Optimal Realization of Hypercubes
by Three-Dimensional Space-Invariant
Optical Interconnections

Shin’ichiro Tago and Shuichi Ueno

Department of Physical Electronics
Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan

E-mail :

Abstract

It ts known that an N-vertex hypercube QN can be
realized by three-dimensional space-invariant optical
interconnections using an optical interconnect mod-
ule (OIM) with fan-out of size 2log N — 1 and two

array planes of area O(N10g4N . We show that
(8log N —12)/5 and N(log N +1)/2 are lower bounds
for the size of fan-out of OIM and the area of the ar-
ray plane to realize Qp, respectively. We also show a
realization of Qn using an OIM with fan-out of size
2log N and two array planes of area Nlog N + N/2.
Our realization is optimal to within a small constant
factor.

1 Introduction

Limitations of metal interconnections for high-
performance computing systems have been pointed
out, and a few optical interconnections have been pro-
posed to overcome these limitations (See, for example,
[2]). This paper proposes an optimal realization of hy-
percubes by free-space optical interconnections.

It is known that free-space interconnections are
suitable for chip-to-chip and board-level interconnec-
tions. It is also known that space-invariant connec-
tions are well matched to the capabilities of optical
components, and are easy to implement. This paper
considers optimal realizations of interconnection net-
works based on a model proposed by Louri and Sung
[1, 2] for optical interconnections. The model consists
of two 2-dimensional arrays on facing planes (array
planes) for placing optical components, together with
an optical interconnect module (OIM) between them,
providing space-invariant connections.

The complexity of the realization based on the
model above is measured by the size of fan-out of OIM
and the area of the array plane. It is known that an
N-vertex hypercube @Qu can be realized using an OIM
with fan-out of size 2log N — 1 and two array planes
of area O(N log* N). We show that 8k/5 — 12/5 and
(k4 1)N/2 are lower bounds for the size of fan-out of
OIM and the area of the array plane to realize a k-
regular bipartite graph with N vertices, respectively.
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In particular, (8log N —12)/5 and N(log N +1)/2 are
lower bounds for the size of fan-out of OIM and the
area of the array plane to realize @Qn, respectively.
We also show a realization of @ using an OIM with
fan-out of size 2log N and two array planes of area
Nlog N + N/2. Our realization is optimal to within a
small constant factor.

2 Problem Formulation

2.1 Graph Definitions

Let GG be a graph and let V(@) and E(G) denote the
vertex set and the edge set of GG, respectively. A set
I C V(@) is called an independent set of G if no two
vertices of I are adjacent in G. G 1s said to be bipartite
if V(G) can be partitioned into two independent sets
X and Y. (X,Y) is called a bipartition of G. Let
degs(v) denotes the degree of a vertex v in G that
is the number of edges of G incident to v. G is said
to be k-regular if degg(v) = k for any v € V(G). A
regular graph is one that is k-regular for some k. A
set M C E(G) is called a matching of G if no two
edges of M are adjacent in G. A matching M is said
to be perfect if for any vertex v, there exists an edge
of M incident to v. It is well-known that if G is a
k-regular bipartite graph with bipartition (X,Y) then
|X| = |Y], and E(G) can be partitioned into k perfect
matchings My, Mo, -+, My. An edge in M; is called
an i-edge (i = 1,2,~~-,k)

2.2 Realization Problem

In this subsection, we define the realization problem
for interconnection networks represented by regular bi-
partite graphs. Let G be a k-regular bipartite graph,
and let (X,Y’) be a bipartition of G. The vertices and
edges of G represent the processors and communica-
tion links of an interconnection network, respectively
For each v € V(G), let T'(v) = {v*,v!,v? v* Y,
where v° represents the optical source assocxated ‘with
v, and v’ represents an optical detector associated with
the i-edge incident to v. This reflects our assump-
tion that a space-division technique is employed for

signal separation. Define that X = |J,. I'(z) and
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Y = Uyey [(y). Each of X and Y is corresponding
to the set of all optical elements to be placed on an
array plane. Let Z and IV be sets of all integers and
all positive lntegers, repectively. Let ¢ : X — N?

and ¥ 1 Y — N? be one-to-one mappings. ¢ and
1 represent placements of X and Y on array planes,

respectively. Let C' C Z? be a set of vectors represent-
ing a fan-out of OIM that achieves the required con-
nections by space-invariant connections. We assume
that C satisfies the following condition: If ¢ € C then
—c¢ € C. This assumption reflects a technical con-
straint of optics. For any w, h,7,j € IN, define that

