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Fault-Tolerant Hypercubes with Small Degree

Toshinori YAMADA', Nonmember and Shuichi UENO', Member

SUMMARY For a given N-vertex graph H, a graph G ob-
tained from H by adding ¢ vertices and some edges is called a
t-FT (t-fault-tolerant) graph for H if even after deleting any ¢ ver-
tices from G, the remaining graph contains H as a subgraph. For
the n-dimensional cube Q(n) with N vertices, a t-FT graph with
an optimal number O(tN + ¢?) of added edges and maximum
degree of O(N +t), and a ¢-FT graph with O(¢tN log N) added
edges and maximum degree of O(tlog N) have been known. In
this paper, we introduce some t-FT graphs for Q(n) with an
optimal number O(tN + t?) of added edges and small maxi-
mum degree. In particular, we show a ¢-FT graph for Q(n)

with 2¢ctN + ct? (W‘TN)C added edges and maximum degree of
N

O(logcTN) =+ 4ct.

key words: hypercubes, fault-tolerant graphs, maximum degree,

multi-processor systems, interconnection networks

1. Introduction

The hypercube is one of the well-known topologies
for interconnection networks of multiprocessor systems.
However, even a small number of faulty processors
and/or communication links can seriously affect the
performance of hypercube machines. We show a fault-
tolerant architecture for hypercubes in which spare pro-
cessors and communication links are added so that the
architecture contains a fault-free hypercube even in the
presence of faults. We optimize the cost of the fault-
tolerant architecture by adding exactly ¢ spare proces-
sors, while tolerating up to ¢ processor and/or link
faults, and minimizing the number of spare links and
the maximum number of links per processor. This archi-
tecture guarantees that any algorithm designed for the
hypercube will run with no slowdown in the presence
of ¢t or fewer faults, regardless of their distribution.
Our approach is based on a graph model initiated
by Hayes[20], in which each vertex and edge represent
a processor and communication link, respectively. Let
G be a graph, and let V(G) and E(G) denote the vertex
set and edge set of G, respectively. Let A(G) denote the
maximum degree of a vertex in G. For any SCV(G),
G — S is the graph obtained from G by deleting the ver-
tices of S together with the edges incident to the vertices
in S. Let ¢t be a positive integer. A graph G is called a
t-FT (¢-fault-tolerant) graph for a graph H if G— F con-
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tains H as a subgraph for every F CV(G) with |F| < ¢.
Our problem is to construct a t-FT graph G for the n-
dimensional cube Q(n) with N = 2™ vertices such that
[V(G)|, |E(G)|, and A(G) are minimized.

GV H 1is the graph obtained from graphs G and H
by connecting each vertex of G and each vertex of H by
an edge. It is easy to see that H V K is a t-FT graph
for any graph H, where K is the complete graph with
t vertices. H Vv K, is obtained from an N-vertex graph
H by adding t vertices and tN + 1t(t — 1) edges.

Since the degree of every vertex of Q(n) is log N,
the minimum degree of a vertex in an (N + t)-vertex
t-FT graph for Q(n) is at least logN + ¢, and so
at least Q(tN + t2) edges must be added to Q(n) in
order to construct an (N + t)-vertex ¢-FT graph for
Q(n). Thus, Q(n) v K; is an optimal ¢-FT graph for
Q(n) in the sense that the number of edges added to
Q(n) is optimal to within a constant factor. However,
A(Q(n)VK,) = N+i—1, and Q(n)V K} is not practical
at all.

Bruck, Cypher, and Ho[6] proposed another con-
struction of ¢-FT graph for Q(n). Their t-FT graph
for Q(n) has a small maximum degree of O(tlog N).
However, their ¢-FT graph is constructed from Q(n) by
adding Q(¢Nlog N) edges, which is a relatively large
number.

