T can be reduced to the following problem:
GraAPH Lavourt 1T
Instance A planar graph G with A(G) < 4
and integers m, n.
Question Does there exist a layout of G into

M(m,n)?

and thus GraPH LAavouT II is NP-hard*.
We consider the following problem which is a vari-
ant of GRAPH LavouT II:

GRAPH k-LAvouT

Instance A planar graph G with A(G) <4
and an integer 7.

*[3] claimed that GrRAPH Lavour II is in NP without
proof. However, this is not trivial as mentioned in Sect. 3.2.
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Question Does there exist a layout of G into
M(k,n)?

We prove that the GRAPH k-LayouT is NP-complete
for any fixed ¥ = 3. GRAPH 1-LAYOUT can be triv-
ially solved in polynomial time. Although we do not
know the complexity of GRAPH 2-LAYOUT, we consider
a closely related problem of laying out a graph into a
ladder. We show a necessary and sufficient condition
for a graph to be laid out into L{co) and show that
the graph satisfying the condition can be laid out into
L(|V(G)]). Based on the characterization, we suggest a
linear time algorithm for deciding if a given graph can
be laid out into L(00).

The paper is organized as follows. Some defini-
tions are given in Sect.2. In Sect. 3, we prove the NP-
completeness of GRAPH k-LAYoUT for any fixed integer
k = 3. In Sect.4, we review the proper-path-width of
graphs and show some lemmas used in the following
section. In Sect.5, we give a necessary and sufficient
condition for a graph to be laid out into L(co). We
conclude the paper with some remarks in Sect. 6.

2. Preliminaries

I'c(v) is the set of edges incident to a vertex v in a graph
G. |Tg(v)| is called the degree of v and denoted by
degq(v). For SCV(G), letTg(S) = U{Tg(v) | v € S}.
G[S] is the subgraph of G induced by S CV(G).

For graphs G and H, G U H is the graph with
vertex set V(G) U V(H) and edge set E(G) U E(H).
We write GCH if G is a subgraph of H. For an
embedding ¢ = (¢,p) of G into H and G'CG, let
e(G') = UeeE(G’) ple).

Let M = M(ny,ne). For a vertex (i,7) € V(M), let
L(i,j) =i and b3, 5) = 4. Let RM = {(i,5) € V(M) |
0<jsny—1tand CY = {(3,j) e V(M) |0<i <
n; — 1}. Subgraphs M[RM] and M[C}'] are called the
ith row and the jth column of M, respectively. For an
embedding (¢, p) of M and a vertex (3,7) € V(M), we
denote ¢((4, 7)) simply by ¢(¢, 7).

3. NP-Completeness of GRaPH k-LAyouT

We prove the following theorem in this section.
Theorem 1: GRAPH k-Layour is NP-complete for
any fixed integer k = 3.

We prove in Sect.3.1 that GRAPH k-Lavout (k = 3)
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is NP-hard by constructing a pseudo-polynomial reduc-
tion from 3-PARTITION which is well-known to be NP-
complete in the strong sense to GRAPH k-LAyouT. We
show that GRAPH k-LAyouT is in NP in Sect. 3.2.

3.1 NP-Hardness of GRAPH k-LAYOUT

3-PARTITION is defined as follows.

3-PARTITION

Instance A positive integer B, and a set of
3m integers A = {aog,a1,...,a3m—1},
such that B/4 < a, < B/2 and
St a, = mB.

Question Can A be partitioned into m
disjoint sets Ap,...,An_1 such that
ZaeAya=B foro<y<m-—1?

For given integers B,ag,...,a3,—1 as an instance
of 3-PARTITION, we construct the instance of GRAPH
k-LAYOUT as follows:

G(A,B) = F(B,m,k)U | ) M(ay),

0<z<L3m—1
n(A,B) = m(B+k+1)+k+1,

where F'(B,m, k) is the graph obtained from M (k,
n(A, B)) by removing the vertex (1, ) and joining (0, 7)
and (2, j) by an edge for each j = (B4+k+1)y+2+k+1
O=£y=<m-10< z< B~-1). Figure 1 shows
F(B,m, k). It should be noted that G is well-defined if
k= 3.

