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Abstract 
It is known that an N-vertex hypercube QN can be 

realized by three-dimensional space-invariant optical 
interconnections using an optical interconnect mod- 
ule (OIM) with fan-out of size 2 log N - 1 and two 
array planes of area O(N log4 N 

i 
We show that 

(8 log N - 12)/5 and N(log N + 1) 2 are lower bounds 
for the size of fan-out of OIM and the area of the ar- 
ray plane to realize QN, respectively. We also show a 
realization of QN using an OIM with fan-out of size 
2 log N and two array planes of area N log N + N/2. 
Our realization is optimal to within a small constant 
factor. 

1 Introduction 
Limitations of metal interconnections for high- 

performance computing systems have been pointed 
out, and a few optical interconnections have been pro- 
posed to overcome these limitations (See, for example, 
PI). Th’ P P P P is a er ro oses an optimal realization of hy- 
percubes by free-space optical interconnections. 

It is known that free-space interconnections are 
suitable for chip-to-chip and board-level interconnec- 
tions. It is also known that space-invariant connec- 
tions are well matched to the capabilities of optical 
components, and are easy to implement. This paper 
considers optimal realizations of interconnection net- 
works based on a model proposed by Louri and Sung 
[l, 21 for optical interconnections. The model consists 
of two 2-dimensional arrays on facing planes (array 
planes) for placing optical components, together with 
an optical interconnect module (OIM) between them, 
providing space-invariant connections. 

The complexity of the realization based on the 
model above is measured by the size of fan-out of OIM 
and the area of the array plane. It is known that an 
N-vertex hypercube QN can be realized using an OIM 
with fan-out of size 2 log N - 1 and two array planes 
of area O(N log” N). We show that 8k/5 - 12/5 and 
(k + l)N/2 are lower bounds for the size of fan-out of 
OIM and the area of the array plane to realize a k- 
regular bipartite graph with N vertices, respectively. 

In particular, (8 log N - 12)/5 and N(log N + 1)/2 are 
lower bounds for the size of fan-out of OIM and the 
area of the array plane to realize QN, respectively. 
We also show a realization of QN using an OIM with 
fan-out of size 210g N and two array planes of area 
NlogN+N/2. 0 ur realization is optimal to within a 
small constant factor. 

2 Problem Formulation 
2.1 Graph Definitions 

Let G be a graph and let V(G) and E(G) denote the 
vertex set and the edge set of G, respectively. A set 
I & V(G) is called an independent set of G if no two 
vertices of I are adjacent in G. G is said to be bipartite 
if V(G) can be partitioned into two independent sets 
X and Y. (X, Y) is called a bipartition of G. Let 
degc;(u) denotes the degree of a vertex v in G that 
is the number of edges of G incident to V. G is said 
to be k-regular if deg,(u) = k for any v E V(G). A 
regular graph is one that is k-regular for some k. A 
set A4 C E(G) is called a matching of G if no two 
edges of M are adjacent in G. A matching M is said 
to be perfect if for any vertex U, there exists an edge 
of M incident to o. It is well-known that if G is a 
k-regular bipartite graph with bipartition (X, Y) then 
IX] = ]Y], and E(G) can be partitioned into k perfect 
matchings Ml, Mz, . . . , Mk . An edge in Mi is called 
an i-edge (i = 1,2;..,k). 