[w Xh],'“i
={(n,m) | w(—-1)<n<wih(j—-1)<m<hj},

which is called a module. Notice that N?

tioned into modules.

is parti-

Definition 1 Given a k-regular bipartite graph G and
w,h € N, (¢,%,C) s called a realization of G if all
of the following conditions are satisfied:

1. For any ¢ € X[y € Y], ¢(I'(2))[¥(T'(y))] is con-
tained in a module;

2. Any module conlains al most one ¢(I'(x)) and at
most one ¥(I'(y)),

3. (z,y) is an i-edge if and only if Y(y') = ¢(z*)+¢
for somece C (1 <i<k);

4. (2,y) is an i-edge if and only if $(2') = ¢(y*)+¢
for some ' e C (1 <i<k) o

In condition 3[4] above, source 2°[y°] is said to be
connected with detector y'[z’] by c[¢'].

It should be noted that there always exists a real-
ization for any regular bipartite graph if wx h and |C|
are sufficiently large. This can be seen as follows. Let
G be a k-regular bipartite graph with N vertices, and
(X,Y) be a bipartition of . Suppose that wxh = N.
Define here that (a,b) x (¢, d) = (ac, bd). For any r €
X[y € Y], let 2€ )[y(’)] be a vertex in Y[X] connected
with z[y "by an iedge. Let 7 : V(G) — {(p,q) |
p,q € N,1<p<w,1<q< h}be aone-to-one map-
ping. There exists such a mapping 7o by the assump-
tion that w x h = N. Define one-to-one mappings
bo: X — N?and ¢y : Y — N? as follows: For any
z € X andi(l <i<k), do(z®) = mo(z) X (w, h)+710(2)
and @o(2?) = 7o(z) % (w h) + ro(2®); For any y € Y
and (1 < @ < k), Yo(y®) = mo(y) x (w, h) + 70(y)
and ¥o(y*) = 7o(y) x (w,h) + 10(y (1)), Define that
CQ—{an bh) | a,b € Z,]a|l < w,[b] < h}. It is easy
to see that (ngo, Yo, Cy) is a realization of G.

The complexity of a realization (¢,,C) of G is
measured by |C| and the area of the array plane:

max{z | (z,y) € 6(X) Uy(Y)}
x max{y | (z,y) € ¢(X) U T/J(Y)}

A, y,C) =

45

For the realization (¢g, %0, Co) above, |Co| = O(N)
and A(¢o, Yo, Co) = O(N?). ‘

Our problem 1s to find a realization {¢,,C) for
a regular bipartite graph such that both |C| and
A{¢,v,C) are minimal.

3 Lower Bounds

In this section, we show general lower bounds for
the size of fan-out of OIM and the area of the array
plane to realize a regular bipartite graph.

Theorem 1 For any realization (¢,¢¥,C) of a k-

regular bipartite graph, |C| > 8k/5—12/5.

Proof Let G be a k-regular bipartite graph with
bipartition (X,Y), and (¢,¢,C) be a realization
of G. Without loss of generality, we assume

that (Uslw x Rlir) N (4(X) U 6(V)) # 0 and
(U; [w x Rl ;) N ((X)U(Y)) #0. Let

i(max) = max{i|[wx Al N ($(X)Uu(Y)) # 0},
i(min) min{i | [w x hl; 1 0 ($(X) Un(Y)) # 0},
jmax) = max{j| fwx hlu; 0 (#(X) U(T)) # 0},

and
jmin) = min(j | [w x K15 0 (S(X) UB(T) 03
Define that
C, = {(a,b)e C|ab>0,b| > h},
C, = {(a,b)eClabZOaia|Zw:|blSh},
C; = {(a,b)e C|ab<0,|b] > h},
Cy, = {(a,b)e C|ab<0,la| > w,|b| < h}, and
Cs = {(a,b)€ C|la] <wand |b] < h}.