This paper proposes three ¢-FT graphs for Q(n)
with O(tN) added edges and relatively small maximum
degrees. A key idea of our constructions is to partition
the vertices of Q(n) according to the distribution of s
in the label of a vertex. In Sect. 3, we show a naive con-
struction of a t-FT graph for Q(n) with 2t N +t2 added
edges and maximum degree of O(N/+/log N) + 3t. The
construction is based on a partition of the vertices of
Q(n) according to the Hamming weight of the label of
a vertex. Based on a refinement of the partition above,
we give in Sect.4 an improved construction of a ¢-FT
graph for Q(n) with 4¢tN + 2¢? added edges and max-
imum degree of O(N/log N) + 5¢. Finally, based on
a further refinement of the partition used in Sect. 4, we
present in Sect. 5 a sophisticated construction of a ¢t-FT
graph for Q(n) with 2¢tN + ct?(log N/c)¢ added edges
and maximum degree of O(N/log®? N) + 4ct for any
fixed integer c.

It should be noted that, in the edge-fault case, a
near optimal fault-tolerant hypercube has been con-
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structed. It is shown in [31] that we can construct a
graph G from Q(n) by adding O(tN log(log N/t + ¢))
edges such that A(G) = log N + O(¢log(log N/t + c))
and even after deleting any ¢ edges from G, the remain-
ing graph contains Q(n) as a subgraph.

2. Preliminaries

The n-cube (n-dimensional cube), denoted by Q(n), is
defined as follows: V(Q(n)) = {0,1}"*; E(Q(n)) =
{{(u,v)| u,v € V(Q(n)), w(udv) = 1}, where @ denotes
bit-wise addition modulo 2 and w(x) is the Hamming
weight of binary vector z, that is the number of 1’s which
z contains. It is easy to see that |V (Q(n))| = 2". Since
each vertex of Q(n) has degree n, |E(Q(n))| = n2"~'.
A graph G is called a hypercube if G is isomorphic to
Q(n) for some n.

For a t-FT graph G for Q(n), define A(G) =
|E(@)| — |E(Q(n))| = |E(G)| —n2™~1. Thatis, A(G) is
the number of edges added to Q(n) in order to construct
G.

Throughout the paper, let [n] = {0,1,2,...,
and [n]t ={1,2,...,n— 1}, and let N = 2™.

n—1}

3. t-FT Graph G*(n) for Q(n) with A(G*(n)) =
O(N/log*/*N) and A(G*(n)) = O(tN)

For any k odd, define ¢, as the mapping from [k] to [k]
such that ¢y (1) = (2¢) mod k.
Lemma 1: ¢; is a bijection.
95(0) =0.

Proof:  Suppose that ¢ (i) = ¢ (j) for some 7,5 €
[k]. Then, (2(¢ - j)) mod k = 0. Since k is odd, we
have (i — j) mod k = 0. Since |i — j| € [k], we conclude
that 1 — j = 0, that is 4 = j. Thus, ¢ is a one-to-one
mapping, and hence a bijection.

Since ¢5,(0) = 0, ¢; *(0) = 0. o
Lemma 2: (¢, ((¢ +2) mod k) — 1) mod k = ¢} *(4)
for any ¢ € [k].

Proof: Letj = (¢+ 2) mod k. Since

¢x((¢5 (j) — 1) mod k)

((2¢k () — 2) mod k) mod k
(26,1 (j) mod k — 2) mod k
(

In particular, ¢;(0) =

Il

= (j—2)mod k

)

we have (¢, *((i 4+ 2) mod k) — 1) mod k = ¢;*(i). O

Let K = n if n is odd, and & = n — 1 other-

wise. Note that k is odd. Define that V; = {v €

V(Q(n))|w(v) mod k = 4} for any ¢ € [k]. It is easy

to see that (Vo, Vi,...,Vk_1) is a partition of V(Q(n)).