2.2 Realization Problem 
In this subsection, we define the realization problem 

for interconnection networks represented by regular bi- 
partite 

f 
raphs. Let G be a k-regular bipartite graph, 

and let X, Y) be a bipartition of G. The vertices and 
edges of G represent the processors and communica- 
tion links of an interconnection network, respectively. 
For each u E V(G), let I’(v) = {us, v1,u2, ... ,vk}, 
where us represents the optical source associated with 
21, and vui represents an optical detector associated with 
the i-edge incident to V. This reflects our assump- 
tion that a space-division technique is employed for 
signal separation. Define that X = UrEX’ I’(Z) and 
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y = u,,, T(y). Each of X and Y is corresponding 
to the set of all optical elements to be placed on an 
array plane. Let 2 and N be sets of all integers and 
all positive integers, repectively. Let 4 : X -+ N2 
and 11, : Y -+ N2 be one-to-one mappings. 4 and 
G represent placements of X and Y on array planes, 
respectively. Let C C Z2 be a set of vectors represent- 
ing a fan-out of OIM that achieves the required con- 
nections by space-invariant connections. We assume 
that C satisfies the following condition: If c E C then 
-c E C. This assumption reflects a technical con- 
straint of optics. For any w, h, i, j E N, define that 

[w x h]i,j 
= {(n,m) 1 w(i - 1) < n 5 wi, h(j - 1) < m 2 hj}, 

which is called a module. Notice that N2 is parti- 
tioned into modules. 

Definition 1 Given a k-regular bipartite graph G and 
w,h E N, (4,ti,C) as called a realization of G if all 
of the following conditions are satisfied: 

For any x E X[y E Y], 4(J?(x))[$Q’(y))] is con- 
tained in a module; 

Any module contains at most one d(J?(x)) and at 
most one g(r(y)); 
(x, y) is an i-edge if and only if y!(yi) = 4(x”) + c 
for some CE C (12 i < k); 

(2,~) is an i-edge ifand only if+(xi) = $(y’)+c’ 
for some c’ E C (1 < i 5 k). 0 

In condition 3[4] above, source x”[y”] is said to be 
connected with detector yi[zi] by c[c’]. 

It should be noted that there always exists a real- 
ization for any regular bipartite graph if w x h and ]C] 
are sufficiently large. This can be seen as follows. Let 
G be a k-regular bipartite graph with N vertices, and 
(X,Y)b e a i ar i ion of G. Suppose that w x h = N. bp tt’ 
Define here that (u, b) x (c, d) = (uc, bet). For any e E 

, let z(~)[Y(~)] be a vertex in Y [X] connected 
by an i-edge. Let rc : V(G) + {(p, y) 1 

p! y E N, 1 5 p.< w, 1 5 y < h} be a one-to-one map- 
ping. There exists such a mapping 70 by the assump- 
tion that w x h = N. Define one-to-one mappings 
do : X - N2 and $0 : Y -+ N2 as follows: For any 
2 E X and i(1 2 i 5 k), q&(x’) = Q(Z) X(W, h)+re(x) 
and &(zi) = Q(Z) x (w h) + ro(~(~)). For any y E Y 
and i(l 5 i I k), $o($‘) = TO(Y) 4 (w,h) + TO(Y) 

and $0 y”) 
CO = { i 

= Q(Y) x (w, h) + r~(y(~)). Define that 
aw, bh) 1 a, b E 2, ]a] 5 w, 161 < h}. It is easy 

to see that (40, $0, CO) is a realization of G. 
The complexity of a realization (4,$, C) of G is 

measured by ICI and the area of the array plane: 

A(4,$, C) = max{x I (5, Y) E 4(x) U V@‘)) 
x nlax{y I (2, y) E 442) U 4(p)}. 

For the realization (&,&,CO) above, [CO] = O(N) 
and A(~o, $0, CO) = @(N2>. 

Our problem is to find a realization (4, $, C) for 
a regular bipartite graph such that both ]C] and 
A(qS, $, C) are minimal. 

3 Lower Bounds 
In this section, we show general lower bounds for 

the size of fan-out of OIM and the area of the array 
plane to realize a regular bipartite graph. 

Theorem 1 For any realization (4, r,b, C) of a k- 
regular bipartite graph, ICI 2 8k/5 - 1215. 

