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Abstract

For a given N-vertex graph H, a graph G obtained
from H by adding t vertices and some edges is called a
t-FT (t-fault-tolerant) graph for H if even after delet-
ing any t vertices from G, the remaining graph con-
tains H as a subgraph. For an N-vertex hypercube
Qn, at-FT graph with an optimal number O({N +1?)
of added edges and mazimum degree of O(N +1), and
a t-FT graph with O(tN log N) added edges and maz-
imum degree of O(tlog N) have been known. In this
paper, we introduce some t-FT graphs for Qn with an
optimal number O(N +t?) of added edges and small
mazimum degree. In particular, we show a t-FT graph

[
for Qn with 2ctN +ct? (l&iﬁ) added edges and maz-

imum degree of O(lﬁ\fw) + 4ct.

og*®
1 Introduction

The hypercube is one of the well-known topologies
for interconnection networks of multiprocessor sys-
tems. However, even a small number of faulty pro-
cessors and/or communication links can seriously af-
fect the performance of hypercube machines, We show
a fault-tolerant architecture for hypercubes in which
spare processors and communication links are added
so that the architecture contains a fault-free hyper-
cube even in the presence of faults. We optimize the
cost of the fault-tolerant architecture by adding ex-
actly t spare processors, while tolerating up to t pro-
cessor and/or link faults, and minimizing the number
of spare links and the maximum number of links per
processor. This architecture guarantees that any al-
gorithm designed for the hypercube will run with no
slowdown in the presence of ¢ or fewer faults, regard-
less of their distribution.

Our approach is based on a graph model initiated
by Hayes [20], in which each vertex and edge represent
a processor and communication link, respectively. Let
G be a graph, and let V(&) and E(G) denote the
vertex set and edge set of G, respectively. Let A(G)
denote the maximum degree of a vertex in . For any
S C V(G?, (G — S is the graph obtained from G by
deleting the vertices of S together with the edges in-
cident to the vertices in S. Let ¢ be a positive integer.
A graph G is called a ¢-FT (¢-fault-tolerant) graph for
a graph H if G—I' contains H as a subgraph for every

1087-4089/97 $10.00 © 1997 IEEE

179

F C V(G) with |F| <t. Our problem is to construct
a t-FT graph G for @n such that [V(G)], |E(G)|, and
A(G) are minimized.

G V H is the graph obtained from graphs G and
H by connecting each vertex of G and each vertex of
H by an edge. It is easy to see that H V K, is a -
FT graph for any graph H, where K; is the complete
graph with ¢ vertices. H Vv K, is obtained from an N-
vertex graph H by adding ¢ vertices and tN +2t(t—1)
edges.

Since the degree of every vertex of Qn is log N, the
minimum degree of a vertex in an (N + t)-vertex -
FT graph for Qu is at least log N + £, and so at least
Q(tN + t?) edges must be added to @y in order to
construct an (N +t)-vertex ¢-FT graph for Q. Thus,
Qn V Iy is an optimal t-FT graph for @n in the sense
that the number of edges added to @ is optimal to
within a constant factor. However, A(Qy V K;) =
N+t—1,and @n V K is not practical at all.

Bruck, Cypher, and Ho[6] proposed another con-
struction of ¢-F'T graph for @n. Their ¢-FT graph
for @n has a small maximum degree of O(tlog V).
However, their -FT graph is constructed from Qn by
adding Q(tN log N') edges, which is a relatively large
number.

