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PAPER

Fault-Tolerant Meshes with Efficient Layouts®

Toshinori YAMADAY, Nonmember and Shuichi UENOY, Member

SUMMARY This paper presents a practical fault-tolerant ar-
chitecture for mesh parallel machines that has ¢ spare processors
and has 2(¢ 4+ 2) communication links per processor while tol-
erating at most ¢ + 1 processor and link faults. We also show
that the architecture presented here can be laid out efficiently in
a linear area with wire length at most O(v/%).
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1. Introduction

Many existing parallel machines have a mesh topol-
ogy that is well suited to many signal processing al-
gorithms. However, even a small number of faulty pro-
cessors and/or communication links can seriously affect
the performance of mesh machines. We show a practical
fault-tolerant architecture for meshes in which an opti-
mal number of spare processors and an almost optimal
number of communication links are added so that the
architecture contains a fault-free mesh even in the pres-
ence of a bounded number of faults. We also show an
efficient layout of the architecture with almost optimal
area and wire length. This research is motivated by a
subproject of developing a next generation DSP chip of
CAD?21 Project at TIT.

Our approach is based on a graph model initiated
by Hayes[10]. Let G be a graph and let V(@) and
E(G) denote the vertex set and the edge set of G, re-
spectively. Let A(G) denote the maximum degree of G.
For any SCV(G), G — S is the graph obtained from
G by deleting the vertices of S together with the edges
incident to the vertices in S. For any SC E(G), G\ S
is the graph obtained from G by deleting the edges of
S. Let t; and to be positive integers such that t; < ¢5.
A graph G is called a (t1,)-FT ((t1, t2)-fault-tolerant)
graph for a graph H if (G \ F.) — F, contains H as
a subgraph for every F, CV(G) and F. C F(G) with
|Fy| <ty and |F,| + |Fe| < t2. Let m be a positive inte-
ger and let [m] = {0,1,...,m — 1}. The 2-dimensional
m x m mesh, denoted by R(m), is defined as follows:
V(R(m)) = [m]*; E(R(m)) = {([i1, 2], [1,52])lix =
Jiyi2 — j2 = Florig —j; = £l,ia = ja}. An
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edge ([i1,1%2], [j1,J2]) is called a 1-dimensional edge if
i1 — j1 = £1 and i3 = 73, and a 2-dimensional edge if
il :jl and i2 -j2 = +1.

A number of fault-tolerant graphs for meshes have
been proposed [2]-[6],[8],[9]. Among others, Bruck,
Cypher, and Ho [3] showed (¢,¢)-FT graphs for meshes
with ¢ spare vertices and maximum degree at most
2(t+2), and that their (¢,t)-FT graphs can be embedded
with wire length O(+v/t). Their construction is based on
circulant graphs. They also showed that their (1,1)-FT
graphs have maximum degree 4 and can be laid out in
a linear area with wire length at most 3.

Here we show (t,t+ 1)-FT graphs for meshes with
t spare vertices and maximum degree at most 2(t + 2),
and that our (¢,¢ + 1)-FT graphs can be laid out in a
linear area with wire length O(y/t). Our construction
is also based on circulant graphs. We also show that
our (1,2)-FT graphs have maximum degree 6 and can
be laid out in a linear area with wire length at most 6.
It should be noted that our graph can tolerate one more
edge fault than the graph proposed in[3], while both
graphs need almost same resources, i.e., the number of
spare vertices is the same, and the number of spare edges
is almost same.

The rest of the paper is organized as follows. We
present a (¢,¢t + 1)-FT graph G, (m) for a mesh R(m)
in Sect.2. A linear time reconfiguration algorithm for
Gi(m) is given in Sect.3. A layout of G¢(m) with lin-
ear area and wire length of O(v/1) is presented in Sect. 4.
Section 5 shows a layout of Gy (m) with linear area and
wire length at most 6.

2. (t,t+ 1)-FT Graph G¢(m)

In this section, we show a (¢,¢t+1)-FT graph G¢(m) for
R(m). First of all, we define a graph G~ (m) which will
be shown to be a (0,1)-FT graph for R(m). G~ (m) is
defined as follows: V(G (m)) = [m?]; E(G~(m)) =
{(t,7) | 7 = (i £ k) modm? fork = m orm + 1}.
Figure 1 shows G~ (8).

It is known that G~ (m) contains R(m) as a sub-
graph [3]. Here we show a stronger result as follows.

