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Abstract 
For a given N-vertex graph. H, a graph G obtained 

from H by adding t vertices a,nd some edges is called a 
t-FT (t-fault-toleran,t) graph. for H if even after delet- 
in.g any t vertices from G, the remaining graph con- 
tains H as a subgraph. For an N-vertex hypercube 
QN, a t-FT graph with an, optimal number O(tN +t2) 
of added edges and maximum degree of O(N + t), and 
a, t-FT graph zuith O(tN log N) added edges and max- 
imum degree of O(t 1ogN) have been known. In this 
paper, we introduce some t-FT graphs for QN with an 
optimal number O(tN + t2) of added edges and small 
maximum degree. In particular, we show a t-FT graph, 

for QN with 2ctN+ct2 v ’ added edges and max- 
c > 

imum degree of 0( ,0g~~2 N) + 4ct 

1 Introduction 
The hypercube is one of the well-known topologies 

for interconnection networks of multiprocessor sys- 
tems. However, even a small number of faulty pro- 
cessors and/or communication links can seriously af- 
fect the performance of hypercube machines. We show 
a fault-tolerant, architecture for hypercubes in which 
spare processors and communication links are added 
so that the architecture contains a fault-free hyper- 
cube even in the presence of faults. We optimize t#he 
cost of the fault-tolerant architecture by adding ex- 
actly t spare processors, while tolera.ting up to t pro- 
cessor and/or link faults, and minimizing the number 
of spare links and the maximum number of links per 
processor. This archit!ecture guarantees that a.ny al- 
gorithm designed for the hypercube will run with no 
slowdown in the presence oft or fewer faults, regard- 
less of t,heir distribution. 

Our approach is based on a graph model initiated 
by Hayes [20], in which each vertex and edge represent 
a. processor and communication link, respectively. Let 
G be a graph, and let V(G) and E(G) denote the 
vertex set and edge set of G, respectively. Let A(G) 
denote the maximum degree of a vertex in G. For any 
S c V(G 

1’ 
1 G - S is t,he graph obtained from G by 

deleting t le vertices of S together with the edges in- 
cident to the vertices in 5’. Let t be a positive integer. 
A graph G is called a t-FT (t-fault-tolera,nt) graph for 
a graph H if G- F contains H as a subgraph for every 

F E V(G) with IFI 5 t. Our problem is to construct 
a t-FT graph G for QN such that IV(G)\, IE(G)I, and 
A(G) are minimized. 

G V H is the graph obtained from graphs G and 
H by connecting each vertex of G and each vertex of 
H by an edge. It is easy to see that H V Kt is a t- 
FT graph for any graph H, where li’t is the complete 
graph with t vertices. H V Kt is obtained from an N- 
vertex graph H by adding t vertices and tN + gt(t -- 1) 
edges. 

Since the degree of every vertex of QN is log N, the 
minimum degree of a vertex in an (N + t)-vertex t- 
FT graph for QN is at least log N + t, and so at least 
a(tN + t’) edges must be added to QN in order to 
construct an (N + t)- vertex t-FT graph for QN. Thus, 
QN V Tr’t is an optimal t-FT graph for QN in the sense 
that the number of edges added to QN is optimal to 
within a constant factor. However, A(Q,YI V I<,) = 
N + t - 1, and QN V Ii’t is not practical at all. 

Bruck, Cypher, and Ho[6] proposed another con- 
struction of t-FT graph for QN. Their t-FT graph 
for QN has a small maximum degree of O(t log N). 
However, their t-FT graph is constructed from QN by 
adding n(tN log N) edges, which is a relatively large 
number. 