Note that min |V;| = n if n is odd, and min |V;| =
i€[k]* ielk]t

n + 1 otherwise.
Letn >3 and t < n. For any i € [k|T, let S; C V;
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such that |S;] = t. G'(n) is the graph defined as fol-
lows:

V(G (n)) = V(Q(n)) U So;
E(G'(n)) = E(Q(n))
k—1
U {(u,’u)|u € WJ’U € S(i+1)modk}
=0
k—1
U {(u,v)|u € ‘/i?’v S S(i—}-S)modk}
=0

U{(u,v)|u < So,’i} S Sl},

where Sy is the set of ¢ vertices added to Q(n).
Lemma 3: G!(n) is a t-FT graph for Q(n).

Proof:  Let F' be any subset of V(G (n)) such that
|F| £t. Let F; = V;NF and t; = |F;| for any € [k], and
let F, = SoNF and t; = |Fk| Since (Fy, Fi, ..., Fy) is

Zt < t. Since ¢x (¢ (1)) =i

=0
for any ¢ € [k], we have, by Lemma 1,

a partition of F, |F| =

oyt (i)—1

Z Lor(5) St—t

=0
for any ¢ € [k]" and

k—1

Ztm(] —Zt <t t.

Thus, there exists A; C S; — F' such that

k—1
>t ifi =0,

j=0
Al =9 601
> tp ifie KT
j=0
By Lemma 2, we have |F; U A;| = |F| + |4 =
¢y (%)
|[A(i+2)modk] = Z ty, () for any i € [k]T, and |Fp| =

|As| = tg. Thus, there exist bijections

. { Fy — A
Yl RUA — A(ir2)modk

if3 =0,
if i € [k]T.

Define the mapping ¢ from V(Q(n)) to V(G (n) — F)
as follows:

v ifvd FUA,
o) = { polv) ifve R,
pi(v) ifve FUA;,ie kT,
k—1
where A = U A;. Tt is easy to see that ¢ is a one-~to-one

i=1
mapping.
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Now, we will show that (¢(u), 0(v)) € E(G*(n) —
F) for any (u,v) € E(Q(n)). We assume without loss
of generality that v € V; and v € V(1 1)moar for some
i € [k]. There are four cases as follows.

Case 1 u,v ¢ F U A: Since p(u) = u and ¢(v) = v,
we have (¢(u), p(v)) € E(G'(n) — F).

Case 2 u ¢ FUA,ve FUA: Since p(u) =u € V;
and o(v) = ¢(i11)modk (V) € A@+3)modk S S(i+3)modks
we have (¢(u), p(v)) € E(G'(n) — F).

Case 3 uec FUA,v ¢ FUA: Since p(u) = ¢;(u) €
Air2ymodk S S(i+2ymodk and p(v) = v € V(i11)modks
we have (¢(u), p(v)) € E(G'(n) — F).

Case4 u,v € F U A Ifi £ k — 2 then
o(u) = pi(u) € Ait2)modk S Viit2)modr and o(v) =
@(i-‘-l)modk(v) € A(i+3)modk g S(i+3)modk:- Thus,
(o(u),p(v)) € E(G*(n) — F). If i = k — 2 then ¢(u) =
pr—2(u) € AgC S and p(v) = @r_1(v) € A1 C 5.
Thus, (¢(u), p(v)) € E(G*(n) — F).

Thus, (¢(u), ¢(v)) € E(G*(n)—F) for any (u,v) €
E(Q(n)), and so G*(n)—F contains Q(n) as a subgraph.
Hence G'(n) is a t-FT graph for Q(n). O

Now we estimate the maximum degree of G*(n)

and the number of edges added to Q(n) to construct
G*'(n). We need the following lemma.

n 2"
Lemma 4: [16] ( /2] > =0 (%>
Lemma 5: A(G'(n)) = O(2"/y/n) + 3t.
Proof: Let degi(v) denote the degree of v €
V(G(n)). There are five cases as follows.