Throughout this subsection, k£ > 3 is a fixed integer.
For 0 < y < m, we define that J = {(B+k+1)y+z |
0<z<k}, Jf,\/[:‘{(B+k+1)y+z|1§Z§k—1},
My = F(B,m,k)[{(i,j) |[0£i < k—1,j € JM}], and
M, = F(Bm )[{(i,j) | 0Si < k—1,j € JM}. It
should be noted that A, is isomorphic to M (k,k + 1)
for each 0 < y < m. Moreover, for 0 <y <m — 1, we
define that JP = {(B+k+1)y+2+k|0< 2 < B+1},
and Dy = F(B,m,k)[{(i,7) |0< i< k—1,j € JP}].

Now we show that A can be partitioned into dis-
joint sets Ag,..., A,—1 such that ZaeAy a = B for
0 <y < m—1if and only if there exists an layout
of G(A, B) into H = M(k,n(A, B)) by a series of lem-
mas.
Lemma 2: For any layout e = (¢, p) of M = M(k, k +

Fig. 1  F(B,m,k). The gray area is grid-connected.
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1) into H = M(k,n(A, B)),
0SVi<k—13:

e(MIRM —{(i,0), (i, k)}]) S H[R{], (1)
1<Vj<k—135:
e(M[C}']) = H[C]T). ()

Proof: For 0 < ¢ < k—1and 0 £ 5 £ k, let

PP = e(M[R}M]) and P = e(M[CM]). Let
@ = min  max bL(6G7),
g2 = max wmin (@),

and
jefosjsk| max b(664)=al,

e {0<j<k] m1’1€1 12((3,7)) = go}-

It follows from the definitions of ¢; and g, that

0<Vi<k
Ju, € CM i q < la(é(vy)), and 3)
Jug € C qo = lz(¢(1)2))

Claim 3: ¢; < 2.

Proof: If ¢ > g¢» then it follows from (3) that
P(,C,...,P,gj are k + 1 edge-disjoint trails across the
columns between the g;st column and the gand column
of H. However, this is impossible since H has just k
rows. Thus, we have g1 < gz.

It remains to show that ¢; + g». We prove this
by contradiction. If g; = ga = ¢ then it follows from
(3) that P{, .. Pk are k+ 1 edge-disjoint trails across
the gth column of H. Thus 0 < ¢ < n(A,B) — 1, for
otherwise, ¢ = 0 or ¢ = n(A, B) — 1, and we have that
$(CMYNCH + ¢ for every 0 < j < k, contradicting that
¢ is one-to-one since [{C}}| > |CF|. We define that

E- = {((i,g—1),(i,9)) € B(H) |0 <i<k -1},
ET = {((i,q),(i,q+ 1)) e E(H) |0Li <k —1}.

For each 0 < j < k, if ¢(C}1)NCJT = 0 then there exist

v1,v3 € CM such that Ip(¢(vs)) < g < l2(¢(vy1)) from
(3). Thus, 1t follows that for any 0 £ j < k,

H(CMYNCE+0 or 4)

E(PPYNE™ 40 and E(P{) N ET 4. 5
Claim 4: Forany0< ;5 <k,

E(PFYn(E-UE"Y) 0. (6)

Proof: If there exists 0 < j' < k such that E(P7) N
(E~UET) =0, then Py is identical with H[CF]. This
means that a vertex w1th degree at least 3 in CM i
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mapped into {(i,q) € V(H) | 1 <4 < k— 2}, and that
a vertex with degree at least 2 in C’J]-‘,/I is mapped into
{(i,q) € V(H) | i =0 or k—1}. Thus, both (4) and (5)
do not hold for any 7 % j' (0 < j < k), a contradiction.
Therefore, (6) holds for any 0 < j < k.

End of proof of Claim 4

Claim 5: jl :*: jQ.