This paper proposes three ¢-F'T graphs for QQn with
O(tN) added edges and relatively small maximum
degrees. A key idea of our constructions is to par-
tition the vertices of QQn according to the distribu-
tion of 1s in the label of a vertex. In Section 3, we
show a naive construction of a ¢-FT graph for Qn
with 2¢N + t? added edges and maximum degree of
O(N/+/1og N} + 3t. The construction is based on a
partition of the vertices of Qn according to the Ham-
ming weight of the label of a vertex. Based on a re-
finement of the partition above, we give in Section
4 an improved construction of a ¢-FT graph for @Qn
with 44N + 2¢% added edges and maximum degree of
O(N/logN) + 5t. Finally, based on a further refine-
ment of the partition used in Section 4, we present in
Section 5 a sophisticated construction of a ¢-F'T graph
for @Qn with 2ctN + ct?(log N/c)® added edges and

maximum degree of O(N/log®? N)+ 4ct for any fixed
integer c.
It is shown in [31] that we can construct a graph
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G from Qn by adding O(tN log(log N/t + ¢)) edges
such that A(G) = log N 4+ O(tlog(log N/t + ¢)) and
even after deleting any ¢ edges from G, the remaining
graph contains () as a subgraph.

2 Preliminaries

The n-cube (n-dimensional cube), denoted by
Q(n), is defined as follows: V(Q(n)) = {0,1}";
Bl = T us € V(@) wlus v = 1.
where @ denotes bit-wise addition modulo 2 and w(x)
is the Hamming weight of binary vector x, that is the
number of 1’s which x contains. It is easy to see that
IV(Q(n))| = 2". Since each vertex of Q(n) has de-
gree n, |E(Q(n))| = n2" 1. A graph G is called a
hypercube 1f (G 18 isomorphic to Q(n) for some n.

For a t-FT graph G for @Q(n), define A(G) =
|E(G)| = |E(Q(n))] = |E(G)| — n2"~!. That is, A(G)
1s the number of edges added to @(n) in order to con-
struct G.

Throughout the paper, let [n] = {0,1,2,...,n ~ 1}
and [n]* ={1,2,...,n— 1}, and let N = 2".

3 t-FT Graph G'(n) for
Q(n) with A(GY(n)) = O(N/log"* N)
and A(G'(n)) = O(tN)

For any k odd, define ¢, as the mapping from [k]
to [k] such that ¢r(7) = (2¢) mod k.

Lemma 1 ¢ ¢s a bijection. In particuler, ¢5(0) =
67 '(0) = 0.

Proof:  Suppose that ¢ (i) = ¢¢(j) for some 1, j €
[k]. Then, (2(i — 7)) mod k = 0. Since k is odd, we
have (i —j) mod k = 0. Since |i — j| € [k], we conclude
that 7 — j = 0, that is i = j. Thus, ¢ is a one-to-one
mapping, and hence a bijection.

Since ¢¢(0) = 0, ¢7'(0) = 0. |

Lemma 2 (¢;*((¢+ 2) mod k) — 1) mod k = ¢5 (i)
for any @ € [k]. ’

Proof:

or((6"(5) ~ 1) mod k)

((2¢71(5) — 2) mod k) mod k
= (2¢;1(j) mod k — 2) mod k
(7 —2)mod k

2

Let j = (i 4+ 2) mod k. Since

i

I

we have (¢7 *((i + 2) mod k) — 1) mod k = ¢7'(i). 1

Let ¥k = n if n is odd, and ¥ = n — 1 other-
wise. Note that k is odd. Define that V; = {v €
V(Q(n)|w(v) mod k = i} for any ¢ € [k]. 1t is

easy to see that (Vp,Vi,...,Vi_1) is a partition of
V(Q(n)). Note that 11[11151+ [Vil = n if n 1s odd, and
i€

min |V;] = n + 1 otherwise.
e[k}t

Let n > 3 and ¢ < n. For any i € [k]*, let S; C V;
such that |S;| = t. GY(n) is the graph defined as
follows:

V(Gi(n)) (Q
E(G'(n) = E(Q(n)
k-1

ff
<

U U {(w,v)|w € Vi,v € Stit1)modr }

=0

1
U A{(w,v)[u € Vi, v € Si43)modk }
=0
U{(u,v)|u € Sy,v € 51},
where Sp is the set of ¢ vertices added to Q(n).
Lemma 3 G'(n) is a t-FT graph for Q(n).
Proof: Let F be any subset of V(G!(n)) such

that |F} <t. Let F; = V; N F and t; = |F}| for any
i € [k], and let Fr = Sy N F and t; = |Frl. Since
k