This pa.per proposes three t-FT graphs for QN with 
O(tN) added edg es and relatively small maximum 
degrees. A key idea of our constructions is to par- 
tition the vertices of QN according to the distribu- 
tion of Is in the label of a vertex. In Section 3, we 
show a naive construction of a t-FT graph for QN 
wit(h 2tN + t2 added edges and maximum degree of 
O(N/m 

1, 
+ 3t. The construct,ion is based on a 

partition oft e vertices of QN according to the Ham- 
ming weight of the label of a vertex. Based on a re- 
finement of the partition above, we give in Section 
4 an improved construction of a t-FT graph for QN 
with 4tN + 21’ added edges and maximum degree of 
O(N/ log N) + 5t. Finally, based on a. further refine- 
ment of the pa.rtition used in Section 4, we present in 
Section 5 a sophisticated construction of a t-FT graph 
for QN with 2ctN + ~t~(logN/c)~ added edges and 
maximum degree of O(N/ log”” N) +4ct for any fixed 
integer c. 

It is shown in [31] that we can construct a graph 
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G from QN by adding O(tiv log(log N/t + c)) edges 
such that A(G) = 1ogN + O(t log(log N/t + c)) and 
even after deleting any t edges from G, the remaining 
graph contains QN as a subgraph. 

2 Preliminaries 
The n.-cube (n-dimensional cube), denot,ed by 

Q n), 
i 

is defined as follows: 
E Q(71)) = {(.u,wu)I 

V(Q(n)) = {O, 1)“; 
u,w E V(Q(n)), W(U $ v) = I}, 

where $ denot,es bit-wise a,ddition modulo 2 and WJ(Z) 
is the Hamming weight of binary vector z, that is the 
number of l’s which z contains. It is easy to see that 
IV(Q(n))I = 2n. S‘ mce ea,ch vertex of Q(n,) has de- 
gree 12, jE(Q(n))I = ~z2~-l. A graph G is called a 
hypercube if G is isomorphic to Q(n.) for some n. 

For a t-FT graph G for Q(n), define A(G) = 
]E(G)] - IE(Q(n))I = /E(G)1 - n2’+l. That, is, A(G) 
is the number of edges added to Q(n) in order to con- 
struct G. 

Throughout the paper, let [n] = (0, 1,2,. , n - 12 
and [II]+ = {1,2 1 . . , n - l}, and let N = 2n. 

3 t-FT Graph G’(n) for 
Q(n) with A(Gl(n)) = O(N/logli2 N) 
and A(Gl(n)) = O(tN) 

For any k odd, define Qjk a.s the mapping from [k] 
to [k] such that $~k(;) = (29 mod k. 

Lemma 1 C#J~ is n bijection. In particudar, f$k(O) = 
(b,l(o) = 0. 

Proof: Suppose that 4k(i) = $k(j) for some i,j E 
[k]. Then, (2(i - j)) mod k = 0. Since k is odd, we 
have (i-j) mod k = 0. Since Ii - j( E [k], we conclude 
t,hat i - j = 0, that is i = j. Thus, $k is a one-to-one 
mapping, and hence a bijection. 

Since q5k(O) = 0, $il(O) = 0. I 

Lemma 2 ($,l((i + 2) mod k) - 1) mod k = 4;‘(i) 
for any i E [k]. 

Proof: Let j = (i + 2) mod k. Since 

h((&“(j) - 1) mod k) 
= ((24;‘(j) - 2) mod k) mod k 
= (24,‘(j) mod k - 2) mod k 
= (j - 2) mod k 
= 2, 

we have (4,‘((i i- 2) mod/z)-l)modk=&‘(i). 1 

Let k = n if n is odd, and k = n - 1 other- 
wise. Note that k is odd. Define that V; = {w E 
V(Q(n))jw(w) mod k = i} for any i E [k]. It is 
easy to see that (Vo, VI?. . , Vk-1) is a partition of 
V(Q(n)). Note that iz;r+ I& I = n if n is odd, and 

min IVij = n + 1 otherwise. 
iElk]+ 

Let n 2 3 and t 5 n. For any 1. E [k]+, let Si c x 
such that ]Sal = t. G1(n) is the graph defined as 
follows: 

V(@tn)) = V(Q(n)) U SO; 