Case 1 v € Vp: degi(v) < n+|S1| +|Ss| =n+ 2t
Case 2 v € Sy: degl(v) < IVk—ll + IVk_gl + I‘S’ll <
1
E(n3—3n2+8n+6)+t.
Case3v € V; — S;, i € [k]T: degi(v) £ n+
|S(i+1)m0dk| + |S(i+3)modk‘ =n - 2.
Case 4 v € S1: degi1(v) < n+ |Vo| + |Vie—z2| + |S2| +
1
|S4] + [So| = 5(n2 +3n +2) + 3t.
Case5v € S;, i« £ 1, i € [k]T: degi(v) £

n + [Vict)ymodrl + |Vii=3)modk| + [S(i+1)modr| +
|S(i+3)modk| £ 1+ 23&?;‘]1 Vil +2t.
j

Since, by Lemma 4,

etV = ( oy ) =0 (%)

we conclude that A(G*(n)) = O(2"/y/n) + 3t. O
Lemma 6: A(G'(n)) < 27+ 4 ¢2,
Proof:  Since |S;| =t for any ¢ € [k], we have

309

AG ) 2t Y V] +£° = 2"t + 42,

iclk
JE[K] O

By summarizing Lemmas 3, 5, and 6, we have the
following theorem.
Theorem 1: Letn = 3 and t < n. G'(n) is a t-FT
graph for Q(n) with 2¢N + t? added edges and maxi-
mum degree of O(N/+/log N) + 3t. |

Theorem 1 can be generalized for larger ¢. Let «
be an integer greater than 2 and k£ = 2[n/(2a)]—1. The
following theorem can be proved by a similar argument
as the proof of Theorem 1, but we omit the details here.

Theorem 2: Let « be a integer greater than 2 and let
— 111 n
n220+1andlet A = 5(1—2). Iftg( n) ),then

we can construct a t-FT graph for Q(n) with 2tN + ¢2
added edges and maximum degree of O(N/+/log N )+3t.
O

4. t-FT Graph G*(n) for Q(n) with A(G*(n)) =
O(N/logN) and A(G?(n)) = O(tN)

Throughout this section, let o denote (0,0), and let
Ly = [k+ 1] x [k] and L] = [k + 1] x [k] — {o}. For
any ¢ = (i1,%2) € Ly and j = (j1,72) € Lg, define
1 + "] = ((11 + ]1) mod (k + 1),(22 + jg) mod k) and
t—7 = ((i1—j1) mod (k+1), (i2 — j2) mod k). For any
k, define py, as the mapping from [k(k + 1)] to Ly such
that pg (i) = (¢ mod (k+ 1), mod k).

Lemma 7: py is a bijection. In particular, 4(0) = o
and ;' (0) = 0.

Proof:  Suppose that pp(:) = p(j) for some i,5 €
[k(k + 1)]. Then ((: — j) mod (k+ 1), (¢ — j) mod k) =
o. Since k£ and k + 1 are relatively prime, we have
(t—7) mod (k(k+1)) = 0. Since |i—j| € [k(k+1)], we
obtain 2 — j = 0, that is ¢ = j. Thus p is a one-to-one
mapping. Since |[k(k+1)]| = |Lg|, we conclude that g
is a bijection.

Since p;(0) = o, 1} *(0) = 0. O
Lemma 8: (p;'(i+(1,1))—1) mod k(k+1) = u ' (3)
for any 2z € L.

Proof: Let4 = (i1,i2) and 5 =%+ (1,1). Since

pe((py; (4) — 1) mod k(k + 1))

= ((u ' (4) = 1) mod (k +1),
(u*(4) — 1) mod k)
= (((#4 +1) mod (k+1) — 1) mod (k + 1),
((ig + 1) mod k — 1) mod k)
= (7:17 iZ)a
we have (u; ' (i4(1,1)) —1) mod k(k+1) = p; *(3). O

Let k = (n—1)/2 if n is odd, and k = (n/2) — 1

otherwise. For any (7, ) € Ly, let

wy,(v) mod (k+1) = i,}

Vi = {v e viamy [ ) mea b D
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where w,, (v) and w;(v) are the numbers of 1s contained
in [n/2] upper bits and n — [n/2] = Ln/QJ lower bits,
respectively. Notice that (Vio,0y, V(0,1)- -+ s Vik,k—1)) 15 @
partition of V(Q(n)). Note also that mul |V;l=n—-1
eL}
if n is odd, and min |V;| =n + 2 0therw1se
i€l