(Fo, Fy,..., Fy) is a partition of F, |F| = Zti <.
i=0
Since ¢k(¢;l(i)) = ¢ for any ¢ € [k], we have, by

Lemma 1,
¢ H()~1

Z to(j) St—1t

j=0
for any i € [k]* and

k-1 k—1
Ztmu)zzti St—t.
j=0 j=0

Thus, there exists A; C S; — F such that

k—1
PR ifi=0,
j=0

|4il =

;' (i)-1
> teqy ifi€ it
j=0
By Lemma 2, we have |F; U A = |F| + |4} =
7 (4)
IA(i+2)nlodk| = Z t¢k(]) for any i€ [k]+, and
j=0

|Fo| = |A2| = to. Thus, there exist bijections

. o = As
ol FiUAi = Agiomods

ifi=0,
if i € [k]F.

Define the mapping ¢ from V(Q(n)) to V(G*(n) - F)
as follows:
ifog FUA,

v
o(v) = { wol(v) Hwve Fy,
pi(v) ifve FUA;, e kT,
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k-1
where A = U A;. Tt is easy to see that ¢ is a one-to-
i=1
one mapping.
Now, we will show that (¢(u), ¢(v)) € E(G*(n) —
Ft) for any (u,v) € E(Q(n)). We assume without loss
of generality that u € V; and v € V{;41)moax for some

i € [k]. There are four cases as follows.

Case 1 u,v € FUA: Since p(u) = v and p(v) = v,
we have (¢(u), ¢(v)) € E(G}(n) — F).

Case2 ud FUA v € FUA: Since p(u) =ueV;
and ¢(v) = @(i+1)modk(v) € Aii+3)modk C S(i43)modk
we have (p(u), ¢(v)) € E(G'(n) — F).

Case 3 ue€ FUA,v & FUA: Since p(u) = ¢;(u) €
Agi+2ymodr C S(i+2)modk and ©(v) = v € Viit1)modk,
we have (p(u), o(v)) € E(G'(n) — F).

Case4 u,v € FUA: If i # k— 2 then ¢(u) =
pi(u) € AGtnmodk € V(it2)moar and ¢(v) =
Pi+modk(V) € A(itzimodt S S(i+3)modr- Thus,
(e(u), p(v)) € E(GY(n)—~F). Ifi = k-2 then p(u) =
pr—2(u) € Ao C So and p(v) = pg_1(v) € 4; C Si.
Thus, (¢(u), ¢(v)) € E(G'(n) - F).

Thus, (¢(u), ¢(v)) € E(G'(n)— F) for any (u,v) €
E(Q(n)), and so G}(n) — F contains Q(n) as a sub-
graph. Hence G'(n) is a t-FT graph for Q(n). i

Now we estimate the maximum degree of G!(n)

and the number of edges added to @Q(n) to construct
G'(n). We need the following lemma.

Lemma 4 [16] < [7172_| ) =0 (%)
Lemma 5 A(GY(n)) = O(2"//n) + 3t.
Proof: Let deg;(v) denote the degree of v €
V(G*(n)). There are five cases as follows.
Case 1 v € Vy: degy(v) <n+|Sy|+|S3| =n+ 2t
Case 2 v € Sp: degi(v) < [Via| + [Vis] 4+ |S1] <
é—(ns —3n? +8n+6)+1t.
Case3 v € V; — Sy, i € [k]":
[Sti41)mod k| + |S(i48)modr| = 1+ 2¢.
Case 4 v € S1: degi(v) < n+|Vo|+ [Vi—2] +]S2] +

1
|Sa] + IS0l < 5(n* +3n +2) + 3t.