Then (C;,C5,C3,C4,C5) is a partition of C, and we
5
have that |C| = Z |C;|. The source in [w X hi(min)1
i=1
is connected with at most one detector by any pair of
vectors +c¢; € C, at most one detector by any pair of
vectors ¢y € C», at most one detector by any pair
of vectors +c3 € Cs, and at most |C,| detectors by
the vectors in C4. Let S be the number of detectors
connected with the source in [w X hlj(min),1 by the vec-
tors in C5. It is easy to see that S < |Cs] if |C5| < 4,
S < 4if|C5) =5, and S < 5if |Cs| > 6. Since G is
k-regular, we conclude that

IC11/2+4 |Ca|/2+|C5l/2+|Cal+S 2 k. (1)

By applying similar arguments to the sources in
[wxh i(max),1» [w x h]l,j(min)a and
[w x A1 j(max), we have

IC11/2 4+ |Ca| +|C3]/2+|C4l/2+ S > k, (2)
IC11/2+1C2|/2+|C3] +|Cal/2+ 5 > k, and (3)
[C1+|Cal/2+|C3]/2+ |C4|/2+ S = k, (4)
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respectively. From inequalities (1), (2), (3) and (4),
we obtain that

5(|C1] + |Ca| + |Cs] + |Cal)/2 + 4S > 4k.
Thus

5
IC| =Y |Cil > 8k/5+|Cs| —85/5 > 8k/5 — 12/5.

i=1

The last inequality follows from the fact that {Cs| —
85/5 is minimal if § = |Cs| = 4. O

Theorem 2 For any realization {¢,4,C) of a k-
regular bipartite graph with N wvertices, A{¢,¥,C) >
(k+1)N/2.

Proof Let G be a k-regular bipartite graph with N
vertices, and (¢, %, C) be a realization of G. Then,

A(¢,%,C)
= max{z|(z,y) € ¢(X)~U 1/’()7)}
x max{y | (z,y) € ¢(X)U»(Y)}

> max{z | (z,y) € ¢(X)}
x max{y | (z,y) € $(X)}

> |6(X)]

= |X]

= (k+1)N/2.

4 Realization of Hypercubes
4.1 Hypercubes

An n-dimensional cube @ with N = 2" vertices is
defined as follows:

V(QN) {07 1}717
E(@QN) {(u,v) | w,v € V(QnN),du(u,v) = 1},

where dp(u,v) denotes the Hamiming distance be-
tween u and v. An edge is called a dimension ¢ edge
if it connects two vertices that differ in the ¢th bit po-
sition (1 < @ < n). It is easy to see that Qn is an
n-regular bipartite graph. If

No = {x|zeV(Qn),du(x,0)is even} and
Yo = {ylyeV(Qn),du(y, o) is odd},

(Xq,Yg) is the bipartition of Qn. Since the set of
dimension ¢ edges is a perfect matching of Qu, the
dimension ¢ edges are regarded as i-edges (1 <7 < n).
4.2 Lower Bounds

From Theorems 1 and 2, we have the following lower
bounds for the realization of hypercubes, since Qu is
a log N-regular bipartite graph with N vertices.

i

{l

Theorem 3 For any realization {¢,v,C) of Qw,
|C| > (8log N — 12)/5, O

Theorem 4 For any realization (6,¢,C) of Qn,
Ao, ¥, C) > (logN + 1)N/2, i

4.3 Realization

Our realization of Qu 1s defined as follows.

First, for any w,h € N, define a mapping 7y xs :
VEQNg — N? as follows: for all v = vvp_1---v; €

V(QNx
Tw xh(”) =
(n-1)/2 (n-1)/2
(w Z 2" Lugi_1,h Z 2’—11)22-) if n:odd;
1= 1=1
n/2 . (n—2)/2

if n:even.

(w Z Qi_lvgi_l,h Z 2i—lv2i)
i=1 g=1

Next, define mappings édyxn X'Q — N? and

Yuxh : Yo — N? as follows:
Puwxn () = Twxn(2) + ([w/2], [h/2]);

Pwxh(T')

Twxn(z) +(1,1) ifi =n,
= w X + (1 —a; l,hl + z;(1,1 o .
{ :‘-(2;,(1—:—) 1)((2 moﬁ zz(J}f)Lz/u)/J)m 1) if i <n
Yuwxh(y') = Twxn(y) + (Jw/2], [R/2]);
¢w><h(yl) .
Twxn(y) + (1,1) ) if i = n,
- w X + 1- i lahl + 1111 s .
{ 1(251@ l)((i mod lE}t}Li/izz’J)y ifi <n;
where w’ = 2[w/2] — 1 and b’ = 2[h/2] — 1.
Finally, define a set Cyxn = {eo, €1, -+, €201} of

vectors as follows:

(1,1) = ([/2], [h/2)) if i = 0;
(2C=V2,0) - (Jw/2],[R/2]) if1<i<n
o — +(1,1) + (i mod w', |i/w']) and 7 is odd;
") (0,20-D/2R) — ([w/2], [R/2]) f1<i<n
+(1,1) + (¢ mod v/, [1/w']) ~ and iis even;
—Ci—n ifn<i<2n-1.