Lemma 1: G~ (m) is a (0,1)-FT graph for R(m).
Proof: We prove that G~ (m)\{f.} contains R(m) as a

subgraph for any f, € E(G7(m)). Assume without loss
of generality that f. = (m? —m — 1,0) or f. = (m? —
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m,0). Define a mapping ¢ : V(R(m)) — V(G (m))
such that ¢[¢1,42] = ((¢1 + i2) mod m)m + i1. It is easy
to see that ¢ is a bijection. If (iy + iz + 1) mod m > 0
then ¢[Zl + 1,’1:2] = ((741 —+ i2 —+ 1) Il’lOd m)m + 'il —+ 1=
gb[’il,’iQ] +m+ 1 and Qb[?:l,iz + 1] = ((Zl -+ 7:2 + 1) mod
then (b[il,ig] = m2 —m + ’1:1, ¢[Zl + ].,iz] = ’il +1=
(¢[i1, 2] + m + 1) mod m?, and ¢li1, iz + 1] = iy =
(¢i1,%2) +m) mod m?. Thus, G~ (m) contains R(m) as
a subgraph. Since ¢~1(0) =[0,0], ¢71(m? —m —1) =
[m —1,m — 1], and ¢~ (m? — m) = [0,m — 1], we con-
clude that G~ (m) \ {f.} contains R(m) as a subgraph.
Hence G~ (m) is a (0,1)-FT graph for R(m). O
Now we define a graph G(m) which will be shown
to be a (¢,t+1)-FT graph for R(m). G¢(m) is defined as
follows: V(Gy(m)) = [m*+1t]; E(Gy(m)) = {(3,5) | j =
(i+k) mod (m*+t) for k =m, m+1,..., or m+t+1}.
A set {(i,7)| 7 = (i=£k) mod (m?+t)} is called the edges
of offset k. Figure 2 shows G4(8). It is easy to see the
following.
Property 1: A(Gi(m)) = 2t +4 ift < m? — 2m — 3,
and A(Gy(m)) =t +m? — 2m + 1 otherwise. O
Now we show that G¢(m) is a (t,t + 1)-FT graph
for R(m). Although the following lemma is an imme-
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diate consequence of a result proved by Dutt and Hayes
in[7], we give a simple proof since it is needed to prove
correctness of our reconfiguration algorithm shown in
the next section.

Lemma 2: [7] G¢(m) is a (¢,t)-FT graph for G~ (m).

Proof: It is sufficient to show that G¢(m) — F,, con-
tains G~ (m) as a subgraph for every F, CV(Gi(m))
with |F,| = t. Define a mapping ¢; : V(G~(m)) —
V(G(m) — F,) such that ¢;(4) is the (i 4 1)-st smallest
fault-free vertex in G(m). Clearly, ¢; is a bijection.

Now we will prove that (¢, (u), ¢:(v)) € E(Gy(m)—
F,) for any (u,v) € E(G~(m)). Assume without
loss of generality that v = (u + m) mod m? or v =
(u4+m+1) mod m?. Let ¢¢(u) = u+a and ¢;(v) = v+0.
Itiseasytoseethat 0 < a < g <t ifu <L v,

First, consider the case of v = (u + m) mod m?.
If0 £ u<m?—-m—1then v = u-+m, and so
¢e(v) — ¢(u) = m+ (B —a). Sincem < m+ (8 —
a) £ m+t, (p(u),d:(v)) € E(Gy(m) — F,). If
m?—m < u<m?2—1then v = u+m — m2, and
s0 (¢¢(v) — d¢(u)) mod (m® +¢) = m +t+ (6 - a).
Sincem <m+t+ (8 —a) Lm+t, (¢g:(u),d:(v) €
E(Gi(m) — F,).

Next, consider the case of v = (u+m+ 1) mod m?2.
fo<u<<m?—m—2thenv = u+m+1, and
so ¢ (v) —d(u) =m+1+(8—a). Sincem+1<
me+ (B—a) £ m-t+1, (64(w), 64(v)) € B(Golm)—F,).
Ifm?—m—1<u<m?2—1thenv =u+m+1—m?2, and
$0 (¢(v) — ¢(w)) mod (M2 + 1) =m+t+ 1+ (8— ).
Sincem+1 <m+t+1+(B—-—a) <m+t+1,
(6u(u), &4(v)) € F(Gy(m) — F).

Thus, Gi(m) — F, contains G~ (m) as a subgraph
for every F, CV(G¢(m)) with |F,| = ¢t. Hence Gi(m)
is a (t,t)-FT graph for G~ (m). O
Theorem 1: Gi(m) is a (t,t + 1)-FT graph for R(m).

Proof: Notice that if G is a (s1,s2)-FT graph for
H and H is a (t1,12)-FT graph for 7 then G is a
(s1 + t1,82 + t2)-FT graph for I. Thus we obtain the
theorem from Lemmas 1 and 2. ]

(iii) The edges of offset 10

Fig. 2 Gi1(8): (1,2)-FT graph for R(8).
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program Rec: (input m, f1, fa, ..., fo, (fo: f0));
begin
7=0; fry1 = 00;
for ::=0to m?>+t—1do
if (1= fy41) thul

begin ¢; (i) :== m?; j:= 541 end
else
—1;. . .
¢y () =1 -3
fJ.‘ = (/)t—l(fl) fy = (bt (jJ)
if (fo & m?) and (fy + m?) then
b(,gln
=0
lf ((j, fy) mod m?2 =m or m + 1) then
l = fq
else
if ((j,, — fy)mod m? = m or m + 1) then
J= f_;
for 7 := 0 to m? +t—1 do
if ¢71(1) £ m? then
$=1(5) i= (¢71(i) — J) mod m?

end ;
for i :=0to m?2 +t—1do
if p=1(i) + m? then
label (4) :==[¢p~1(x) mod m,

b 1
(15 -
else
label (1) := [00, 00];

return(label );
end

1(i)) mod m]

Fig. 3 Reconfiguration algorithm Rec:.