Proof: If j; = js, then ¢(C}) = CH by definition.
Thus, for every j # 71 (0 £ j < k), (5) holds since
(4) does not hold. However, since (0,q) € #(C}/) and
degy(0,9) = 3, P{ does not pass through (0,q) for
every j # ji1 (0 £ j < k). Thus PP does not pass
through T'(0,q) for every j 4 j1 (0 < j < k). Since
P§,..., P are edge-disjoint, it follows from (5) that

STOEEPANETI+ Y [B(PY)NEY

0<i<h—1 0gjgk—1

+[Tx(0,9) N (E-UEN)| 2k +k+2=2k+2
However, this is a contradiction since the left hand side
of the inequality is no more than |E~ U E*| = 2k.
Therefore, we have j; & j2.  End of proof of Claim 5

Let

C: = {v e CM|ly(¢(v) = g}, and

Co = {v e Cf | 12(6(v)) = ¢}
Since

Yo e CH - C : l(¢(v)) < ¢, and

Yo € C’j\f —Cs : la(p(v)) > g
by definition, it follows that

Vie Xy : E(PEYNE™ £0, )

Vie Xy : E(PEYNET 0, (8)
where

Xy ={0<i<k—1]|(,5)€C) —Ci},

Xo = {0<i<k—1]|(i,j2) € Cl — Ca}.
PE | are edge-disjoint,

Since PC,...,P¢ and P&, ...,

we have

> |EPS)N

(E-UED)|+ Y IERHNE|

0gj<k iexy
+ Y |E(PF)NET| < |[ETUET| =2k 9)
1€Xo

Since 71 = jz, it follows that [C1] + |[C2| = |[C1 U Cq| <
|CH| = k. Thus, it follows from (6), (7), and (8) that
(the left hand side of (9))
> (k+1) +|Xq| + | Xz
= (k+ 1)+ (k—|C1]) + (k- |Ca])
> (k+1)+2k—k
> 2k + 1,
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a contradiction. This proves that g; ¥ ¢o.

Therefore, we have g1 < ¢o.
End of proof of Claim 3

Thus P, ..., PR | are k edge-disjoint trails across
the columns between the g;st column and the gand col-
umn of H. EBach P? (0 < i < k — 1) passes through
only edges in one row of H' = H(UJ, ;... CF] since
H has just k rows. Thus, it follows from (3) that for any
0<3j<k( ¢ {j1,72}) P passes through only col-
umn edges of H’. Therefore, we have {31, 72} = {0, k},
and (1) and (2) hold. O

Throughout this subsection, we assume that ¢ =
(¢, p) is alayout of F'(B,m, k) into H = M (k,n(A, B)).
We may assume without loss of generality that

h(6(0,1)) £ L(d(k—1k-1) and 0
(¢(0,1)) < Iap(p(k—1,k—1)).

Lemma 6: Forany 0 <y <m,
0<Vi<k—13:
e(F(B,m, k)[{(i,5) | 7 € Iy CH[RT], (1)

vie M 3y
e(F(B,m, k)[{(i,7) | 0<i< k—1}])
= H[CT). (12)
Proof: Immediate from Lemma 2. O

Corollary 7: For any 0 < y < m and e €
E(F(B,m,k)) — E(My), p(e) does not pass through
an edge of e(M,). O
Lemma 8: For any j € Jyﬁ and 7/ € Jy g < 7,
O=y<y <m),

12(¢(0,7)) < 12(4(0,5")). 13)

Proof: We first consider the case when y = 0. It follows
from Lemma 6 and assumption (10) that

l2(¢(07 1)) < 12(¢(07 2)) <o < l2(¢(07 k— 1))

Thus, (13) holds for any 5,5’ € JOM (j < j'). Further-
more, for any j € JOM and j' € Jy(j <j,0<y <m),
(13) follows from Corollary 7.

We next consider the case when y > 0. Suppose
jeJMandj € Y (j <,y <y < m) Let
P = e(F(B,mE){(0,l) | k—1 <1 < j}]). Since
L (#(0,k — 1)) < l2(8(0,5")), if l2(4(0, 7)) > l2(4(0, 7))

then P passes through a vertex in Cf (0,577)- This
means that e(F(B,m,k)[{(i,5) | 0 < i < k—1}]) +
CIJ;I(QS(O,j’))’ contradicting to (12).