Proof Let G be a k-regular bipartite graph with 
bipartition (X, Y), and (d,$, C) be a realization 
of G. Without loss of- general$y, we assume 
that (Ui [w x hli,l) n (d(X) U $0’)) # 0 and 
(Uj b x hll,j) n (4(2) U NY)) # 0. Let 

i(max) = max{i I [w x hIi, n (44-f) u ill(y)) # 01, 
i(min) = min{i ] [ w x hlq n (d@ ) u v@“)) # 01, 

j(max) = maxi-i I b x hll,j n (d(z) u $@)) # 01, 
and 

j(min) = min{j ( [w x h]l,j n (4(z) U G(p)) # 0). 

Define that 

Cl = {(a,b) E C I ab 2 0, PI > h), 
c2 = {(a,b) E C I ab 2 0, 14 2 w, PI L h), 
c3 = {(a,b) E C I ab < 0, PI > h), 
c4 = {(a, b) E C ] ub < 0, ]a] > w, lb] < h}, and 
c5 = {(u,b) E C ] ]a] < w and ]b( < h}. 

Then (Ci , CZ, C’s, Cq, C,) is a partition of C, and we 

have that ICI = 5 JCi]. The source in [w x h];(,i,),l 
i=l 

is connected with at most one detector by any pair of 
vectors *cl E Cr, at most one detector by any pair of 
vectors &cz E Car at most one detector by any pair 
of vectors &cs E C’s, and at most JC4] detectors by 
the vectors in Cd. Let 5’ be the number of detectors 
connected with the source in [w x h]i(min),l by the vec- 
tors in Cg. It is easy to see that 5 < ]C5) if ]Cs] 5 4, 
S 5 4 if /C’s] = 5, and S 5 5 if ]Cs] 2 6. Since G is 
k-regular, we conclude that 

IC11/2 + IC21/2 + IC,l/:! + IC41 + S > k. (1) 

By applying similar arguments to the sources in 
b x hli(max),~, [W x hll,j(min), and 
[w x hll,j(max), we have 

Ic11/2 + Icz( + fc,l/2 + Ic,l/2 + s 2 k, (2) 
ICI l/2 + IC21/2 + IC3l+ lC4lP + S 2 k, and (3) 
ICI I + IC21/2 + IC31/2 + IC.d/2 + S L k, (4) 
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l;ee~$$l;~a++om inequalities (l), (a), (3) and (4), 

5W11+ IC2I + IC3l-t IC,/)/2 + 4s > 4k. 
Thus 

ICI = c [Gil > 8k/5 + ICsl- 8S/5 > Sk/5 - 12/5. 
i=l 

The last inequality follows from the fact that ICgI - 
&S/5 is minimal if S = lCsl = 4. cl 

Theorem 2 For any realization (4,$~, C) of a k- 
regular bipartite graph with N vertices, A(q5,$, C) > 
(k + l)N/2. 
Proof Let G be a k-regular bipartite graph with N 
vertices, and (4, $,, C) b e a realization of G. Then, 

= max{x I (x, Y) E d(X) U $0)) 
x max{y I (x, Y) E 4(X> U dJl(Y)I 

2 max{x I (x,Y) E 4(X)) 
x max{y I (x, Y) E 4(@> 

2 I4G)l 
= 1x1 
= (k + l)N/2. 

Cl 

4 Realization of Hypercubes 
4.1 Hypercubes 

An n-dimensional cube &N with N = 2n vertices is 
defined as follows: 

V(QN) = {0,1>“; 
E(QN) = {(u,v) I u,v E V(Q,v),d~(u,v) = l}, 

where d~(u, U) denotes the Hamming distance be- 
tween u and vu. An edge is called a dimension i edge 
if it connects two vertices that differ in the ith bit po- 
sition (1 5, i < n). It is easy to see that QN is an 
n-regular blpart,ite graph. If 

A-Q = {X I + E V(QN),~H(.E,O) is even} and 

yQ = {Y I Y E V(QN), ~H(Y, 01 is odd), 
(SQ, Yg) is t,he bipart#ition of QN. Since the set of 
dimension i edges is a perfect matching of QN, the 
dimension i edges are regarded as i-edges (I 2 i 5 n). 
4.2 Lower Bounds 

From Theorems 1 and 2, we have the following lower 
bounds for t,he realizat,ion of hypercubes, since is 
a log Kregular bipart,it,e graph with N vertices. 