Lemma 5 (¢yxpn, Yuwxh, Cuxn) s a realization of
Qn if wh = (2[w/2] — 1)(2[h/2] = 1) > 2log N + 1.

Proof First, we notice that if ¢ € C,«p then —c €
Cyxhp by definition.

Let = be a vertex in X¢g and suppose that
Twuxh(z) = (aw,bh) for some a,b € Z. Then
¢wxh§$s),¢wxh(r") € [w x hlay1p41 by definition.
We will show that ¢, «n(2') € [0 X h]q41,541 for any i
(1 < i< n). Suppose first that 1 <i < n and z; = 0.
Then

Suxr(z) = Tuun(e) + (W, k) = (imod ', |i/w'])
= (aw+w' — (i mod w'),bh + b’ — [i/w'])
by definition. Notice that
aw < aw~+ w' — (i mod w') < aw + w' < wla+1).

From the assumption that w'h’ > 2n+1, we have that

/w'] < [ih[(2n+1)] < [A'/2]. Tt follows that
bh < bh+ k' — [ijw'| < bh+ K < h(b+1).
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Thus we conclude that @y xn(2') € [w X Alat1 py1-
Suppose next that 1 <i < n and z; = 1. Then

buwxn(z?) Twxa(@) + (1,1) + (i mod w’, [i/w'])

(aw+ 1+ (i mod w'),bh + 1 + [i/w'])

by definition. Notice that

aw < aw+ 14 (1 mod v') < aw+ w’ < w(a+ 1) and

bh < bh+14[i/w'| < bh+1+|h'/2| < bh+h' < h(b+1).

Thus we conclude that ¢y xr(z') € [W X Alap1,p41-
Therefore, we obtain that

Swxn(T(2)) C [w X hlat1,b41-

Similarly, we can show that 1, xh% (y)) is contained in
a module for any y € Y. Thus (yxh, Ywxh, Cuwxn)
satisfies condition 1 of Definition 1.

Assume that a module contains both ¢y xs(I'(2))
and ¢y xn(L(z')) for some distinct z,2’ € Xq. Since
bwxn(x*) and ¢y xx(2’*) are contained in a same mod-
ule, 7, xp(z) = wah(w’) by the definitions of ¢y xn
and 7, x5. Thus z; = z} for any i (1 < i< n)by
the deﬁnltlon of Tyxn. Slnce z # z', we have that
z, # ), that is, z and z’ differ in exactly one blt posi-
tion, contradlctmg to the assumption that z, 2’ € Xg.

Thus any module contains at most one qﬁwxh(I‘(x))
Similarly, we can show that any module contains at

most one ¥y, x 1 (I'(y)). Thus (Bwxh, Ywxh, Cwxn) sat-
isfies condition 2 of Definition 1.
Then ¢yxn(z®) #