Casebv € S, i # 1, i € [k]t: degi(v) <
n + Vichmodr]! + [Viicgymodr! + [Sti+1)mods
[Sti43)modr] <+ 2%%%” 2t.

degi(v) < n +

Since, by Lemma 4,

" Y o2
st = (i ) =@ ()
we conclude that A(G1(n)) = O(2"/v/n) + 3t. 1

Lemma 6 A(Gl(n)) < t2m+! 442,
Proof:

Ay <Y e =t
jelk]
By summarizing Lemmas 3, 5, and 6, we have the
following theorem.

Theorem 1 Letn > 3 and t < n. G'(n) is a t-FT
graph for Q(n) with 2tN + t? added edges and mazi-

mum degree of O(N/+/log N) + 3t. i

Theorem 1 can be generalized for larger t. Let o be
an integer greater than 2 and k = 2[n/(2a)] — 1, The
following theorem can be proved by a similar argument
ﬁs the proof of Theorem 1, but we omit the details

ere.

Since |S;| =t for any i € [k], we have

Theorem 2 Let o be a integer greater than 2 and

let n > 20+ 1 and let X = %(l—é) Ift <

¢ , then we can construct a t-FT graph for
[An]

Q(n) with 2tN + 1% added edges and mazimum degree

of O(N/\/Iog V) + 3t. i

4 -FT Graph G?(n)
for Q(n) with A(G*(n)) = O(N/log N)
and A(G*(n)) = O(tN)

Throughout this section, let o denote (0,0), and let
Ly = [k+1] x [k] and L} = [k + 1] x [k] — {o}. For
any @ = (i1,i2) € Ly and j = (j1,52) € Ly, define
t+ 73 = ((i1 + j1) mod (k + 1), (i2 + j2) mod k) and
t—j = ((i1 ~ 71) mod (k + 1), (4 — j2) mod k). For
any k, define . as the mapping from [k(k + 1)] to Ly,
such that py(7) = (¢ mod (k + 1), ¢ mod k).

Lemma 7 py is a bijection. In particular, px(0) = o
and piy'(0) = 0.

Proof:  Suppose that p(7) = pp(j) for some 1,5 €
[k(k+1)]. Then ((—j) mod (k+ 12,(2'—j) mod k) =
o. Since k and &k + 1 are relatively prime, we have
(1 — j) mod (k(k + 1)) = 0. Since |i — j| € [k(k + 1)],
we obtain i — 5 = 0, that is i = j. us gy is a one-

to-one mapping. Since |[k(k+1)]| = |Lg|, we conclude
that uy is a bijection.

Since p1x(0) = o0, u; '(0) = 0. i
Lemma 8 (p;'(i+(1,1))—1) mod k(k+1) = )
for any © € L.

Proof:  Let 2 = (71,43) and j = ¢+ (1,1). Since

pr((uy ' (5) — 1) mod k(k + 1))
= ((ny'(F) = 1) mod (k + 1),
(11(3) - 1) mod k)
(((z1 + 1) mod (£ + 1) — 1) mod (k + 1),
((i2 + 1) mod k& — 1) mod k)

!

(1, 42),

fl
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we have (u; (¢ + (1,1)) — 1) mod k(k + 1) = pj ' (3).

Let k = (n—1)/2 if n is odd, and k = (n/2) — 1
otherwise. For any (¢,j) € Ly, let

wy (v) mod (k + 1) = 4, }

Vi) = {v V@D | " (v) mod k =

where wy, (v) and wi(v) are the numbers of 1s contained
in [n/2] upper bits and n— [n/2] = |n/2] lower bits,
respectively. Notice that (V{0,0), V0,1, - - X(k k1)) i8