Letn > 5 and t £ n— 1. For any 2 € L;:, let
S; C V; such that |S;| = ¢. G*(n) is the graph defined
as follows:

V(G*(n)) = V(Q(n)) U So;
E(G*(n)) = E(Q(n))

UU{ v)lu €V, UES’H—(IO)}
zeLk

U U{(u,v)\uEV v E S; o}
iELk

U U {(w,v)lu € Vj,v € 85, 1)}
iELk

U U {(w,v)lu € Vj,v €85, 1 )}
ieLk

U{(U,U)|’Ll, S S(),U S 5(1,0)}

U{(u,v)|u S 50,7} S 5(071)},
where So 1is the set of ¢ vertices added to Q(n).
Lemma 9: G?(n) is a t-FT graph for Q(n).

Proof: Let F' be any subset of V(G?(n)) such that
|F| <t Let F; = V; N F and t; = |F;| for any i € LLg,
and let Fipi1x) = S0,0) N F and tirsy = [Friml-
Since (F(0,0), F(o,1)s - - -+ F(,k—1)> Flr+1,k)) 18 @ partition
of F, |F| = > t; +tgerry < t. Since pg(pg (i) =4

2€Ly,
for any 7z € g, we have, by L_emma 7,
gt (B)—1
Yot St—t
j=0
for any i € L} and
k(k+1)—1
Do bl Stk

=0
Thus, for any ¢ € L, there exists A; C S; — F' such that

E(k+1)—1
Z b (5)
§=0

py H(®)—1

Z L ()

=0

ifi = o,
|4 =
. « +
1fz€ILk.

Il

By Lemma 8, we have |F; U A;| =
w8

Z tuo(;) for any ¢ € L, and |Fo| =
=0

|A(1,1)| = to. Thus, there exist bijections

[l + 4]

[Aiyanl =
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{ FO — A(l 1) if i1 = o,
) 25 oo
O\ FUA; - Ay, ifiely
Define the mapping v from V(Q(n)) to V(G?*(n) — F)
as follows:

v ifve FUA,
1/0(7)) ifve FQ,
Vi(v) ifve Fi U Ai’

v(v) =
i e,

where A = U A;. It is easy to see that v is a one-to-
teLy
one mapping.
Now, we will show that (v(u),v(v)) € E(G*(n) —
F) for any (u,v) € E(Q(n)). We may assume without
loss of generality that v € V; and v € Vj for some

-+(1,0)
1 € L. There are four cases as follows.
Case 1 u,v ¢ F'UA: Since v(u) = u and v(v) = v,
we have (v(u),v(v)) € B(G?*(n) — F).
Case 2 u¢ FUA, ve FUA: Since v(u) =u € Vj
and v(v) = v o)( v) € Aj i1y C Siy(a)> We have
(v(u),v(v)) € E(G*(n) - F).

Case 3 ue FUA, v¢ FUA: Since v(u) = v;(u) €
Ajva1) ESipq and v(v) = v € V5, ), we have

(v(u),v(v)) € E(G*(n) — F).

Case 4 u,v € FUA: If ¢ & (k,k — 1) then v(u) =
v;(u) € Az+(1 1y EViiq, and v(v) = Vi, 0)(1)) €
At o1y E itz Thus, (v(u),v(v)) € E(G*(n) — F).
If (’il,’ig) =~ (k,k — 1) then V(u) = V(k,k—l)( ) S
AO g S() and l/(’L)) = V(O,k——l)(v) S A(l,O) g S(l,O)- Thus,
(v(u),v(v)) € B(G*(n) — F).