Let z be a vertex in Xg.
duwxh(z™) by definition. We first show that
Guwxh(2') £ dwxn(z®) for any i (1 < i < n). Assume
contrary that ¢y xp(z%) = ¢y xn(2®) for some ¢ (1 <
i<n). fa; =0 then ¢yxn(z) = Tyxn(z)+(w', h')—
(fmod w’, |i/w']). Since (¢ mod v/, [i/w']) = (v’ —
[w/2), &' = Th/2)), i = (K — [h/2))uf + ' [w)2] =
(w'h' — 1)/2 > n, contradicting to the assumption
that ¢ < n. If z; = 1 then ¢wxh(ri) = Tuxn{®) +
(1, 1)+ (¢ mod w', |i/w']). Since (i mod v’ |i/w']) =
(Tw/21~ 1, [h/2] =1), i’= ([h/2] — Dy’ + [w/2] -1 =
(w'h’—=1)/2 > n, contradicting to the assumption that
i < n. Thus ¢yxn(z’) # Gwxn(z®) for any i (1 <4<
n) We next show that ¢, xp(2') # duwxa(z") for any
i (1 £i < n). Assume contrary that ¢wxh( Y
¢wxh(ac } for some i (1 < ¢ < n). If x; = 0 then
Suwxn(z) = Twxn(z) + (w’,h’) ~ (i mod W, [i/w'}).
Since (i mod w’,|i/w']) (w — LA —1), i =
w'h’ — 1 > 2n, contradicting to the assumption that
i< n If i = 1 then ¢uxn(z') = Tyuxn(z) + (1,1) +
(i mod w', |i/w']). Since (i mod w’, |i/w']) = (0,0),
1 =0, contradlctlng to the assumptlon that ¢ > 1.
Thus ¢wxh( ) # dyxn{x™) for any 1 (1 <i<n). Fi-
nally, we will show that ¢y xa(z') # ¢uxp(2?) for any
distinct i,j < n. Assume contrary that ¢ p(z’)
dwxn(z?) for some distinct i,j < n. If z; = z;
then (i mod v/, |i/w']) = (§ mod v, [j/w']), and so
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¢ = j, contradicting to the assumption that ¢ # j. If
z; # z; then (i mod o', |i/w’|)+(j mod o', |j/w']) =
(w' —1,h" =1). Since [(i + j)/v'] > [i/w'] + |j/v'],
i+ 72> - Duw' + ((w — 1) mod w) = (A — D' +
w’ — 1 =w'h’ — 12> 2n, contradicting to the assump-
tion that 7, j < n. Thus ¢y, xn(z') # bwxn(®?) for any
distinct 4,5 < n. Therefore, we conclude that ¢ xp
is a one-to-one mapping. Smnlarly, we can show that
Ywxh 1s a one-to-one mapping.

Suppose that (z,y) is an edge such that z € Xg and
y € Yg. Suppose first that (x,y) is an n-edge. Then

wxh(x) = Tyxn(Yy). ThUS Yuwxn(y") = Quxn(z®) =

gl, I'w/ ] [h 2 wxh Suppose next that
{z,y) is an z-edge for i (1 <i<n). Then
11Z)w><h(y) ¢wxh( 3)

Twxna(y) = Twxn(e) + (1= g)(w', ') + y;(1,1)
+(2yi — 1)(# mod w', {i/w']) — ([w/2], [h/2])
Twxh(Y) — Twxh(Z) + (“l)y'+l{(1v 1)
—([w/2], [h/2]) + (i mod w', |i/w'[)}.

If 7 i1s odd then

zﬁwxh(yi) — Puwxn(z®)

(41 = 2267 D2, 0) 4+ (~ 1 {(1,1)
—([w/2],[h/2]) + (i mod w’, [i/w'])}
(=120 V2w, 0) + (1, 1)
—([w/2],[h/2]) + (i mod W', |i/w'])} € Cuxa.

If 7 is even then

d)wxh(yi) ~ duwxn(z’®)

(s — 2)(0, 20727 h) 4 (— 1)+ {(1,1)
—([w/2],Th/2]) + (i mod v, |i/w'])}

(=17 *+H{(0,20-27%h) + (1, 1)
—([w/2],[h/2]) + (i mod w', [i/w’])} € Cuxh.

Thus ¥y (Y ) ¢w><h( °) € Cyxp if (Iay) is an i-
edge for some 7 (1 <7 < n).

Suppose that « and 2’ are any distinct vertices in
XQ We will show that ¢wxh(x )+ e # duxn()+
¢ for any c, c E Cy Assume contrary that
¢wxh( ) + e = ¢wxh(x s) + ¢ for some ¢4, ¢y €
Cuxh. If cqg = ¢y then ¢uxn(2’) = uwxn(x’®). Since
dwxh is a one-to-one mapping, it follows that z* = &’°,
contradicting to the assumption that z # z’. Thus
¢q # cp. Define here that (a,b) mod (w, h) = (e mod
w,bmod k). Then ¢, mod (w, h) = ¢, mod (w, k) by
the definition of ¢, 5. Let

c.— - fw/ﬂ [R/2]) + (i mod v/, |i/w']))
= mod(w,h) | i Z0<z<n}
and
Cy= U=(1,1) +(Jw/2], [h/2]) — (i mod v/, |i/w’]))
mod{w ,h)|2€Z0<z<n}
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Then C, U Cy = {¢mod (w,h) | ¢ € Cyxn}. Sup-
pose first that c,mod(w,h),cymod(w,h) € C, or
c,mod(w, k), cymod(w, k) € Cy. Without loss of gen-
erality, we assume that