QN 

Theorem 3 For any realizafion (4, 4, C) of QA% 
ICI 2 (8 log N - 12)/S. 

Theorem 4 For any realizafion (4, $, C) of QNI 
A(@,$,C) 2 (1OgN + l)N/2. cl 

4.3 Realization 
Our realization of QN is defined as follows. 
First, for any w, h E N, define a mapping r, xh : 

V QN -+ N2 as follows: for all v = v,v,-~ .. 
I I 

‘VI E 
V QN , 

rwxh(v) = 

I (w(Y2 

(n-1)/2 
2i-1v2~-ll h c 2i-1v2i) if n : odd; 

i=l i=l 

n/2 (n-2)/2 
(w c 2i-1v2i-1, h c 2+~~~) 

i=l i=l 

if n : even. 

Next, define mappings & xh : 2~ -+ N2 and 
* wxh . . YQ -+ N2 as follows: 

dbxh(x;) = 'wxh(~)+([wPl, ThPl); 
$buxh(x’) 

‘wxh(X) + (131) ifi=n, 
= 

i 
‘~xh(X) + (1 - Xi)(w’, h’) ’ Xi(l, 1) 
+(22i - l)(i mod w’, Li/w’j) 

if i < n, , 

$wxh($) = ‘wxh(Y)+ (~W/21> ThPl); 
ti’,xh(i?/“) 

i 

rwxh(Y) + (111) ifi=n, 
z ~wxh(Y) ’ (1 - Y~)(W’,h’) + Yi(‘, 1) 

+(2yi - l)(i mod w’, [i/w/J) 
if i < n. , 

where w’ = 2[w/2] - 1 and h’ = 2[h/21 - 1. 
Finally, define aset CWXh = {co,c~,...,c~~-~} of 

vectors as follows: 

1 

CL11 - (TwPl, IhA) ifi=O; 
(2(i-1)/2w, 0) - ([w/21, [h/21) if 1 2 i < n 

ci = +(I, 1) + (i mod w’, li/w’J) and i is odd; 
(0, 2(i-2)/2h) - ([w/21, [h/21) if 1 < i < n 
+(l, 1) + (i mod w’, [i/w/j) and i is even; 

-c;-n ifn<i<2n-1. 

Lemma 5 (&,xh,$wxhrCwxh) is a realization Of 

QN if w’h’ = (2[w/21 - 1)(2[h/21 - 1) > 210g N + 1. 
Proof First, we notice that if c E Cwx,, then --c E 
c wXh by definition. 

Let .E be a vertex in XQ and suppose that 
Twxh x) 

i 
= (aw,bh) for some a,b E 2. Then 

&xh xs),dWXh(xn) E [w x hla+l,b+l by definition. 
We will show that &xh(Zi) E [IL x hla+l,b+l for any i 
(1 5 i < n). Suppose first that 1 2 i < n and xi = 0. 
Then 

dwxh(4 = rwxh(x) + (w’, h’) - (i mod w’, [i/w’]) 
= (aw + w’ - (i mod w’), bh + h’ - Li/w’j) 

by definition. Notice that 

UUJ < aw -t- w’ - (i mod w’) 5 au, + w’ < ~(a + 1). 