E(@(n)) = EC&(n)) 
k-l 

u u {(‘% w>Iu E @;:, ‘ti E S(i+l)modk} 
i=O 

h-l 

ww4~ E &I,~ ES}, 
where SO is the set oft vertices added to Q(n), 

Lemma 3 Gl(n) is a t-FT graph for Q(n), 

Proof: Let F be any subset of V(Gl(n)) such 
that IFI 5 t. Let Fi = x n F and ti = IFil for any 
i E [k], and let Fk = So f~ F and tk := IFkl. Since 

(Fo, FI,. . . , Fk) is a partition of F, IFI = kti 5 t. 
idI 

f!f~~;~$?(dkl(i)) = i for any i E [k], we have, by 
7 

@Cl(i)-1 

c Q,(j) < t - ti 
j=o 

for a,ny i E [ICI+ and 

k-l k-l 

c b4j) = c 
tj <t-te. 

j=o j=o 

Thus, there exists Ai C Si - F such that 

k-l 

c tj ifi=O, 

IAil = 
j=o 

#i’(i)-1 

c t #k(j) if i E PI+ 
j=O 

By Lemma 2, we have IFi U Ail = IF;1 + IAil = 
&w’(O 

IA-(i+2)modkl = c Q,(j) for 811~ i E Wi and 
j=O 

IF01 = IA21 = to. Thus, there exist bijections 

{ 
Fo -+ A2 pi : 

ifi=O, 
FiuAi -+ A(i+2)modk if i E W. 

~~on;o~~e mapping ‘p from V(Q(n)) to V(G’(n) - F) 

ifw $Z FUA, 
q(w) = ye if 11 E Fo, 

pi(w) if w E 4 u Ai, i E [k]+, 
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k-l 

where A = U Ai. It is easy to see that ‘p is a one-to- 
i=l 

one mapping. 
Now, we will show that (cp(u),cp(v)) E E(G1(?~) - 

F for any (u,v) E E(Q(n)). We assume without loss 
o f’ generality that u E Vi and D E V(i+l~~~dh for some 
i E [k]. There a.re four cases as follows. 

Case 1 u, w $! FUA: Since p(u) = u and p(w) = v, 
we have (p(u), cp(v)) E E(G’(n) - F). 

Case 2 u $ F U A, u E F U A: Since cp(u) = u E K 
and P(V) = ~(i+l)rn~dlc(w) E A(it3)rnodk c S(it3)modkr 

we have (P(U), V(W)) E E(Gl(n) - F). 
Case 3 u E FUA,v $ FUA: Since p(u) = pi(u) 6 

A(i+z)mode c S(i+2)modk and F’(v) = 2, E v(i+l)modk, 

we have (p(u), y(w)) E E(G’(n) - F). 
Case 4 u, v E F U A: If i # k - 2 then cp(u) = 

Pi(U) E A(i+a)modk E yi+2)modk and cp(v> = 

(P(i+l)modk(~) E ++3)modlc c S(i+B)modk. Thus, 
((p(tt), p(w)) E E(G’(n) - F). If i = k - 2 then cp(u) = 
PL--B(U) E AO C SO and P(V) = (P~-I(u) E AI 5 5’1. 
Thus, (P(U), P(W)) E E(G’(n) - F). 

Thus, (p(u), p(u)) E E(G’(n) - F) for any (u, w) E 
E(Q(n)), and so G1(n) - F contains Q(n) as a sub- 
graph. Hence G’(n) is a t-FT graph for Q(n). m 

Now we estimate the maximum degree of G’(n) 
and the number of edges added to Q(n) t,o construct 
G1(n). We need the following lemma. 

Lemma 4 [16] 
( $2])=@(s). 

Lemma 5 A(G’(n)) = O(an/fi) + 3t. 
Proof: Let degl(v) denote the degree of ‘u E 

V(G’(n)). There are five ca.ses as follows. 
Case 1 2, E Vo: degl(w) 2 12 + ISI1 + IS,/ = n + 2t. 

Case 2 w E SO: degl(v) I IV,-11 + IVL3l+ J&l 5 

;(n3 - 3n2 + 8n + 6) + t. 

Case 3 v E E - Si, i E [ICI+: degl(v) 2 n + 
&i+l)modtI + IS(i+3)modkl = 12 + 2t. 