~ (L1 = ([w/2],[4/2]) ~
Cy mod (w,h) = (+(Za mod w' I_Z /wl_‘)) mod (w,h,)

and

1,1 w/2],[h/ \
e mod (w, h) = (&(Zb)mod[w ?sz{/ %1))) mod (w, h)

for some i, and 43 (0 < 74,4, < n). Since ¢, # ¢,
iq # 4. Since ¢, mod (w,h) = ¢; mod (w, k), and
(imod w') <w—1and [i/w]| < h—1, we have

(74 mod W', [ig/w']) = (i mod w', |4 /0'}),

and so i, = ¢, a contradiction. Suppose next
that ¢,mod(w, h) € C, and eymod(w,h) € Cy, or
c,mod(w, k) € Cy and ¢; mod (w,h) € C,. Without

loss of generality, we assume that

¢g mod (w,h) = <(1 1) ~ (I—w/ﬂ [h/Q_I]))) mod (w, h)

+(#, mod w’, [2a

and

¢y mod (w,h) = ( gl 1)0"5 J}w{i]/ I‘hj/ﬂ )) mod (w, h)

for some i, and ¢, (0 < 44,7, < n). Since ¢, mod
(w,h) = ¢s mod (w, h

¢g mod (w, h) — ¢ mod (w, h)

2(1,1) — 2([w/2), [h/2])
+(iq modw [za/ i
(0,0).

) mod (w, h)
+(7p mod w’, [y /w'|)

Since —w < —w’' +1 < 2 — 2[w/2] + (i; mod ') +
(Bpmodw) <w —1<wand —h< —-h'+1<2-

2[h/2] + [ia/W'] + |is/w'] < h, we have
2 — 2[w/2] + (i, mod w') + (i mod w') =0
and
2—2[h/2] + |ia/W'] + [is/w'] = 0.
It follows that

(i +43) mod w' = (v’ — 1) mod w

and

[(fa + @)/w'] 2 A" — 1.
Thus i, + ip > (A — Dw' 4+ ((w' — 1) mod w) = (A —
D' +w' —1 = h'w —1 > 2n, contradlctlng to the
assumption that 74,7, < n. Thus buxn(z®) + ¢ #
duwxn(2®) + ¢ for any ¢,¢' € Cyxn.
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Let y be a vertex in Yg and ¢ be an integer
such that 1 < ¢ < n. Suppose that (z,y) is not
an i-edge. For an i-edge (2/,y), there exists ¢/ €
Cuxh such that ¥y, xn(y') = Gwxa(2’®) + /. Since
¢wxh(1’f) +c # ¢w><h(l'/3) + ¢’ for any ¢ € Cyxh,
Yuxh (V') # dwxn(®®) + ¢ for any ¢ € Cyxp. Thus
we conclude that (@uxh, Yuwxh, Cuxn) satisfies con-
dition 3 of Definition 1. Similarly, we can show that
(DwxhsPwxhs Cwxn) satisfies condition 4 of Definition
1. Therefore, we conclude that (¢yxn, Ywxh, Cuxh)
is a realization of Q. (m]

Theorem 6

If wh = 2logN + 1 then {$uxh, Ywxh,Cuxn} s
a realzzatzon of Qn with |Cyxn| = 2logN and
(d’wxh ¢'w><h,cwxh/ < NlogN+N/2

Proof Since both w and h are odd by the as-
sumption, w'h’ wh 2log N + 1. Thus
(Dwxh;Ywxn, Cwxn) is arealization of @n by Lemma
5.  Moreover, A{dwxh,Yuwxh,Cuxnr) < (max{z |
(2.0) & T (V@) £ ) Hmaxty [ (o) e
Twxh ﬁ }+h) = whN/2 = N(2logN +1 /2
Finally, |Cyxn| = 2log N by definition.

Our realzation of hypercubes can be naturally ex-
tended to multi-dimensional tori. The details of the
realization of tori together with a unifying approach
to realize genaral regular bipartite graphs will appear
in a forthcoming paper [3].
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