From the assumption that w’h’ 2 2n + 1, we have that 
[i/tJj 5 [%‘/(2n + 1)j < [h//2]. It follows that 

bh < bh + h’ - li/w’J 5 bh $ h.’ 2: h.(b + 1). 
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Thus we conclude that tiwxh(zi) E [w x hla+i,b+i. 
Suppose next that 1 5 i < n and zi = 1. Then 

dhxh(4 = rwxh(x) + (1,1) + (i mod UJ’, [i/w’]) 
= (aw + 1 + (i mod w’), bh + 1 + Li/w’J) 

by definition. Notice that 

aw < aw + 1 + (i mod w’) < aw + w’ 5 w(a + 1) and 

bh < bh+l+[i/w’] < bh+l+Lh’/21 5 bh+h’ 5 h(b+l) 

~~~~e~~ec~ec’d~ai~h~~a~~xh(x~) E [w X h]a+l,b+l. 

, 

4LJxh(r(x)) c [w x hla+l,b+l. 

Similarly, we can show that $, X h 
a module for any y E YQ. Thus ‘( 

r(y)) is contained in 
&,xh,$zuxh,Cwxh) 

satisfies condition 1 of Definition 1. 
Assume that a module contains both &,xh(r(x)) 

and &, xh(l?(~‘)) for some distinct X,X’ E XQ . Since 
dw xh (z?) and q& x h (z”) are contained in a same mod- 
;;; =wxh(z) = rwXh(z’) by the definitions of &,xh 

wxh. Thus xi = xi for any i (1 2 i < n) by 
the definition of r’,xh. Since x # x’, we have that 
2, # XL, that is, z and x’ differ in exactly one bit posi- 
tion, contradicting to the assumption that x, x’ E XQ. 
Thus any module contains at most one &xh(r(2)). 
Similarly, we can show that any module contains at 
most one hxh(r(Y)). Thus (dwxh, $wxh, Cwxh) sat- 
isfies condition 2 of Definition 1. 

Let z be a vertex in XQ. Then & xh(xS) # 
4w xh (?) by definition. We first show that 
&,xh(oi) # &,xh(xS) for any i (1 5 i < n). Assume 
contrary that Q&,,~~(x~) = q~$,,~h(Y) for some i (1 < 
i < ?z). Ifxi = 0 then &,xh(xi) = T,.h(x)+(w’,h’)- 
(i mod w’, [i/w’]). Since (i mod w’, [i/w/J) = (ID’ - 
[w/2], h’ - [h/21), i = (h’ - [h/21)w’ + us’ - [w/21 = 
(w’h’ - 1)/2 > n, contradicting to the assumption 
that i < n. If zi = 1 then &,xh(zi) = rwxh(z) + 
(1,1) + (i mod w’, [i/w’]). Since (i mod w’, [i/w’]) = 
([w/2] - 1, [h/2] - l), i = ([h/21 - l)w’+ [w/21 - 1 = 
(w’h’- 1)/2 1 n, contradicting to the assumption that 
i < n. Thus &&xi) # 4 wxh(xS) for any i (1 5 i < 
n). We next show that &xh(xi) # &,xh(P) for any 
i (1 < i < n). Assume contrary that &,xh(X?) = 
&,xh(~n) for some i (1 5 i < n). If q = 0 t,hen 
4,,h(xi) = rwxh(x) + (w’, h’) - (i mod w’, [i/w’]). 
Since (i mod w’, [i/w’]) = (w’ - 1,h’ - l), i = 
w’h’ - 1 2 2n, contradicting to the assumption that 
i < n. If xi = 1 then &,xh(xi) = bath + (1,l) + 
(i mod w’, [i/w’]). Since (i mod w’, [i/w’J) = (O,O), 
i = 0, contradicting to the assumption that i 2 1. 
Thus &,h(&) # &xh(xn) for any i (1 5 i < n). Fi- 