3. | Reconfiguration

In this section, we present an efficient algorithm for find-
ing a fault-free R(m) in G¢(m) with ¢ faulty vertices and
a faulty edge. If G;(m) has t' edge faults where t' > 2
then select any ¢’ — 1 of these edges and consider any one
of endvertices of each of the edges to be faulty instead of
the edge. If G;(m) has less than t 4 1 faults, then con-
sider fault-free vertices and/or a fault-free edge to be
faulty so that G¢(m) has t faulty vertices and a faulty
edge. Our reconfiguration algorithm Rec; is shown in
Fig. 3.

It is easy to verify the correctness of Rec; from the
proofs of Lemmas 1 and 2. It is also easy to see that
the time complexity of Rec; is O(|]V(G.(m))|).

4. Layout of Gt(m)
4.1 Embedding 1,

Let N = {0,1,...}, that is the set of natural num-
bers. For any graph G, a one-to-one mapping of
V(G) into N? is called an embedding of G. For any
i = [i1,52), § = [j1,J2] € N2, dist(4,§) = |in — ju| +
lig — j2|. For a graph G and an embedding ¢ of G,
let leng,(G) = max{dist(¢(u), d(v)) | (u,v) € E(G)}
and let Ay(G) = max{z + 1| ¢(v) = [z,y], v €
V(G)} x max{y + 1| ¢(v) = [z,y], v € V(G)}. We
define that leng(G) = ming lengy(G).
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Fig. 4 Interleaved ordering ¢s.

Define a mapping ¢, : [m] — [m]| such that
om(i) = 20 if 0 < i £ [m/2] — 1, and @m(i) =
2(m —14) — 1 otherwise. Figure 4 shows @g. It is easy to
see that ¢, 1s a bijection.

Lemma 3: For any ¢ € [m), |¢m (i) — @m((i + 1) mod
m)| =1ifi=[2]—1o0rm—1,and [pn(i) — @m((i +
1) mod m)| = 2 otherwise.

Proof: If 0 < i < [%] — 2 then ¢,,(i) = 2¢ and
Om(i+1) =2(i+1), and s0 |@m (1) —em(t+1)| = 2. If

i = [27—-1then ¢, (1) = 2i and o (i+1) = 2m—2i—3,
and 50 @,(i + 1) — ©n(i) = 2m — 4i — 3. Since
i = ™22 if m is even and i = 251 otherwise, we have

lom (1) — om(i + 1)) = 1. If [B] <4 < m — 2 then
om(i) = 2m—2i—1 and @, (i+1) = 2m—2i—3, and so
|0 (1) =0 (i4+1)] = 2. If i =m—1 then pp,(m—1) =1
and ,,(0) = 0, and s0 | (1) =@ ((i+1) mod m)| = 1.
0
Let v; = |v/m] and vo = v mod m. Define a one-
to-one mapping v, from V(G;(m)) to N? as follows:
(1) when t < m:

oo = (|2

(@m(v1) + D[VE] + ¢m(v2) mod Nﬂ)

if v € [m?], and
_ o1 (va2)
(o) = ([ L2 o) mo Wﬂ)
otherwise.

(ii) when m + 1 < t < m?/3: Define ¢; as a one-
to-one mapping such that ;(v) € By, 1 (1 w/t)) for
any v € V(Gy(m)), where I; = |(m? +¢—1)/t] and

= [[Ve1] x (¢ + DVE]] = [i[vE]]) for any non-

negatlve integer ¢.
(iii) when t > m?/3: Define z/Jt as any one-to-one

mapping from V(Gy(m)) to [[vm2 + t]]%

Lemma 4:

(m+1)(m+ [Vt] —1) ift <m,
VE2(l +1) ifm+1<t<m
Wm? )2 ift> 1

where [, = [ H1,
Proof: If ¢ < m then the maxima of the first and
second coordinates of ;(v) over all v € V(G¢(m)) is

Ay, (Ge(m)) =
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L] < ™21 and (m + t)[v/t] — 1, respectively. If
f\/] [Vt]

m+1 <t < mTz then the maxima of the first and

second coordinates of ¥(v) over all v € V(Gi(m)) is
[vVt] — 1 and (I; + D)[vt] — 1, respectively. If ¢ > %2
then ¥ (v) € [[vVm? + t]] for any v € V(Gi(m)). O

4.2 Wire Length of 1

Lemma 5: Let ¢t be a positive integer and let a, b, and
¢ be non-negative integers such that |a — b] < 2t + c.
Then,

H a J_[ b Hg{ 2[Vt] +c ifb>0,
V] Vil = L [2vE +c ifb=0.
Proof: It is easy to see the case when b = 0. We will
consider the case when b > 0. Assume without loss of
generality that a > b. Then,
L a J < b—|—2t+cJ
Vil = L[V

b+ 2[Vt]? .
<|Mrat)
b
< _WJ +2’—\/ﬂ +c.
Hence the lemma is true. O
Theorem 2: leng,, (Gi(m)) < 5[vt] + [2V1] if t <

m—1.