Therefore, we have lI2(¢(0, 5)) < l2(¢(0, 57)) for any
jeslandj € (G<i0<y<y <m). O
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Lemma 9: For any j € JyM 0=y <m)and 5, 5"
such that 0 < j' < j < j” <n(A4,B) -1,

ba(9(3,5)) < 12((0, 7))
l2(e(i,5")). (14)

max
0<i<k—1

< min
0<i<k—1

Proof: Immediate from (12), Corollary 7, and Lem-
ma 8. a

Lemma 10: For any 0 <y <m —1 and any j,j' € JP
(7 <3, 12(9(0, 7)) < 12((0,5")).
Proof: It follows from Lemma 9 that
(0, (B+k+1)y+k ~ 1))
< 12(9(0,5)) ‘
< la(d(0,(B+k+1)(y+1)+1)) (15)
for any j € JP. Fix j,j/ € JP (j < j') and let
q = 12(¢(0,7)). We define that
ET = {((LQ"_ 1)7(7:>Q)) € E(H) | 0§Z§ k_l}a
EY = {((i,q),(i,q+1)) e E(H) [0<i < k—1}.
Fori € {0,2,...k—1}, let P = e(F(B,m,k)[{(i, (B+
k+1)y+z+k) | -1 <z < B+2}]). Since Pf,..., PF |
are edge-disjoint and each PiR (3L i< k—1) contains

at least one edge in £~ and at least one edge in ET
from (15), it follows that

> IB(RHNET| 2 k-3, (16)
3<igk—1

> EPHNEY 2 k-3, a7
3<i<k—~1

First assume that I5(¢(0, 7)) > 12(¢(0,5')). It fol-
lows from (15) that P contains at least 3 edges in
E~, and P£ contains at least one edge in £~. Since
P, PE, ..., PE | are edge-disjoint, it follows from (16)
that

> IBEHNET|z3+k-2=k+1,
i€{0,2,....,k—1}

which is a contradiction since the left hand side of the
inequality is no more than [E~| = k.

Next assume that I3(¢(0, 7)) = l2(4(0, 7).

Assume that Io(4(2,7)) = l2(¢(2,5')) = q. Since
all the vertices in U = {(0,7),(0,5),(2,4),(2,7)} C
V(F(B,m,k)) have degree at least 3, none of
Pf,... Pl passes through a vertex in ¢(U). Thus
none of Pf ..., PR | passes through an edge in
Iu(¢(U)). Since [Ty (¢(U)) N E~| = 4 by the assump-
tion that ¢(U) C CE, it follows from (16) that

> E@PE)NET|+|Ta(e(U) N E7|
3<igk—1
2 k—-3+4=k+1.
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This is a contradiction since the left hand side of the
inequality is no more than |E~| = k.

Thus, we conclude that l2(¢(2,7)) ¢ or
la(#(2,5")) + q. We assume without loss of general-
ity that 5 (¢(2’j)23 + ¢ and show a contradiction. For
i € {0,2}, let P = e(F(B,m,k)[{(i,1) | (B+k+
Dy+k—1<1<3}]), and P = e(F(B,m, k)[{(,1) |
j <1< (B+k+1)(y+1) +1}). Moreover, let
P =e(F(B,m,k)[{(i,j) | 0= i< k—1}]).

Case 1 I5(¢(2,7)) < ¢ Each of P*", P;f, and
ch contains at least one edge in E~, and they to-
gether with Pf,... P | are edge-disjoint. Moreover,
none of Py, Py", PP, and Pf,..., P, passes
through ¢(0,5'). Thus none of Py, Py**, P¢, and
PE ..., Pl passes through an edge in Tz (¢(0,5")).
Thus, it follows from (16) that

ST EEPH NET| +0a(6(0,) N E |+
3<i<k—1

[B(Pg ) NE™| +|E(By )N E™| +

|E(PEYNE™|2k—3+4=Fk+1.
This is a contradiction since the left hand side of the
inequality is no more than |[E~| = k.
Case 2 I5(4(2,7)) > ¢: Let P’ = (F(B,m, k)[{(2,)),
(2,5),(0,7)}]). Each of P{t, P*~, P, and P’ con-
tains at least one edge in ET1, and they together with
PE ... P, are edge-disjoint. Thus, it follows from
(16) that

Z |B(PEYNE"|+ [B(PT)NET |+
3<igk—1

|E(PEYNEY|+ |E(PY)NET| +|E(P) N ET|

>k—-3+4=Fk+1.