nally, we will show that &,xh(xi) # &,xh(xj) for any 
distinct i, j < n. Assume contrary that &,xh(xi) = 
&,.h(zj) for some distinct i,j < R. If 2i = “j 
then (i mod w’, [i/w’]) = (j mod w’, [j/w’]), and so 

i = j, contradicting to the assumption that i # j. If 
xi # xi then (i mod w’, [i/w’J)+(j mod w’, Lj/w’j) = 
(w’ - 1, h’ - 1). S ince [(i + i)/w’J 2 li/w’J + [i/w’], 
i + j 2 (h’ - 1)w’ + (( w’ - 1) mod w) = (h’ - 1)~’ + 
w’ - 1 = w’h - 1 2 2n, contradicting to the assump- 
tion that i,j < n. Thus &,xh(xi) # q5,.h(zj) for any 
distinct i, j < n. Therefore, we conclude that &xh 
is a one-to-one mapping. Similarly, we can show that 
II, wxh is a one-to-one mapping. 

Suppose that (x, y) is an edge such that x E XQ and 
y E YQ. Suppose first that (x,y) is an n-edge. Then 
‘wxh(x) = rwxh(?l 

I 

1,l) - ([w/21, [h i 21) 
Thus $JL,x~(Y”) - d’wxh(xS) = 

E CwXh. Suppose next that 
a:, y) is an i-edge for some i (1 _< i < n). Then 

?hxh(Yi) - 4wxh(XS) 
= ‘wxh(Y) - ~toxh(~) + (1 - Yi)(w’, h’) -t- Yi(l, 1) 

f(2y; - l)(i mod w’, Li/w’J) - ([w/2], [h/21) 
= rwxh(!/) - Twxh(z) -t- (-1)“’ 

--([w/21, [h/21) + (i mod w’, 

If i is odd then 

?hxh(Yi) - &xh(xS) 

= (yi - xi)(2(i-i)/sw, 0) + (-1)s 

{(1,1> 
i/w’J)>. 

+w> 1) 
-(TWA, [h/21) + (i mod w', lilw'l)I 

= (-l)“~+1{(2(i-1)/2W,0) + (1,l) 
-([w/21, [h/21) + (i mod w’, \i/w’])} E Cwxh. 

If i is even then 

= (yi - xi)(0,2(i-2)‘2h) + (-l)yt+‘{(l, 1) 
-( Tw/21, [h/21> + (i mod w’, lVw’J>} 

= (-l)Y1+‘{(O, 2(i-2)‘2h) + (1,l) 
-(fwPl, rh/2l)+(imodw',lilzo'J)} E Czuxh. 

Thus ‘$wxh(yli) - &xh(z’) E Cwxh if (x,y) is an i- 
edge for some i (1 < i 5 n). 

Suppose that z and xt are any distinct vertices in 
XQ. We will show that &,xh(~S) + c # &,xh(~‘S) + 
c’ for any c, c’ E Cwxh. Assume contrary that 
exh(xs) + ca = &xh(x’S) + cb for some ca,cp E 

wxh. If C, = ob then &xh(xS) = &,xh(X’“). SlIlCe 

&,xh is a one-to-one mapping, it follows that zs = z”, 
contradicting to the assumption that x # 2’. Thus 
ca # cb. Define here that (u, b) mod (w, h) = (u mod 
w, b mod h). Then c, mod (w, h) = cb mod (w, h) by 
the definition of &,, xh. Let 

c,= {((l>l) - U+% W21> + (~mod~tN~tl>) 
mod(w, h) 1 i E Z,O 5 i < n} 

and 

cb= {(-Cl1 1) + (I~/21 I fV21) - (i mod w’, li/w’J)) 
mod(w,h)IiEZ,O<i<n}. 
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Then C, U cb = {c mod w,h) 1 c E CwXh}. Sup- 
pose first that c,mod(w, I, ),cbmod(w,h) E C, 01 
c,mod(w, h), cbmod(w, h) E Cb. Without loss of gen- 
erality, we assume that 

c, mod (w, h) = (l> ‘1 - (fw/‘l> fh/21) 
+(i, mod wt, [is/w’]) 

mod (w h) 
’ 

and 