Proof: We will show that dist(v;(u), 1:(v)) < 5[vt]+
|2v/%] for any (u,v) € E(G(m)). Assume without loss
of generality that v = (u + k) mod (m? + t) for some
Ek=m,m+1...,orm+t+1 Letwu = |u/m],
uz = wmodm, v1 = |v/m], and v = v mod m.
Note that uy € [m] if uy € [m], and uy € [¢] oth-
erwise. Som L ug +k £ 2m + ¢t if uy € [m], and
m < ug + k < m + 2t otherwise.

Case 1 u; <m —2 and uy + k £ 2m — 1: Since
(up+1)m<Lu+k < (up+2)m—1, v =u; +1 and
vy = ug +k —m. Since |om(v1) — @m(ur)|] £ 2 and
[om (v2) — om(uz)| £ 2(k —m) < 2(t + 1) by Lemma 3,
we have dist(t,(u), Bo(0)) < 3[VE] — 1+ 2[V] +2 <
5[+/t] +1 by Lemma 5.

Case 2 u; £ m—3 and us + k = 2m: Since
(u1+2)m§u+k g (u1—|—2)m—|—t, v = 'LL1+2 and
ve = ug + k — 2m. Since @, (ug) £ 2(m —ug) —1 <
2(k —m) — 1 < 2t + 1, we have ¥;(u) € [[2v¢] +
2] X ([ (1) + 2)[VE]] ~ [(@m(u) + 1) [V]]). Since
0m(v2) < 2(ug+k—2m) < 2t, we have 1 (v) € [[2vE]+
1] % ([(¢pm (u1 +2) +2)[VE]] = [(gm(u1 +2) + 1) [VE]).
Thus, dist(r(u), 1 (v)) < 5[VE] + [2v2].

Case3ui=m—-2and2m < us+k < 2m+¢t—1:
Since m? < u+k < m?+t—1, ¢ (v) € [[VE]]?
Since pp(ug) < 2(m —ug) — 1 < 2(k—m) —1 <
2t + 1, we have 1;(u) € [[2vt] + 2] x [5[+v/*]]. Hence
dist((u), 4 (v)) < BW T+ [2ve).
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Case 4 uy = m — 2 and uy + k = 2m + t: Since
upy=m-—landk=m+t+1, u=m?—-m—1 and
v = 0. Thus dist(¢,(u),¥:(v)) < 3[V#] + 1.

Case 5u; = m—1and us +k < m+1t—1:
Since m? < u+k < m? +¢t—1, %(v) € [[vVE]]%
Since @ (uz) < 2us < 2m+t—-1—-k) < 2
1), we have ¥,(u) € [[2vt] + 1] x [3[v/t]]. Hence
dist(py(w), :(0)) < 3[Vi] + [2VE] — 1.

Case6u; =m—landm+t < us+k < 2m+t—1;
Sincem?+tLu+k<m?+m+t—1,0<v<<m—1,
and so v1 = 0 and v9 = us + k — m — t. Since
(pm(m — 1) — 9 (0)] = 1 and [pm(v2) — om(uz)| <
2|k —m —t| < 2t, we have dist(v;(u), ¥:(v)) < 2[V/t] —
1+2[VE] =4[vE] — L.

Case 7u; = m—1 and uy + &k = 2m + ¢: Since
ug=m-—1landk=m+t+1l,u=m?>—-1landv=m
Thus, dist(yy(w), ¥:(v)) < [VE] +1.

Case 8 uy = m and up + k < m+ ¢ — 1. Since
m24m < utk <m?24+m+t—1,m—t<v<m—1, and
sovy; = 0 and vy = ug+k—t. Since @, (v2) < 2(m+t—
us—k) < 2t, we have 9, (u), ¢ (v) € [|2v1]+1]x[2[/1]].
Hence dist(1p;(u),:(v)) < 2[v/E] + [2v/E] — 1.

Case 9 u; = m and us+k = m—+t: Since m2+m+
tLu+k<m?+m+2A,m<v<mt, and sov; =1
and vy = ug+k—m—1t. Since @, (v2) < 2(ug+k—m —
t) < 2t, we have ¥, (u), ¥u(v) € [|2vE] + 1] x [4[v2]].
Hence dzst(wt( ), he(v)) < A[VE] + [2vE] — 1. a
Theorem 3: leng, (Gp(m)) <6[/m]+1.

Proof: We will show that dist(¢m(u), ¥m(v)) <
6y/m + 1 for any (u,v) € E(G,,(m)). Assume with-
out loss of generality that v = (u + k) mod (m? + m)
for some k =m, m+1,...,2m+ 1. Let uy = |u/m],
us = umod m, v; = |v/m|, and vy = v mod m. Note
that m < ug + k < 3m. If ug + k &+ 3m,(that is if ug +
m—1ork=$2m+1,) then vy = (ug +1) mod (m + 1)
or (u; + 2) mod (m + 1). Thus, dist(V¥m,(u), m(v)) <
6[vm] — 2. If us + k = 3m,(that is if us = m — 1 and
k =2m+1,) then v; = (u1+3) mod (m+1) and v5 = 0.