Thus, (v(u),v(v)) € E(G%(n) — F) for any (u,v) €
E(Q(n)), and so G?*(n) — F contains Q(n) as a sub-
graph. Hence G?(n) is a ¢-FT graph for Q(n). 0
Lemma 10: A(G?*(n)) = O(2"/n) + 5t.

Proof: Let dego(v) denote the degree of v €
V(G?%(n)). There are five cases as follows.

Case 1 v € Vg dega(v) < n+ 4t
Case 2 v € Sq: dega(v) £ 4 max |V_7| + 2t.
Jele

Case 3 veV; —S;, i € Lf: dega(v) < n+4t.

Case4 veS;, i € Lf —{(0,1),(1,0)}: dega(v) <
n + 4 max |V |+ 4t
JeLy
Case 5 v € S(0,1)US(1,0): degz(v) < n+4max \V |+
_’]ELk
5t.
Since

e [Vj1 = ( m/2] )2

if n = 2m, and
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mex Vi1 = () ) () )

if n = 2m + 1, we have, by Lemma 4,

2774
max V| =6 (%),
J €L, n

and we conclude that A(G?(n)) = O(2"/n) +5t. O
Lemma 11: A(G?*(n)) < 272 + 242,
Proof: Since ’Sj| =t for any j € Ly, we have

AGH(n)) <4t Y V] +26° = 12m¥2 4262,
JeLy
O
By summarizing Lemmas 9, 10, and 11, we have the
following theorem.
Theorem 3: Letn =5 and ¢t < n — 1. Then G?(n) is
a t-FT graph for Q(n) with 4tN + 2t? added edges and
maximum degree of O(N/log N) + 5¢. O

5. t-FT graph for Q(n) with A(G3(n)) =
O(N/log®*N) + 4ct and A(G3(n)) = 2ctN+
ct*(logN/c)¢

Let ¢ be a fixed integer. Assume that c|n, and let
m=mn/c=2 and M = m®. For any i € [M], let

c—1

Vi ={v e V(Q(n))| Z(wk(v) mod m)m* = 4},

k=0

where wy,(v) is the number of 1s in the bit positions from
the (mk + 1)-st bit to the m(k + 1)-st bit of v. Notice
that (Vo, ..., Vay—1) is a partition of V(Q(n)). Note also

that min [V;| = 2°7'm = 2°"In/c. For any i € [M],
€M)+

let Neib(i) = {jlu € V; and v € V; for some (u,v) €
E(Q(n))}. Since m = 2, if (u,v) € E(Q(n)) then
there exists k1 € [¢| such that wg, (v) = wg, (u) &1 and
wy(v) = wi(u) for every k & ky. Thus, | Neib(i)| < 2c
for any i € [M].

Let ¢t < 2°7'n/c. For any i € [M]*, let S; C V;
such that |S;] = ¢t. G3(n) is the graph defined as fol-
lows:

V(G®(n)) = V(Q(n)) U So;
E(G®(n)) (Q(n))

|
o

M-—1

Q
U U U {(u,v)|u € V;,
=0 ;e Neib(i)

(S S(j+1)modM}

S
L

U U {(’LL, 'U)|u € S(i+1)modM,
0 e Neib(s)

¥ € S(j+1)mod M}

i

where Sy is the set of ¢ vertices added to Q(n).
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Lemma 12: G3(n) is a t-FT graph for Q(n).

Proof: Let F be any subset of V(G3(n)) such that
|F| £t Let F; = V,NF and t; = |F}| for any
i € [M], and let Fay = So N F and tp; = |Fy|. Then,

M
(Fo, Fy,..., Fy) is a partition of F' and |F'| = Zti <t.
i=0

T
Since Z t; < t—1t;44 for any ¢ € [M], there exists 4; C
§=0
(3—1)mod M
S; — F such that |4;] = Z
j=0

It follows that |FZ UAZ[ = |F1| + |A'L| = |A(i+1)modM| =

t; for any ¢ € [M].

th for any i € [M]", and |Fy| = |Ay| = to. Thus,
3=0
there exist bijections
w. . Fo — A1 if i = O,
L VA~ AGynymeanm  if i € [M]T
Define the mapping + from V(Q(n)) to V(G3(n) — F)
as follows:

v ifvé FUA,

Y(v) =< o(v) ifve Fy,
7,/){(7)) ifUEFiUAi,iE [M]+,
k-1
where A = U A;. Tt is easy to see that ¢ is a one-to-one
i=1
mapping.