Case4 wES1: deg~(w)<n+IVol+I~-2l+IS21+ 

IS41 + /SOI F i(n’ + 3n + 2) + 3t. 

Case 5 0 E Si, i # 1, i E [ICI+: degl(w) 5 
n + Iv(i-l)modkl + Iv(i-3)modkl + iS(i+l)modk/ + 

&i+3)modkl < ‘rt + 2Ef; 14 I + 2.t. 

Since, by Lemma 4, 

we conclude that A(Gl(n)) = O(an/fi) + 3t. 1 

Lemma 6 A(G’(n)) < t2”+l + t2. 

Proof: Since JS’i I = t for a,ny i E [ICI, we have 

A(Gl(n)) < 2t c  Ivj I + t2 = t2”+l + t2. 1 

jE[kl 
By summarizing Lemmas 3, 5, and 6, we have the 

following theorem. 

Theorem 1 Let n > 3 and t 2 n. G1(n) is a t-FT 
graph, for Q(n.) with 2tN + t2 added edges and maxi- 
mum degree ofO(N/m) + 3t. I 

Theorem 1 can be generalized for larger t. Let IY be 
an int,eger greater than 2 and k = 2[n,/(2rr)l - 1, The 
following theorem can be proved by a similar a.rgument 
as the proof of Theorem 1, but we omit the details 
here. 
Theorem 2 Let a be a integer greater than 2 and 
let n > 2a + 1 and let X = i(1 - 6). If t 5 

then we cm construct a t-FT graph for 

Q(n) with 2tN + t2 added edges and maximum degree 
ofO(N/w)+ 3t. I 

4 t-FT Graph GZ(17) 
for Q(n) with A(G2(n)) = O(N/log IV) 
and A(G2(?z)) = O(tiV) 

Throughout this section, let o denote (0, 0), and let 
ILk = [k + 11 x [k] and ll$ = [k + l] x [k] - (0). For 
any i = (il, i2) E LI, and j = (jl ,j2) E K.k, define 
i + j = ((il + jl) mod (k + l), (i2 + j2) mod k) and 
i - j = ((il - jl) mod (k + l), (i2 - j2) mod 6). For 
any k, define pk as the mapping from [k(k + l)] to ILk 
such that pk(i) = (i mod (k + l),i mod k). 

Lemma 7 /TV is a bijection. In particular, pi = o 
and pil(o) = 0. 

Proof: SuppOs!? that ,&(i) = pk(j) for. some i,j E 
~C”,‘in’~‘,l.kT;thney CJz - 3) mod (k f 1) (z 7 3) mod k) = 

+ 1 are relative y prime, we have 
(i - j) mod (k(k + 1)) = 0. Since Ii - jl E [k(k + l)], 
we obtain i - j = 0, that is i = j. Thus /-lk is a one- 
t,o-one mapping. Since I[k( k + l)] I = lLk 1, we conclude 
that pk is a bijection. 

Since pk(O) = 0, pcl(o) = 0. I 

Lemma 8 (pi’(i+(l, l))-1) mod k(k+l) = &l(i) 
for my  i E Lk. 

Proof: Let i = (il,iz) and j = i + (1,l). Since 

~.lk((&‘(i) - 1) mod k(k + 1)) 
= ((p;‘(j) - 1) mod (k + l), 

(piI - 1) mod k) 
= (((il + 1) mod (k + 1) - 1) mod (Ic + l), 

((i2 + 1) mod k - 1) mod k) 
= (il,i2), 
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we have (li’(( + (1,l)) - 1) mod k(k + 1) = p,‘(i). 