Thus, dist(¥m (1), Ym(v)) < 6[/m] + 1. O
Theorem 4: leng,, (Gi(m)) < 6[Vi]—2ifm+1<t<
m?/3.

Proof: We will show that dist(t;(u), ¥:(v)) < 6[/t] —
2 for any (u,v) € E(Gi(m)). Assume without loss
of generality that v = (u + k) mod (m? + t) for some
E=m,m+1,..,orm+t+1. Letuz = |u/t] and
uy = umodt. Note that m < ugs +k < m+ 2t <
3t — 1. Ifug <1y — 3 then ¥;(u) € By, 1 (1:—vs) and
wt(v) € B4P1t+1(lt*1)3) UB(plt+1(lt—v3~1) UB‘PLt-H(Zt_’UB_Z)'
Hence dist(t:(u),s(v)) < 6[VE] — 2. Mfug =1, — 2
then 9:(u) € By U By U By. Since (I; — 2)t +m <
ut+k < m?+m+ 2, ¢(v) € UiyBi. Hence
dist{ty (1), 4 (v)) < B[] — 2. 0
Theorem 5: leng,, (Gi(m)) < 4[Vt] — 2 if t = m?/3.

Proof:  For any (u,v) € E(Gi(m)), dist(v:(u),
Pi(v)) £ 2[vVmZ+t] — 2 < 4[Vt] — 2. Hence
lengy, (Ge(m)) < 4[Vt] — 2. O
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By summarizing Theorems 2—5, we have the fol-
lowing theorem.
Theorem 6: leng,, (Gi(m)) = O(Vt). ]

4.3 Lower Bound for Wire Length

Lemma 6: Foranyz € N?, |{y € N?| dist(z,y) <1} <
202 + 20+ 1.

Proof: For any x € N2 and any [ > 0, |{y €
72| dist(x,y) = 1}| < 4, where Z denotes the integer
set. Thus, the number of y € N? such that dist(z,y) <1
is at most

l
1+ 40 =20 420+ 1.

=1

O

. 2.A(G)+1-1
Lemma 7: leng(G) = Y——5——.

Proof: Let! be the integer such that ——V}A(fm_l -1<

I < ——VZ'A(S)H_l. Consider any embedding n of G
and some v € V(G) whose degree is A(G). Since
there exists at most 20 + 2/ + 1 < A(G) + 1 of
v € V(G) such that dist(n(u),n(v)) <! by Lemma 6,
there exists some w € V(G) such that (u,w) € E(G)

and dist(n(u),n(w)) 2 1+1 = ——VZ’A‘(SW. Hence
leng(G) = ———VZ'A(le_l. O

By Property 1 and Lemma 7, we obtain the follow-
ing theorem.
Theorem 7:

leng(Gi(m))
VAt +9—1
2

ift <m? —2m —2,

Vot+2m2 —4m+3—1
2

otherwise.

O

From Theorems 6 and 7, we conclude that the wire

length of our embedding is optimal to within a small
constant factor of 7.

4.4 Layout of G¢(m)

We need a few preliminaries on digraphs. Let D be
a digraph and let V(D) and A(D) be the vertex set
and arc set of D, respectively. An arc from a ver-
tex u to a vertex v is denoted by (u,v)q. For any
v e V(D), Let I'y(v) = {u € V(D)| (u,v)q € A(D)}
and TH(v) = {u € V(D)| (v,u)q € A(D)}, and let
dp(v) = |I'p(v)| and df(v) = [I'5(v)|. A digraph ob-
tained from a graph G by orienting each edge is called
an orientation of G. The following lemma about the
orientation of a graph is well-known. (See[1], for ex-
ample.)

Lemma 8: A graph G has an orientation D such that
[d5(v) — df(v)| <1 for all v € V(D). i
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Lemma 9: Let [ and v be positive integers and let
B=2(+1)y+ 1. Let a, b, and ¢ be integers such that
a>1,|b|£2l4+1,and || £+. Then af +by+c> 0.

Proof: af+by+c>2(l+1)y+by+c=bly+ |+
by+c=0. O
Lemma 10: ILet ! and v be positive integers and let
B =2(1+1y+1 If af + by+ c = 0 for some inte-
gers a, b, and ¢ such that |5 < 214+ 1 and |¢| £+, then
(a,b,¢) = (0,0,0), (0,1, —), or (0,—1,7).