Now we will show that (¢(u),¥(v)) € E(G3*(n) —
F) for any (u,v) € E(Q(n)). If (u,v) € E(Q(n)), then
u€ Vi, veV;, i€ [M],and j € Neib(z). There are
three cases as follows.

Case 1 u,v ¢ F'U A: Since ¢(u) = v and ¢(v) = v,
we have (¥(u),¥(v)) € E(G3(n) — F).

Case 2 u¢ FUA v € FU A: Since ¥(u) =u €V,
Y(v) = ¥;(v) € Agi1ymodns S S(i+1)modans, and j €
Neib(i), we have (¥ (u),¥(v)) € E(G3(n) — F).

Case 3 w,v € F U A: Since ¢(u) = (u)
S A(i+1)modM g S(H—l)modMs ’l[)(’(}) = wj (U) €
A+ modrs ES(j+1)modm> and j € Neib(i), we have
(¥ (u), ¥ (v)) € E(G*(n) — F).

Thus, ((u), ¥ (v)) € E(G3*(n) — F) for any (u,v) €
E(Q(n)), and so G*(n)—F contains Q(n) as a subgraph.
Hence G*(n) is a t-FT graph for Q(n). ]
Lemma 13: A(G3(n)) = O(N/log®? N) + 4ct.

Proof: Let degs(v) denote the degree of v €
V(G3(n)). There are four cases as follows.

Case 1 v € Vo:

Y

je Neib(0)

degs(v) < n
|S(j+1)moans| £ 1+ 2ct.
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Case2 v € Sy degs(v) = D
j€ Neib(m—1)
jeNe%(:M_l) |S(j+1)modnr| = 2e max V] + 2ct.
Case3 v € Vi — S, i € [M]": degs(v) < n+
Z |S(j+1)modM‘ < n+ 2ct.
je Neib(i)
Casedv € S;, i € [M*:

n + Z [V;| + Z

Vil +

degs(v) <=
|S(j+1)modMl +

je Neib((i—1)mod M) je Neib(i)
> ISG+1moant| < 1+ 2e max Vil +
je Neib((i—1)mod M)
4ct.
Since

f?{aﬁlmlz< mf2) >

we have, by Lemma 4,

2cm 2n
=0 () = ().

Hence A(G3(n)) = O(2"/n®/?) + 4et. m
Lemma 14: A(G3(n)) = ct2™™! + ct?(n/c)°
Proof:  Since |S;| =t for any j € [M], we have

oy 1 L
A(GP(n)) <t ) | Neib(5)|| V| + 5t > |Neib(j)]
je[M] JE(M]

C
< ct2™F 4 of? (E) .
c

0
By summarizing Lemmas 12, 13, and 14, we have
the following theorem.
Theorem 4: Let c be a fixed integer and let n = 2¢
be a natural number such that cjn. Let t < 2¢7'n/c.
Then G3(n) is a t-FT graph for Q(n) with 2ctN +
ct?(log N/c)¢ added edges and maximum degree of
O(N/log®? N) + 4ct. O
We can generalize Theorem 4 for any n. The proof
is by a similar argument as the proof of Theorem 4, but
is rather complicated and is omitted here.
Theorem 5: Let ¢ be a fixed integer, n = 2c¢ be a nat-
ural number, and » = nmodc. If ¢t £ 2°7!|n/c|,
then we can construct a t-FT graph for Q(n) with
2¢ctN + ct?[log N/c|™ - |log N/c|¢™" added edges and
maximum degree of O(N/log®? N) -t 4ct. O
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