Let, k = (n - 1)/2 if n is odd, and k = (n/2) - 1 
otherwise. For a.ny (i, j) E Lk, let 

where We& and q(~) are the numbers of 1s contained 
in [71/2] upper bits and n - [n/21 = [n/2] lower bits, 
respectively. Notice that (V(O,O), V(O,I), . . , V(k,k-~)) is 
a part,ition of V(Q(n)). Note also that %yF+ IV;1 = 

n - 1 if n is odd, and Fin Ir;‘;l = n + 2 otherkise. 
za: 

Let n 2 5 and t < n - 1. For any i E IL;, let 
S; c V’,‘, such that IS;1 = t. G’(n) is the graph defined 
as follows: 

V @ ‘(n)) = V(Q(n)) u So; 

E(G’(n)) = E(Q(n)) 

u IJ {(K v)lu E  v;> ?J E  s;+(,,,)I 
iELk 

where So is t#he set of t vertices added to Q(n). 

Lemma 9 G’(n) is a t-FT graph for Q(n). 

Proof: Let F be any subset of V(G’(n)) such 
that IFI 5 t. Let F; = Vi II F  and ti = IF,,\ for any 
i E b, and let F(k+~,k) = S(O,O) n F and t(ktl,k) = 
iF(ktl,k)h Since (F(o,o),F(o,I), ‘. , F(k,k-l),F(ktl,k)) 

is a partition of F, IFI = c t; + t(k+l,k) 5 t. Since 

ia 
,uk(,ukl(i)) = i for any i E lLk, we have, by Lemma 7, 

p;‘(i)-1 

c t P,(j) 5 t - ti 
j=o 

for auy i E IL; a.nd 

!c(k+l)-1 

c t,,,(j) 5 t - t(k+l,lc), 
j=o 

Thus, for any i E lLk, there exists A; C 5’; - F such 
that 

1 
k(T+l)-1 

x tpk(j) if i = 0, 

IAil = 
j=o 

p,‘(i)-1 
C t,,(j) if i E lt$. 
j=o 

By Lemma 8, we have IF; U A; I = IF;/ + IA; I = 
P,‘(i) 

IA itC1,ljl = c for any i E IL:, and IF01 = 
i=o 

IA~l,l~l = to. Thus, there exist bijections 

Fo ifi=o, 
“i : 

i 
-+ Aw) 

F; U A; + A;+(, 1l if i E IL:. 

~~o;;o$s~ mapping L/ from V(Q(n)) to V(G’(n) - F) 

i 

V  i fv@FUA, 
v(w) = vo(w) if v E Fo, 

U;(U) ifwEF;UA;, ~EIL$, 

where A = U A;. It is easy to see that v is a one- 

iE$- 
to-one mapping. 

Now, we will show t#hat (U(U), U(U)) E E(G’(n)--F) 
for any (u,v) E E(Q(n)). We may assume without 
loss of generalit,y that u E V; and II E V;+(, oj for 
some i E lLk. There are four cases as follows. 

Case 1 U, v $ F U A: Since U(U) = II and U(U) = u, 
we have (v(u),v(w)) E E(G’(n) - F). 

Case2 u$FUA,vcFUA: Sincev(u)=uEVi 
and 4~) = ql o)(v) E A;+(, 1) C S;+(, 1), we have 
(u(u),Lqw)) E q&(n) - F). ’ ’ 

Case 3 u E FuA, 21 $Z FUA: Since V(U) = V;(U) E 
A. 2+(1 1) c: %t(l 1) and V(V) = w E Vitcl oj, we have 

(L+&(W)) E E @“(n) - F). ’ 

Case 4 u, w E F U A: If i # (k, k - 1) then ~(21) = 
&4 E A;+(, 1) c v;+(, 1) and 4w) = vi+(l O)(V) E 

Ai+(2,l) E %+(2,1). Thus, (u(u),v(u)) E E(b2(n) - 
F). If (il, ia) = (k, k - 1) then U(U) = ~qk,k-~)(~) E 
AO C SO and u(u) = ~o,~-I)(u) E A(I,o) C  ‘-S(I,O). 

Thus, (V(U), V(V)) E E(G2(n) - F). 

Thus, (V(U), U(W)) E E(G2(n) - F) for a,ny (u, V) E 
Et&(n)), and so G’(n) - F contains Q(n) as a sub- 
graph. Hence G2(n) is a t-FT graph for Q(n). 