a partition of V(Q(n)). Note also that .mul Vil =
€L}

n—11ifn is odd, and }rnir:L Vil = n + 2 otherwise.
teL}
Let n > band t < n—1. ForanyiElLZ, let
S; C V; such that [S;| = t. G?*(n) is the graph defined
as follows:
V(G*(n)) V(Q(n)) U So;
E(G*H(n)) = E(Q(n)
U U {{u,v)[ue V;,ve Sl+(1 0)}
2€Ly
u U {(w,v)jueV;,ve Si+(o,1)}
2eLy
u [ J{@v)uev;ve Sivon)
iELk
u U {(u,v)lueV;,ve Sz+(1 2)}
ie]Lk
U{(u,v)[u € SOvU S 5(1,0)}
U{(u,v)lu € So,v € 5(0,1)},

ll

where Sg is the set of ¢ vertices added to Q(n).
Lemma 9 G?(n) is a t-FT graph for Q(n).

Proof: Let F' be any subset of V(G?(n)) such
that [F| <t. Let F; = V; N F and t; = |F;] for any
1 € L, and let F(k-i-l,k) = S(O,O) N F and t(k-}—l,k) =
|F(k+1,k)l- Since (F(o,o),F(o,my-~~,F(k,k—1),F(k+1,k))
is a partition of F, |F| = Z ti +trerr) <t Since

telLy
Mk(/x;l(z)) = ¢ for any ¢ € Ly, we have, by Lemma 7,

/.L’:l('l)—l

D ) St

=0
for any z € ]L',:' and

k(k+1)—1

Do i) Sttt
j=0

Thus, for any ¢ € Ly, there exists A; C .S; — F such
that

E(k+1)—1
Z () if1=o,
=0
lAi| = u;l(i)——l
Z tﬂk(j) ifz € ]L}:
]':0
By Lemma 8, we have |F; U A;| = |F;| + |4;] =
')
lAi anl = Z for any ¢ € L}, and |Fo| =
i=0

A¢i 1y = to. Thus, there exist bijections
(1,1)

f o = Auy
FiUAi — A

if 2 = o,
4(1,1) if 2 € ]Lk+'
Define the mapping v from V(Q(n)) to V(G*(n) — F)
as follows:

v ifvg FUA,
y(v) = { 1/0(’0) if v c F(),
v;(v) ifveF;UA; i elf,

where A = U A;. Tt is easy to see that v is a one-
el
to-one mapping.
Now, we will show that (v(u),v(v)) € E(G*(n)—F)
for any (u,v) € E(Q(n)). We may assume without
loss of generality that v € V; and v € V+(1 0) for

some ¢ € L. There are four cases as follows.

Case 1 u,v & F'UA: Since v(u) = v and v(v) = v,
we have (V(u) v(v)) € B(G*(n) — F).

Case 2 u¢ FUA vE FUA: Since v(u) =ucV;
and v(v) = v (1 0)(v) € A4, 51y C Sj4(2,1) We have
(v(u), v(v)) € E(G*(n) - F).

Case 3 u € FUA, v ¢ FUA: Since v(u) = v;(u) €

At+(1 1) - Sz+(1 1) and v(v) =v €V we have

(v(u),v(v)) € E((“Q( y— F).

Case 4 u,v € FUA: If ¢ # (k, &k — 1) then v(u) =
vi(u) € Az+11) C Vg and v(v) = ”z+(10)( ) €
Al+(2 1) l+(2 1) Thus, (v(u),v(v)) € E(G?*(n) —
F). If (i1,i2) = (k,k — 1) then v(u) = vy p-1y(u) €

(,

Ao C So and v(v) = I/(Ok 1(v) € Aoy € S0
) €
(v

2+(1,0)

Thus, (v(u), v(v)) € B(G2(n) — F),

Thus, (v(u),v(v)) € E(G*(n) — F) for any (u,v) €
E(Q(n)), and so G*(n) — F contains Q(n) as a sub-

graph. Hence G?(n) is a t-FT graph for Q(n). |

Lemma 10 A(G?*(n)) = O(2"/n) + 5t.
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Proof: Let dega(v) denote the degree of v €
V(G?(n)). There are five cases as follows.