Proof: If a8 + by + ¢ = 0 for some integers a, b, and
¢ such that [b] < 21+ 1 and [¢| £ «, then ¢ = 0 by
Lemma 9, and so by +c = 0. If |b| = 2 then ‘

2y <oyl =lef =v <27,

which is a contradiction. Thus, b = 0, 1, or —1, and
hence (a,b, c) = (0,0,0), (0,1, —), or (0, —1,7). O
Now, we are ready to prove the following key
lemma.
Lemma 11: Let G be a graph and v be an embedding
of G such that leng, (G) <. Then G has a layout with
area {2(1 + 1)[A(G)/2] +1}2 x A(G).
Proof: Let D be an orientation of G such that |d, (v)—
d(v)| £ 1forallv € V(D). We consider a layout of D.
For each vertex v of D, assign a v x v square with four
corners [v1 3, v2f], [v18-+7, v2B], [v1B+7, v2+7], and
[v18, v28 +], where v = [A(G)/2], B =2(I+ 1)y +1,
and v(v) = [vi,vg]. For any v € V(D), define f, :
I';(w) — [y] and £ : I'5(v) — [4] to be any one-to-
one mappings. f,~ and f.f always exist by the definition
of D. Then, for any (u,v)q € A(D), define the route
P(u,v) between two v X v squares corresponding to u
and v as follows. We use the so called two layer routing,
in which vertical and horizontal segments are routed on
the first and second layers, respectively.

P(u,v): [+ £ (v), uaf +1]

L B+ £ ), usB+ hi(ud)y + £ (v) +1]

2 018+ hy(va)y + [ (uw) + 1,

usB+ hy(ua)y + FF (v) + 1]
L B+ ha(va)y + £ (W) + 1, vaf+ fy (u)]

B [0+, v+ I (W),
where v(u) = [u1, us], hi(z) = z mod (21 + 1) + 1, and

-, denotes the connection by a segment in layer i for
1 =1,2. It is easy to see that the area of this layout is
B2A,(G) = {2(1+ DIA(G)/2] +1}7 x Ay(G).

It remains to show that this is really a layout, i.e., to
show that if (u,v)4 + (w, z)4 then a segment in P(u, v)
has no intersection with a segment in P(w, z). Assume
contrary that a segment in P(u,v) and a segment in
P(w, z) intersect. Assume without loss of generality
that those segments are on layer 2. Let v(w) = [wy, wq)
and v(z) = [z1, 22]. Let seg; and seg, denote segment:

[+ f (v), w2+ ha(wa)y + £if (v) +1]
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2 B+ ha(va)y + £ (w) + 1,
ugfB + hy(ug)y + fif (v) +1]

and segment:

(018 + hi(v2)y + fo (u) + 1028+ £, (u)]
2 B+, B+ fy ()]

in P(u,v), respectively, and let segs and segy denote
segment:

[wiB+ [ (2), waf+ hy(wi)y + fif (z) + 1]
2 (1B + hu(z2)y + £ (w) + 1,
w2+ hi(w)y + fif (2) + 1]

and segment:

(218 + h(22)y + [, (w) + 1,228 + £, (w)]
2 B+, 228 + £ (w)]

in P(w, z), respectively.
Claim 1: seg; and segy are disjoint.

Proof of Claim 1: If seg; and seg, intersect, we have

uaf+ ha(ur)y + fif (v) + 1= 28+ f7 (w),
that is,
(ug — 22)B8 + hy(u1)y + {fj(v) - f;(w) + 1} =0.

Since 1 < hy(uy) < 21 +1 and —y+2 < fJ(v) —
fo(w)+1 <+, we have ug — 25 = 0, hy(uy) = 1, and
fiF(v)— f7 (w)+1= —y by Lemma 10, which is a con-

stradiction. 0O
Similarly, we can prove the following claim.
Claim 2: seg, and segs are disjoint. a

Claim 3: seg; and segz are disjoint.

Proof of Claim 3: Assume that seg; and segs inter-
sect. Then, usB+hy(ur) v+ fif (v)+1 = wa B+hy(w1)v+
I (z) + 1, that is, (uz — w2)B8 + {h(u1) — hy(wr)}y +
{fFW) = fF(z)} = 0. Since |hi(uy) — hy(wy)| < 21
and |f(v) — fF(2)] £ v — 1, we have that uy = ws,
hi(u1) = hi(wy), and £ (v) = fF(z) by Lemma 10.
If ug = w; then v = w. Since f(v) = fil(z),
we have that (u,v)q = (w,z)q, which is a contradic-
tion. Thus, u; + wy. Since h;(uy) = hi(wy), we have
|lug —wy| = 20+ 1. Assume without loss of generality
that u; = w; + 20 + 1. Since dist(v(u),v(v)) < I, we
have |u; — vi| < I, and so min{u1 3 + fF (v), w18+
hi(va)y + fy (w) +1} =2 (wg — DB+ v+ 1. Since
dist(v(w),v(z)) < I, we have |w; — 21| £ [, and so
max{wi B+ fii (2), 218+ h(z2)y+ f7 (W) +1} < (wi +
DB+2(1+1)y < (uy —1—1)B+2(1+1)y = (uy —1)B—1.
Thus, min{u1 8+ i (v), v1f + hi(vz)y+ fy (u) +1} >
max{w, B+ f1(z), 218+ hi(z2)y + f; (w) + 1}, which
is contradicting to the assumption that a segment in
P(u,v) and a segment in P(w, z) intersect. m
Claim 4: seg; and seg, are disjoint.
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Proof of Claim 4: Assume that seg; and seg, intersect.
Then, va8 + f, (u) = zo8 + f, (w), that is (ve — 22)8 +
{f5 (w) — £ (w)} = 0. Since |f57(u) — fZ (w)] <7 1,
we have vy = 29 and f, (u) = f, (w) by Lemma 10.
If i = z then v = z.  Since f, (u) = f;(w),
we have (u,v)q = (w,z)g, Which is a contradiction.
Thus, v1 & z1. Assume without loss of generality that
vy 2 z1+ 1. Since v1+v > 210+ hi(z2)v+ f (w)+1
by Lemma 9, we have