Lemma 10 A(G2(n)) = U(an/n) + 5t. 
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Notice that (r/b,. , Vl,-r) is a partition of V(Q(n)). 
Note also that iem~;+ 1x1 = 2c-1172 = 2C-1n/c. For 

any i E [Ml, let Neih(i) = {j]~ E g and w E 
I$ for some (u,u) E E(Q(n,))}. Since rn 2 2, if 
(u,~I) E E(Q(n)) then t,h 

\ 

ere exisk Icr E [c] such that 
ruk (w) = ujbl U) f 1 and u:~(v) = UJ~ U) 
k $ kl. Thus, Neib(i)l 5 2c for any i E i 

for every 
M]. 

Let t 5 2’-In/c. For any i E [Ml+, let 5’; c x such 
tha.t ]Si] = t. G3(n) is the graph defined as follows: 

V(G3(n)) = V/(&(77)) u So; 

E(G3(n)) = E(Q(n)) 
M-l 

u u u {(U,PJ)l2~ E K, 

i=o je Neib(i) 

w E s(j+l)modM} 

M-l 

” u u {(“,w)b E S(i+l)modM, 

i=” je Ned(i) 

w E S(j+l)modMh 

where Se is the set oft vertices added to Q(n). 

Lemma 12 G”(n) is a t-FT graph for Q(72). 

Proof: Let’ F be any subset of V(c”(n ) such 
that JF( 5 t. Let K = K n F and ti = i Fi( for 
any i E [Ml, and let, FM = SO n F and TV = IF*\. 
Then, (Fc,Fr,... , FM) is a part#ition of F and ]i”( = 
M i 

Proof: Let degz(w) denote the degree of 2, E 
V(G2 (n)). There are five cases as follows. 

Case 1 ‘u E Vi: dega(v) < 72 + 4t. 
Case 2 2) E SO: dega(w) I4pax IVjl+ 2t. 

3a.k 

Case 3 w E V; - S;, i E IL,:: dega(v) < n + 4t. 

Case 4 v E S;, i E IL: - ((0, l), (1,O)): degz(w) < 
n+4max]V,J+4t. 

JEJJk 
Case 5 ‘u E S(OJ) U S(l,q: degdw) 5 n + 

4max]‘C/B]+5t. 
3 EEk 

Since 

if n = 2m, and 

j”z Ivj 1 = ( ,prr++1;,2, > ( lG21) 
if n = 2m + 1, we have, by Lemma 4, 

and we conclude that A(G2(n)) = O(an/n) + 56. m 

Lemma 11 h(G’(n)) 5 t2n+2 + 2t2. 

Proof: Since ]Sj ( = t for any j E ILk, we have 

A(G’(n)) 2 4t c fVjl + 2t2 = t2n+2 + 2t2. m 

jab 

By summarizing Lemmas 9, 10, and 11, we have 
the following theorem. 

Theorem 3 l;el n 2 5 and t < n - 1. Th,en G’(Tz) 
is a t-FT graph for Q(n,) with 4tN + 2t2 added edges 
and maximum degree of O(N/ log N) + 5t. I 

5 t-FT graph G3(n) for Q(n) with 
A(G3(n)) = O(N/ 10g”/~ N) + 4ct and 
A(G”(n)) = 2ctN + &(log N/c)” 

Let c be a fixed integer. Assume that c n, 
112 = n/c > 2 and M = m”. For any i E [M i 

and let 
, let 

c-l 

C; = {v E V(Q(n))I ~(uJ~(w) mod m)mk = i}, 
k=O 

U) is the number of Is in the bit positions 
mk + l)-st bit to t,he m(k + I)-st bit, of u. 