cb mod (w, h) = clll> - tfw/21t fh/‘l) 
+(ib mod W ’, Lib/W’]) > 

mod (w,h‘) 

for some i, and ib (0 5 i,, ib < n). Since ca # cb, 
i, # ib. Since ca mod (w, h) = cb mod (w, h), and 
(i mod w’) < w - 1 and [i/w/j < h - 1, we have 

(i, mod w’, [ia/wt]) = (ib mod w’, L&,/w’]), 

and so i, = ib, a contradiction. Suppose next 
that c,mod(w, h) E C, and Cbmod(w, h) E cb, or 
c,mod(w, h) E C’b and cb mod (w, h) E C,. Without 
loss of generality, we assume that 

c, mod (w, h) = tl> l) - (fw/21 ) fh/21) 
+(i, mod w’, lia/w’]) > 

mod (w, h) 

and 

for some i, and ib (0 < i,, ib < n). Since c, mod 
(w, h) = Cb mod (w, h), 

c, mod (w, h) - Cb mod (w, h) 

= 
( 

2(lll> -2(TwPl, P/21) 
+(i, mod w’, l&/w’]) 

) 
mod (w, h) 

+(ib mod w’, l&,/W’]) 
= (0,O). 

Since -w < -w’ + 1 5 2 - 2[w/2] + (i, mod w’) -k 
(ib mod w’) 2 w’ - 1 < w and -h < -h’ + 1 < 2 -- 
2[h/2l f [ia/wt] + Lib/w’] < h, we have 

2 - 2[w/2] + (i, mod w’) + (ib mod wt) = 0 

and 
2 - 2[h/2] + L&/w’] + lib/w’] = 0. 

It follows that 

(i, + ib) mod w’ = (w’ - 1) mod w 

and 
[(ia + ib)/w’j 2 h’ - 1. 

Thus i, + ib 1 (h’ - 1)~’ + ((w’ - 1) mod w) = (h’ -- 
1)~’ + w’ - 1 = h’wt - 1 > 212, contradicting to the 
assumption that i,, ib < n. Thus &,xh(zJ) + c ;f 
C$wxh(xtS) $ ct for any c, ct E Cwxh. 

Let y be a vertex in YQ and i be an integer 
such that 1 5 i 5 n. Suppose that (z, y) is not 
an i-edge. For an i-edge (x’, y), there exists c’ E 
C zuxh such that ‘$&&(yi) = &xh(2ts) + Ct. si.nCe 

hxh(xS) + c # &xh(X”) + et for any c E Cu,‘xh, 

$,xh(Yi> # &xh(X’) + c for any c E Cwxh. Thus 
we conclude that (&,xh, $iwXh, Cwxh) satisfies con- 
dition 3 of Definition 1. Similarly! we can show that 
(4 $wxhiCwxhj wxh, satisfies condition 4 of Definition 
1. Therefore, we conclude that (&xh,&xh,Cwxh) 
is a realization of QN. 0 

Theorem 6 
If wh = 2lOgN + 1 then (&,xh,&,xh,Cwxh) is 
a realization of QN with lCzvXhl = 210g N ‘and 
A(4 d-‘wxh,C wxh, wxh) 5 NlogN+ N/2. 

Proof Since both w and h are odd by the as- 
sumption, w’h’ = wh = 210gN + 1. Thus 

A! 
wxh, w X h) is a realization of QN by Lemma 

Mc?%%rcA(+ h 4 h C h) 5 (maX{X 1 
(X,Y> E 

‘i 

rWX~(V(Q\~)~ +““w ’ xycaxly I 
rWxh(V QN))} + h) = ) 

(x,y 
whN 

Finally, 
2 = N(2logN + 1 

C, X h I = 2 log N by definition. 
1 

E 
/2. 

0 

Our realzation of hypercubes can be naturally ex- 
tended to multi-dimensional tori. The details of the 
realization of tori together with a unifying approach 
to realize genaral regular bipartite graphs will appear 
in a forthcoming paper [3]. 
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