This is again a contradiction since the left hand side of
the inequality is no more than |[Et| = k.

Therefore, we conclude that l2(4(0,7)) < la(¢(0,
7)) o
Lemma 11: Forany0<y<m,

VjGJE/T:
¢({(5,5)|0<i<k—1})=Cf, (18)
VieJP:
¢({(5,5) [ 0=i<k—1})
c{@)eVH)|0<i<k—-11eJP} (19

Proof: It follows from Lemmas 9 and 10 that I5(4(0,
7)) < la(¢(0,4) for any 0 < j < j" < n(4,B) —1.
Since H has just n(A, B) columns, we have l3(4(0,5)) =
j for any 0 < j < n(A,B) — 1. Thus, (18) holds by
Lemma 6, and (19) holds by (18) and Lemma 9. O
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Now we are ready to prove the following.
Lemma 12: GraprH k-LavyouT is NP-hard for any
fixed integer k = 3.

Proof: We first assume that A can be partitioned into
disjoint sets Ag,..., A1 such that ZaeAya = B
for 0 < y < m — 1. We construct a layout (¢, p’)
of G(A,B) into H as follows: By the definition of
F(B,m, k), F(B,m,k) has a planar layout into H such
that ¢(i,5) = (4,7). Foreach 0 <y < m — 1, we lay-
out M(a,) into H[{(1,(B+k+1)y+2z+k+1)|0=
z < B—1}] if a, € A,. We can construct such lay-
out by the assumption that A can be partitioned into
disjoint sets Ap, ..., Am—1 such that ZaeAy a = B for
0 <y £ m—1. Thus, we have obtained the desired
layout.

Conversely, we assume that there exists a layout
e = (¢,p) of G(A,B) into H. For 0 <y <m — 1, let
U, = Uy, — ¢'(V(F(B,m,k))), where U, = {(z,7) €
VH) | 0 <i<k—1,j € JP}. It follows from
Lemma 11 that |Uy] = B for 0 < y < m — 1. Let
U= Uogygm—l Uy,. Every M(a;) (0 <z <3m—1)is
mapped into either U, or U — U, by Lemma 11 and
the structure of F'(B,m,k). This means that A can
be partitioned into disjoint sets Ao, ..., A1 such that
ZaeAya:B foro<y<m-—1.

The reduction is pseudo-polynomial since G(A4, B)
has kn(A,B) = O(Bm) vertices. Thus, GRAPH k-
LAYouT is NP-hard for any fixed integer & = 3 since
3-PARTITION is NP-complete in the strong sense. O

3.2 GRAPH k-LAvouT is in NP

In this subsection, we prove that GRAPH k-LAYOUT is
in NP. This is not trivial in the sense that every layout
of G into H itself may not be a witness of polynomial
size if n is much greater than |V(G)|. However, the fol-
lowing lemma guarantees that there exists a witness of
polynomial size for any instance.

Lemma 13: A graph G which can be laid out into
M (k,n) can be laid out into M (k, 2k|V(G)|).

Proof: Let ¢ = (¢,p) be a layout of G into H =
M(k,n). Let J = {j | ¢(V(G))nCf + 0}, and
we suppose J = {ji,...,7s} where j1 < .-+ < jjg.
Obviously, |[J] £ [V(G)]. For 1 £ 1 £ |[J] -1,
let B = {((5,0),(iji + 1) € B(H) | 0 < i <
k=13 U{((i, j141—1), (3, Jin)) € B(H) |0 < i < k—1},
and M; = HUj;ccs,, Cf']- Moreover, let Mo =

HlUogj<in Cj], and M) = H[Um.gg’gn—l cil.

Suppose that M; (1 <[ < |J| — 1) has more than
2k + 1 columns. If an image of p contains an edge in
F; then the image forms one or more subtrail(s) con-
tained in M; called “net(s)” each of which contains ex-
actly two edges in F;. Notice that the image contains
the even number of edges in E; since no vertex of G
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is mapped by ¢ into V(M;) — (Cf UCJ., ). Thus, for
1 <1 <L |J| -1, the layout forms a solution of a “chan-
nel routing problem” on M; by considering a vertex in
Cfl UC] | to be a “terminal” which is connected by a
net in M;. It is known that for a fixed channel length &,
if there exists a routing for an instance then there exists
a routing with channel width at most 2k — 1[2]. Thus,
we can compact M; by applying the result so that it has

at most 2k + 1 columns.