Case 1 v € Vo: dega(v) < n+ 4.
Case 2 v € So: degz(v) < 4max [Vy| + 2t
JELg

Case3 veV;—5;, 1€ ILi: dega(v) < n+ 4t

Case4 veS;, i €L —{(0,1),(1,0)}: degs(v) <
n+4max|Vj|+4t.
Jels
Case 5 v € Sp,1) U S0
4 max I%l + bt.
J el
Since

dega(v) < n +

ﬁi):‘vji:( Ln?/l% >2

if n=2m, and

max |Vl = ( [+ 12 ) ( /2] )

if n = 2m + 1, we have, by Lemma 4,

277/
V=0 —],
it = (3)
and we conclude that A(G?(n)) = O(2"/n) + 5t. i

Lemma 11 A(G?(n)) < $2"+2 4 212,

Proof:  Since lSJ| =t for any 7 € L, we have

AG?(n)) < 4t Z VI +2t7 = 272 427,
JELs

By summarizing Lemmas 9, 10, and 11, we have
the following theorem.

Theorem 3 Letn > 5 and t < n— 1. Then G*(n)
is a t-FT graph for Q(n) with 4N + 2t* added edges
and mazimum degree of O(N/log N) + 5t. |

5 {-FT graph G°(n) for Q(n) with
A(G3(n)) = O(N/log? N) + 4ct and
A(G3(n)) = 2ctN + ct*(log N/c)*

Let ¢ be a fixed integer. Assume that cHn, and let

m=n/c>2and M =m°. For any i € [M], let
c—1
Vi = {v € V(Q(m)| Y _(wi(v) mod mymF = i},
k=0

where wy{v) is the number of 1s in the bit positions
from the (mk + 1)-st bit to the m(k 4 1)-st bit of v.

Notice that (Vo, ..., Vas—1) is a partition of V(Q(n)).

Note also that min [Vi| = 2°~'m = 2°"'n/c. For
ie[M]+

any ¢ € [M], let Neib(i) = {jlu € Vi;andwv €
V; for some (u,v) € E(Q(n))}. Since m > 2, if
(u,v) € E(Q(n)) then there exists k; € [c] such that
wi, (v) = wklﬁu) + 1 and wi(v) = wg(u) for every
k ;Z ky. Thus, |Neib()| < 2¢ for any i € EZ\/[].

Lett < 2°7'n/c. Forany i € [M]*,let S; C Vj such
that |S;| = ¢. G®(n) is the graph defined as follows:

V(G?’(n)) = V(Q(n)) U Sy;
E(G(n)) = E(Q(n))

M-1
U U U {(u,v)|u eV,
i=0 je Neib(s)
v € S(j41)modM }

M-1
U U U {(w,v)|uw € Stig1ymodnr,
=0 je Neth(s)
V€ Si41)modM }

where Sy is the set of ¢ vertices added to Q(n).
Lemma 12 G3(n) is a t-FT graph for Q(n).

Proof: Let F be any subset of V(G3(n)) such
that [F| < t. Let F; = V; N F and {;

any 1 € [M], and let Fay = So N F and ¢
Then, (Fo, Fy,..., Fayr) is a partition of F
M i

Zti, < t. Since th <t —tiyq for any i € [M],

=0 7=0

@2
[

=
g

nd |F| =

(i—1)mod M
there exists A; C S; — F' such that |A4;] = Z i

=0
for any ¢ € [M]. Tt follows that |F; U A;| = |F;| +

’Azl = ,A(i-f-l)modlﬂl = Zt]' for any 1 € [M]+, and
i=0
|Fy| = |A1] = ty. Thus, there exist bijections

i Fy — Ay ifi =90,
Pl FiUA — AfiDmedanm i1 € [M]T.