v1 8+ hi(ve)y + f (u) +1
>+
> 210+ hi(22)y + f2 (w) +1
> 210+,

which is contradicting to the assumption that segy and
segy intersect. O

By Claims 1-4, we conclude that if (u,v)q =+
(w,z)q then a segment in P(u,v) has no intersection
with a segment in P(w, z). O
Theorem 8: G(m) has a layout with area

O(t* [V (Ge(m))).-

Proof: A(Gi(m)) £ 2t + 4 by Property 1. From
Lemma 4 and Theorem 6, we have Ay, (Gi(m)) =
O([V(G¢(m))|) and leng,, (G¢(m))- = O(V/t). Thus,
by Lemma 11, Gi(m) has a layout with area
OV (Ge(m)))). =

5. Layout of G,(m)

In this section, we show another layout of Gy(m). The
upper and lower bounds for leng(G;(m)) shown in this
section are stronger than those derived from general
bounds for leng(Gi(m)) shown in Theorems 6 and 7.

5.1 Embedding ¢

For i € [m?], let z(¢) = imod m and y(i) = (|.%] —
1) mod m. We define an embedding ¢ of G1(m) as fol-
tows: 9(3) = [om(#() + 1, @m(y(0))] if i € [m?], and
©(i) = [0,0] if ¢ = m?. Figure 5 shows embedding ¢ of
G1(8).

5.2 Wire Length of ¢

Theorem 9: leng,(G1(m)) < 6.
Proof: We will show that dist(x(i), p(j)) < 6 for any
(1,7) € E(G1(m)). Assume without loss of generality
that j = (i + k) mod (m? + 1) for k = m, m + 1, or
m+ 2 if (¢,5) € E(G1(m)).

First, consider the case of j = (i+m) mod (m?+1).
If i = 0,...,m> —m — 1, then z(j) = =z(i) and
y(4) = (y(i) + 1) mod m. Thus, dist(x(i),(5)) < 2 by
Lemma 3. If i = m? —m, then ¢(i) = ¢(m?—m) = [1,1]
and ¢(j) = ¢(m?) = [0,0]. Thus, dist((i),(s)) =
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(i) The edges of offset 8

Fig. 5

2. Ifi = m?> —m+1,...,m> — 1, then z(j) =
. (z(2) — 1) mod m and y(j) = (y(¢) + 2) mod m. Thus,
dist(p(1),(§)) < 2+ 4 = 6 by Lemma 3. If i = m?,
then (i) = ¢(m?) = [0,0] and ¢(j) = p(m—1) = [2,2].
Thus, dist(¢(1), p(5)) = 4.

Next, consider the case of j = (i+m+1) mod (m?+
). Ifi = 0,...,m* —m — 2, then z(j) = (z(i) +
1) mod m and y(j) = y(i) or (y(i) + 1) mod m. Thus,
dist(p(i),0(4)) £ 2+2 =4. If i = m? — m — 1, then
(i) = p(m?—m—1) = [2,1] and p(j) = ¢(m?) = [0,0].
Thus, dist(p(i),(§)) = 3. If i =m? —m,...,m? -1,
then z(j) = =(z) and y(j) = (y(¢) + 1) mod m. Thus,
dist(p(i),0(j)) < 2 by Lemma 3. If i = m?, then
(i) = o(m?) = [0,0] and p(j) = p(m) = [1,2]. Thus,
dist((i), 0(1)) = 3

Finally, consider the case of j = (i + m + 2) mod
(m? +1). Ifi =0,....,m? —m — 3, then z(j) =
(z(i) + 2) mod m and y(j) = (y(i) — 1) mod m or y(7).
Thus, dist(p(i), (7)) < 4+ 2 = 6 by Lemma 3. If
i =m?—m—2, then ¢(i) = p(m? —m — 2) = [4,0]

and ¢(j) = ¢(m?) = [0,0]. Thus, dist(¢(i), 0(j)) = 4.

If i =m? —m — 1, then ¢(i) = p(m? —m — 1) = [2,1]
and ¢(j) = ¢(0) = [1,0]. Thus, dist(p(i), p(5)) = 2. If
i=m?—m,...,m? 2, then z(j) = (x(i) + 1) mod m
and y(j) = y(¢). Thus, dist(p(4), v(j)) £ 2 by Lemma 3.
If i = m? —1, then ¢(i) = ¢(m*—1) = [2,0] and ©(j) =
o(m) = [1,2]. Thus, dist(p(i), () = 3. If i = m?,
then' (i) = p(m?) — [0,0] and p(f) = ¢(m-+1) = [3,0].
Thus, dist(p(7), (7)) = 3. m|

5.3 Lower Bound for Wire Length

[\) ]

It is easy to see the following lemma.