For M; (I € {0,|J|}), terminals are on only sin-
gle side of the channel, i.e. C{, and it is easy to see
that channel width |k/2] are sufficient for such case. It
follows that we can compact M; so that it has at most
|k/2| + 1 columns.

Thus, we can obtain a layout of G into M(k,z),
where ‘

z < (2k=1)(IJ] - 1) +2{k/2] +]J]
< 2k|J) - (2k — 1)+ k
< 2k|V(G)].

O
Lemma 14: GRAPH k-LAYOUT is in NP.

Proof: Suppose that there exists a layout £ of G into
M(k,n). Then A(G) < 4 obviously. From Lemma 13,
we can assume that n is at most 2k|V(G)|. Thus, we
can check that € is a layout in O(|E(M (k,n))||E(G)| +
V(G)]) = O(2kn - 2V(G)| + [V(G))) = O(IV(G)P)
time. O

4. Proper-Path-Width

In this section, we review the proper-path-width of
a graph, introduced by Takahashi, Ueno, and Kaji-
tani[5], and show some lemmas used in the following
section.

Let G be a graph, and let X = (X3, Xo,...,X,)
be a sequence of subsets of V(G). The width of
X is maxic<, | X;| — 1. X is called a proper-path-
decomposition of G if the following conditions are sat-
isfied:

(a) X; X5 (i #7);
(b) U1§z§r X; = V(G);

(c) for any (u,v) € E(G), there exists an ¢ such that
u,v € Xy,

(d) forall [, my and n with 1 £l <m < n < 7,
XgﬂXnng;

(e) forall I, m, and n with 1 <l < m < n < r,
IXiNX,| < | Xml — 2.

The proper-path-width of G, denoted by ppw(G), is the
minimum width over all proper-path-decompositions of
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G. A proper-path-decomposition with width % is called
a k-proper-path-decomposition. It can be easily seen
that ppw(G) < ppw(H) if G is homeomorphic to a
subgraph of H. Makedon, Papadimitriou, and Sudbor-
ough[4] showed that the topological band width of G is
identical with the mixed search number, called the node
search number in [4], of G if A(G) < 3. They also men-
tioned a linear time algorithm to determine whether the
topological bandwidth of G is at most 2. On the other
hand, Takahashi et al. [6] showed that the mixed search
number of G is identical with ppw(G). Therefore, we
have the following lemma:

Lemma 15: For a graph G with A(G) < 3, we can
determine whether ppw(G) < 2 in O(|V(G)|) time.

A k-proper-path-decomposition (Xi,Xs,...,X,) is
said to be full if |X;| = k+1 (1 < ¢ < r) and
|IX; N X1 =k (1 <i¢ < r—1)[6]. The following
lemma is shown in [6].

Lemma A: For any graph G with ppw(G) = k, there
exists a full k-proper-path-decomposition of G.

The following lemma will be used in the next section.
Lemma 16: Let X = (X;,X5,...,X,) be a full
proper-path-decomposition. For 2 < ¢ < r—1, there ex-
ist a unique s; € X;—X,_; and a unique t; € X; —X; 1
(s; :F t;). Moreover, X,; — {Si,ii} =X;_1N Xi+1.
Proof: It is obvious from the definition (a) that there
exist s; € X; — X;_1 and t; € X; — Xi+1 for 2 <4 <
r— 1. Since & is full, it follows that [X; — X, ;| =
|X; — Xip1| = 1, so we have X; — {s;} ¢ X;_; and
Xi — {tz} C Xi+1- Thus, Xl — {S“tl} gXi—l ﬂXH_l. It
follows from the definition (e) that |X;| —2 > |X; 1 N
Xit1] = [ Xs| — |{s:,t:}|- Therefore, we have s; + t; and
Xi—{si;ti}:Xiél mXi-i—l for2<i<r—1. O
Corollary 17: Let X = (X, X5,...,X,.) be a full 2-
proper-path-decomposition. For 2 < ¢ < v — 1, there
exist a unique s; € X; — X;_1, a unique t; € X; — Xt
(s; +1;), and a unique v; € X;_; N X; 4. |