Eli 2 2. Since Ctj 5 t - &+I for any i E [Ml, 
i=o j=o 

(i-1)modM 

there exists Ai c Si - F’ such that IAil = c tj 
j=O 

for any i E [Ml. It follows that ]E U Ai ( = (Pi 1 + 

(41 = lA(i+l)modn~l = xti for any i E [Ml+, and 
j=O 

IF01 = IAll = to. Th us, there exist bijections 

Fo + Al if i =O, 
F; UAi * A~itl),,,,,dA~ if i E [Ml+ 

Define the mapping li, from V(Q(n)) to V(G3(n) -F) 
as follows: 

if w r$ F U A, 
7)(w) = qoyw) if 2) E F0, 

&(w) if u E Fi uA~, i E [Ml+, 

k-l 

where A = U Ai. It, is easy to see that $ is a one-to- 
i=l 

one ma.pping. 
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Now we will show that (q!~(u),$(u)) E E(G3(n)-FF) 
for any (u,~) E E(Q(n ). If (u,~) E E(Q(n)), then 
u E Vi, w  E r/j, i E i [M , and j E Neib(i). There are 
three cases as follows. 

Case 1 TI.,II $ FUA: Since $1(u) = u and $J(w) = vu, 
we have (11,(~),$(1))) E E(G3(n) - F). 

Case 2 PI 6 FuA,~ E FUA: Since Ii,(u) = u E r/:, 
ii/(v) = $j(Ti) E  A( j+qmodM c S(j+l)modM, and .i E  

Neib(i), we have (ti(ti), $(w)) E E(G3(n.) - F). 
Case 3 u,w E F u A: Since G(u) = @i(u) E 

A(itl)modnf c S(it l)modM, ti(w) = $.A4 E  

&+I i rnOdM C S(j+l)modlM, a.nd j E Neib(?:), we ha,ve 
(d>(u). ?II(w>> E E(G3(4 - F). 

Thus, (d)(u), $(I))) E E(G3(n) - F) for any (lb, u) E 
E(Q(n)), and so G3(n) - F contains Q(n) as a sub- 
graph. Hence G3(n) is a t-FT graph for Q(n). 

Lemma 13 A(G3(n)) = O(N/ log”12 N) + 4ct. 

Proof: Let deg,(w) denote the degree of v E 
V(G3(n.)). There are four cases a.s follows. 

Case1 21 E vo: deg3(u) 5 n. 

+ c &jt lhodM < n +2ct. 

jENeib(o) 

Case 2 w E So: deg3(w) 5 c lvjl+ 
jE Neib(bf-1) 

c 

jENeib(nJ-1) 
IS(jtl)modMI < 2”zgI 15 1 + 2ct. 

Case 3 21 E g - Si, i E [Al]+: deg,(w) 5 11. + 

c IS(j+l)modMI 5 ‘v, + 2ct 

jE Neil)(i) 

Case 4 PI E Si, i E [M]+: deg3(tJ) I 
11 + c Ir< 1 + c IS(j+lhnodM + 

Since 

max [\<I= ( ,ij2, )C, 
jE[Ml 

we have, by Lemma 4, 

IllaxILJ=8(-g) =p&). 
j E  [W 

Hence A(G3(n)) = O(2n/nc/“) + 4ct. 

Lemma 14 A(G3(17)) = ct2'2t1 + ct2(n/C)C 

Proof: Since ISj I = t for any j E [Ml, we have 

A(G3(n)) 5 t x lNeib(j)ljl$;l+ it2 c lNeib(j)l 
jE[Ml jEWI 

e 
5 ct2n+1 + ct2 11 . 

( > c 

By summarizing Lemmas 12, 13, a.nd 14, we have 
the following theorem. 

Theorem 4 Let c be a fixed integer and let n >_ 2c 
be a natural number such, that c/n. Let t 5 2C-1n./c. 
Th.en G3(n) is a t-FT graph for Q(n) with 2ctN + 
ct’(log N/c)” added edges and maximum degree 
0( N/ log”” N) + 4ct. 

We can generalize Theorem 4 for any n. The proof 
is by a similar argument as the proof of Theorem 4, 
but is rather complica,ted and is omitted here. 

Theorem 5 Let c be a fixed integer, n 2 2c be a nat- 
ural number, and r = n, mod c. If t 5 2’-l [n/c], 
th,en we can, construct a t-FT graph for Q(n) with 
2ctN + ct2 [log N/cl’ [logN/cJe-T added edges an.d 
maximum degree of 0( N/ logcf2 N) + 4ct. 
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