Lemma 12: If i = {(m + 2)z + (m + 1)y + mz} mod

(m?+1) for some integers x, y, and z, then the distance

from 0 to 4 in G1(m) is at most |z| + |y| + |2|. a
For any graph G, let diam(G) denote the diameter

of GG, that is the maximum distance between two vertices

of G.

Lemma 13: For any m even, diam(G1(m)) < T2,

Proof: Since G(m) is vertex symmetric, it suffices to

consider the distance from 0 to ¢ for any ¢ € [%24—1}. Let

(ii) The edges of offset 9
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(iii) The edges of offset 10

Embedding ¢ of G1(8).

j=1L], k= "%"], and | = (i modm) mod2 =
imod2. Then j < %,k < 5 —1,1 < 1, and
i = jm+2k+1 = (m+2)k+(m+1)l+(j—k—I)m. Thus,
by Lemma 12, we have that if 7 > k41 then the distance
from 0 to ¢ is at most k+1+(j—k—1) = j < 2, and that
if2(k+1)— % —1<j <k-+I1—1 then the distance from
Otodisatmostk+I+(k+1—j)=2(k+1)—j< B +1.
Sincei = —(m—+2)(% —k—1)—(m+1)l+m(j+5+1-k),
we conclude that if j < 2(k+1)— % —2 then the distance
fromOtoiisatmost (B —k—0)+Ii+(G+F+1-k)=
J+m+1-2k< T +2[-1< F+1by Lemma 12. O
Lemma 14: For any m odd, diam(G:(m)) < ™1

Proof: Since G1(m) is vertex symmetric, it suffices to
consider the distance from 0 to ¢ for any ¢ € [# +1].
Letj=|Li] k= |22m] and!= (i mod m) mod 2 =
imod2. Then j £ ™ k < ™2 | < 1, and

i = jm~+2k+1 = (m+2)k+(m+1)I+(j—k—1)m. Thus,
by Lemma 12, we have that if j > k41 then the distance
fromOtoiisatmostk+I+(j—k—1)=j< 2,
and that if 2(k + 1) — 2 < j < k41— 1 then the
distance from 0 to 7 is at most k+ 1+ (k+1—j) =
2(k+1)—j < ™H. Since i = —(m + 2)(=L — k —
D)+ (m+1)(1 —1)+m(j + ™ — k), we conclude that
if j £ 2(k +1) — ™1 — 1 then the distance from 0 to ¢
isatmost (L —k—D)+ (1 -0+ (j+ = — k) =
j+m+2—2(k+1) < ™ by Lemma 12. |
The following lemma is well-known and can be
verified easily.
Lemma 15: Let.A C N2 and let d be a positive integer.
If dist(x,y) < d for any z,y € A then |A| < (—‘%%ZH.
Proof: Let Amqr be a maximal subset of N2 such
that dist(u,v) £ d for any u,v € Amgqz. Then, there
exists a pair z,y € Amaqg such that dist(z,y) = d. As-
sume without loss of generality that z = [z, 23], ¥ =
[371 + C, T2 + d— C] where 0 g C é d. If (Zl, Zz) S .Amagj
then the following two inequalities hold:

21+ 20 £ xy + 22+ d, (1)
21+ 23 = x1 + To. 2

Let a = [a1,az] be a lattice point in Amgqz such that
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az — ay 1s minimum. Then, for any (z1,22) € Amaz,
Zg— 7z 2 ag —ay. 3
Since dist(a, z) < d for any z = [z1, 23] € Amaz,
Zg — 21 £ ag —ap +d. 4)

Since the number of lattice points satisfying all inequar-

d+1)2+41

ities (1)—(4) is at most ( 5—, we conclude that

(d+1)%*+1

2 O
Theorem 10: leng(G1(m)) = 2(—%1_1) In particu-
lar, leng(G1(m)) = 3 if m = 8.
Proof: Consider any embedding 7' of Gi(m). If
dist(n'(u),n'(v)) < d for any u,v € V(Gy(m)) then
7' (V(Ga(m)))] = m? + 1 < @ by Lemma 15,
and so d = v/2m2 + 1 —1. Thus, by Lemmas 13 and 14,

leng(G1(m)) = 2(v2mi+1-1) 2;21';1_1)

| Amaz| <

If m = 8 then &_%1—1) > 2. Since leng(G1(m))
is an integer, we conclude that leng(Gy(m)) = 3. O

5.4 Layout of G1(m)

Based on the embedding ¢ defined in 5.1, G1(m) can
be laid out quite efficiently. Figure 6 shows an effi-
cient layout of G1(8). In general, if m is a multiple of
4, G1(m) can be laid out efficiently by composing 12
building blocks shown in Figs. 8—19 as shown in Fig. 7.
The area and the maximal wire length of the resulting
layout of G4 (m) is 72m? + 18m(= O(|V(G1(m))|)) and
6, respectively.
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