5. Graph Layout into Ladders

In this section, we show a necessary and sufficient con-
dition for a graph G to be laid out into L(co) based on
the proper-path-width of G, and show that G satisfying
the condition is embeddable into L(|V(G)]). Based on
the characterization, we suggest a linear time algorithm
for deciding if a given graph can be laid out into L(co).
Lemma 18: If a graph G can be laid out into L(o0),
then A(G) < 3 and ppw(G[S]) < 2, where S = {v €
V(G) | degg(v) = 2}

Proof: Suppose that there exists a layout (¢, p) of G into
L(oco). Then, we have A(G) < 3 since A(L(c0)) < 3.
Moreover, for (u,v) € E(G) and w € V(G) — {u,v},
degg(w) = 1 if p(u,v) contains ¢(w). Thus, p(e;) and
p(ez) are internally vertex-disjoint for any distinct edges
e1,es € E(G[S]). 'This means that G[S] is homeomor-
phic to a subgraph of L(oo). It is not difficult to see that
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ppw(L(n)) < 2 for any positive integer n. Therefore, we
have ppw(G[S]) < 2. O
Lemma 19: For a graph G such that A(G) £ 3,
[V(G)| = 2, and ppw(G) < 2, there exists a planar
layout of G into L(|V(G)| — 1).

Proof: We denote L(|V(G)| —1) simply by L. It is easy
to see that there exists an desired layout of G into L
if ppw(G) = 1 or |V(G)| £ 3. Thus we assume that
ppw(G) = 2 and |V(G)| = 4, and we will construct a
desired layout € = (¢, p).

There exists a full 2-proper-path-decomposition
= (X1,X3,...,X,) of G from the assumption that
ppw(G) = 2 and Lemma A. It should be noted that
r = |V(G)| — 2 2 2. The following is an algorithm for

laying out G into L.

Phase 1 Denote s; € X; — X, 1, t; € X; — X;41, and
v, = Xj_1 N Xjpq for 2 £ ¢ £ r — 1 according to
Corollary 17. In addition, let ¢; be a unique element
in X7 — X», s, be a unique element in X, — X,_1,
Vp = vr_l(é Xf-), and tr = Sp_1-

Phase 2 Set #(t;) = (0,0), ¢(ve) = (1,1), and
b(ta) = (0,1). If (t1,v2), (t1,t2), and (vg, o) are con-
tained in E(G), then set p(t1,v2) = L[{(0,0),(1,0),
(171)}]’ p(t17t2) = L[{(070)7<071)}]’ and p(’U2,t2) =
LI{(1,1), (0, 1)}].

Phase 3 Execute the following for ¢ = 2 to r:

(a) Set ¢(52) = (ll(QS(tl)),Z) Let

LIl (o)), 5) | l2(o(t:)) < 5 < 2},
LI{(1(g(v:), 5) | 1a(B(vi)) < 7 < 831,
LG,

(b) If (ti, S,L) S E(G), then set p(t“ Si) = Pl.

(c) If (s;,v;) € E(G) and no sy (i’ > 1) is adjacent to
v;, Set p(’l)i, Si) = P, U Ps.

(d) If (s;,v;) € E(G) and there exists sy (i > i) adja-
cent to v;, reset ¢(v;) = (I1(z), %) and p(s;,v;) = Ps,
where z is the vertex in L into which v; was
mapped before reseting. Moreover, if there ex-
ists y € V(G) — {s;, 8¢} adjacent to v;, then reset
p(y,v;) = Po U Py, where Fy is the trail in L in
which (y,v;) was mapped before reseting.

Let Y; = ;. ;; X;. We show that € is the planar

layout of G into L by induction on the number of steps
in Phase 3. It should be noted that, up to step ¢ in
Phase 3, G[Y;] is laid out into L and that ¢(v;) may be
reset later.