Define the mapping v from V(Q(n)) to V(G3(n) — F)

as follows:

v ifvg FUA,
11)(1)) = { 1/?0(1)) if v € Fy,
Gilv) ifve B U Ay, i [M]Y

k1

where 4 = U A;. Tt is easy to see that % is a one-to-
i=1

one mapping.
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Now we will show that (¢ (1), ¥(v)) € B(G?(n)—F)
for any (u,v) € E(Q(nf) If (u,v) € E(Q(n)), then
weVi,veV,ie[M], and j € Neib(i). There are
three cases as follows.

Case 1 u,v & FUA: Since ¥(u) = u and ¥(v) = v,
we have (1(u), ¥(v)) € E(G?*(n) — F).

Case 2 u¢g FUA v € FUA: Since i(u) =u € V;,
P(v) = ¥;(v) € AG4+1)modM € S(i41)modar, and j €
Neib(i), we have ((u), ¥(v)) € E(G*(n) — F).

Case 3 u,v € F U A: Since ¢(u) = ¥(u) €
AGi41modd  C  Sii41)modM, ¥(v) Yi(u) €

Atj+1moaM € S(i+1)modM, and j € Neib(i), we have

(¥(u), % (v)) € B(G*(n) — F).

Thus, (¥(u),¥(v)) € E(G*(n) — F) for any (u,v) €
E(Q(n)), and so G3(n) — F contains Q(n) as a sub-
graph. Hence G3(n) is a t-FT grapk for Q(n). |

Lemma 13 A(G3(n)) = O(N/log”? N) + 4ct.

Proof: Let degs(v) denote the degree of v €
V(G3(n)). There are four cases as follows.

Case 1 v € Vo: degs(v) < n
+ Z lS(j+1)modAI| S n + 2et.

jeNeib(o)

Case 2 v € Sp: degs(v) < > vil+

jeNetb(M—-1)

Z IS¢+ 1 modar | < QC]DE?[% Vi + 2ct.
jeNebm—1)

Case3 v € V; - 5;, 1 € [M]*:

Z |S(j+1)modM| < n 4+ 2ct.

degs(v) < n+

je Netb()
Cased4 v € S, i € [M]t: degs(v) <
n+ Z WVil+ Z 1S +1)modar| +
je Netb((i-1Ymod M) jeNetb(i)

2.

jeNeib((i—1)mod M)
4ct.

S <n+42 x |V:
IS+ 1)modanr] < m 4+ legﬁ‘}]' il +

Since

max
Je[M]

1= ( iy )

we have, by Lemma 4,

2CTTZ 2”-
x|Vi|=0 — | =8| —= ] .
jnel[ell\!] Vil (7710/2) (nf/? >

Hence A(G3(n)) = O(27/n/?) + 4ct.

Lemma 14 A(G3(n)) = ct2"+! + ct®(n/c)°
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Proof:  Since |S;| =t for any j € [M], we have
e 1 oy
NEm) <t Y INab@)IIV; ]+ 507 3 Neab(i)]
je[M] j€elM]
n+1 2 (P\€
< 2 +ct ( c) . |

By summarizing Lemmas 12, 13, and 14, we have
the following theorem.

Theorem 4 Let ¢ be a fized wnteger and let n > 2¢
be a natural number such that cjn. Lel t < 2°"'n/c.
Then G3(n) is a t-FT graph for Q(n) with 2¢tN +
ct?(log N/c)® added edges and mazimum degree of
O(N/log®’? N} + 4ct. |

We can generalize Theorem 4 for any n. The proof
is by a similar argument as the proof of Theorem 4,
but is rather complicated and is omitted here.

Theorem 5 Let ¢ be a fized integer, n > 2¢ be a nat-
ural number, and ¥ = nmodec. Ift < 2t |n/c|,
then we can construct a t-FT graph for Q(n) with
2¢tN + ct’[log N/c]" - |log N/c|*™" added edges and
mazimum degree of O(N/log®’? N) + 4ct. E
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