The layout of G[Y;] defined in Phase 1 is obviously
desired one. We assume that £ is the planar layout of
G[Y;_1] into L(|Y;_1| — 1) for step ¢ — 1, and show that
this is also true for step i. Notice that |Y;| =i+ 2.

We first show that (G) C L(|Y;| — 1). It is easy to
see that ¢ is an injection of ¥; since 1 (¢(¢;)) F I1 (¢ (v;)).
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¢(Yi 1) € Up< iy Cf by induction hypothesis. Af-
ter step 4, ¢(s;) € CF and ¢(vi) € Upe,;<; CF since
{; € Y;_1. This means that ¢(Y;) C V(L(Y;| — 1)).
Moreover, the images of p defined in step ¢ are con-
tained in P, UP, U P;, and PLU P, UP CL(|Y;] — 1).
Thus, we conclude that e(G) € L(|Yi| — 1)_

We next show that e is the planar layout. No-
tice that P,, P5, and P are internally vertex-disjoint.
P, and p(e) are internally vertex-disjoint for any e €
FE(G[Y;_1]) since neither vertices nor edges in e(G[Y;_1])
are contained in L[{(l1(¢(t:)),7) | 7 = l2((t;))}] except
&(t;). 1f (s4,v;) ¢ E(G) then ¢ is the planar layout since
e(G[Y;])) Ce(GY;-1]) U Py. If (s4,v;) € E(G) then Py,
P, and p(e) are internally vertex-disjoint for any e €
E(G[Y;_1]) since neither vertices nor edges in e(G[Y; 1])
are contained in L[{(l1(¢(v:)),5) | 7 = la(d(vs))}] ex-
cept ¢(v;). Thus, we conclude that € is the planar lay-
out. O

Lemma 20: For a graph G such that A(G) < 3, |S| =
2, and ppw(G[S]) £ 2, there exists a layout of G into
L(V(G)| — 1), where S = {v € V(G) | degg(v) = 2}.

Proof: It follows from Lemma 19 and the assumption
that A(G[S]) £ 3, |S| = 2, and ppw(G[S]) < 2 that
there exists a planar layout of G[S] into L(|S| —1). Let
v € V(G)— S, and let u € V(G) be a vertex adjacent to
v if such v exists. Since deggg(u) < 2, We can map v
and (u,v) by adding a new column next to the column
containing ¢(u) so that the congestion of the resulting
embedding is one. Thus, we can obtain the layout of
G into L(|V(G)| — 1) since the number of additional
columns is at most |V(G) — S|. O

We have the following theorem from Lemmas 18
and 20.
Theorem 21: A graph G can be laid out into L(oo)
if and only if A(G) < 3 and ppw(G[S]) < 2, where
S ={veV(Q) | dega(v) = 2}. O

Based on this theorem, we can obtain a linear time
algorithm for deciding if a given graph can be laid out
into L(oco) from Lemma 15.

6. Concluding Remarks

If a full 2-proper-path-decomposition of G[S] is given,
the algorithm obtained from the proofs of Lemmas 19
and 20 provides a layout of G into L(|V(G)|) in
O(|V(G)|) time. For a graph G with A(G) < 3 and
ppw(G) < 2, we can construct in linear time a full 2-
proper-path-decomposition of G based on the result of
[4], although the details are omitted here. Therefore,
our algorithm can be modified so that it lays out G sat-
isfying the condition of Theorem 21 into L(|V(G)|) in
O(|V(G)]) time.

Let A(G) be the minimum area of a ladder into
which an N-vertex graph G can be laid out. We can
easily modify the algorithm obtained from the proofs of
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Fig.2 A graph G with A(G) = 2(N —2).

Lemmas 19 and 20 so that it lays out G into L(IN — 2)
if G has at least 5 vertices with degree at least 2. Thus
we have A(G) £ 2(NV — 2). This is the tight bound for
A(G) as described in the following corollary.
Corollary 22: Ifan N-vertex graph G has at least 5 ver-
tices with degree at least 2 then N < A(G) < 2(N — 2).
Moreover, these are tight bounds, i.e. there exist graphs
with A(G) = N and graphs with A(G) =2(N — 2).
Proof: The lower bound is trivial. It is not difficult
to see that the graph G shown in Fig.2 has A(G) =
2(N —2). O
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