Fault-Tolerant Graphs for Tori

Toshinori Yamada, Shuichi Ueno

Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo 152, Japan

Received 3 September 1996; accepted 30 April 1998

Abstract: Motivated by the design of fault-tolerant multiprocessor interconnection networks, this paper considers the following problem: Given a positive integer *t* and a graph *H*, construct a graph *G* from *H* by adding a minimum number $\Delta(t, H)$ of edges such that even after deleting any *t* edges from *G* the remaining graph contains *H* as a subgraph. We estimate $\Delta(t, H)$ for the torus, which is well known as a very important interconnection network for multiprocessor systems. © 1998 John Wiley & Sons, Inc. Networks 32: 181–188, 1998

1. INTRODUCTION

Motivated by the design of fault-tolerant multiprocessor interconnection networks, this paper considers the following problem: Given a positive integer t and a graph H, construct a graph G from H by adding a minimum number of edges such that even after deleting any t edges from G the remaining graph contains H as a subgraph. We construct such graphs by adding a small number of edges for the torus, which is well known as an important interconnection network for multiprocessor systems. Many related results can be found in the literature.

Let *G* be a graph and let V(G) and E(G) denote the vertex set and the edge set of *G*, respectively. For any *S* $\subseteq E(G)$, *G**S* is the graph obtained from *G* by deleting the edges of *S*.

Let *t* be a positive integer and let *H* be a graph. A graph *G* is called a *t*-EFT (*t*-edge-fault-tolerant) graph for *H* if $G \setminus S$ contains *H* as a subgraph for every $S \subseteq E(G)$, with $|S| \leq t$. Let $\Delta(t, H)$ denote the minimum number of edges added to *H* to construct a *t*-EFT graph for *H* with |V(H)| vertices.

Let $D_n(k)$ denote the *n*-dimensional $k \times k \times \cdots \times k$ torus. $D_n(2)$ is known as the *n*-cube. The following results can be found in the literature:

(I) [18, 21, 26]
$$\Delta(1, D_n(2)) = 2^{n-1}$$
.
(II) [28] $\Delta(t, D_n(2)) = O\left(t2^{n-1}\log_2\left(\frac{n}{t-1} + c\right)\right)$,

if $t \ge 2$, where $c = 1 + \log_2 e$. (III) [10] $\Delta(t, D_n(p)) \le tp^n$, if $t \le p + 1 - n$ and p is a prime.

In this paper, we generalize the results above and show the following:

- 1. $\Delta(1, D_n(k)) \le k^n$, if $k \ge 3$.
- 2. $\Delta(t, D_n(p^l)) \le (t-1)p^{ln} \{2 \log_p(n/(t-1) + c_p) + c_p\} + p^{ln}$, if $t \ge 2$ and $p^l \ge 3$,
- 3. $\Delta(t, D_n(p^l)) \le tp^{ln}$, if $t \le p + 1 n$ and $p^l \ge 3$,

where p is a prime, k and l are positive integers, and $c_p = 1 + \log_p e$.

The notion of the matric graph was introduced in [28] as a natural generalization of the hypercube. The upper

© 1998 John Wiley & Sons, Inc.

CCC 0028-3045/98/030181-08

Correspondence to: S. Ueno; e-mail: ueno@ss.titech.ac.jp

bound for $\Delta(t, D_n(2))$ in (II) was proved by constructing matric graphs associated with basis matrices of errorcorrecting binary linear codes. The essentially same construction was proposed in [13] independent of [28]. Here, we further extend the notion of the matric graph to be a generalization of the torus. The upper bounds for $\Delta(t, D_n(k))$ in (1), (2), and (3) are proved by constructing *t*-EFT matric graphs for $D_n(k)$ associated with basis matrices of error-correcting linear codes. It is interesting that the *t*-EFT matric graphs for $D_n(k)$ proposed here have a strong fault-tolerance property. We show that even after deleting tk^n edges of *t* different dimensions from a *t*-EFT matric graph for $D_n(k)$ the remaining graph still contains $D_n(k)$ as a subgraph.

2. MATRIC GRAPHS AND TORI

Let $k \ge 2$ be an integer and let $[k] = \{0, 1, ..., k - 1\}$. The *n*-dimensional $k \times k \times \cdots \times k$ torus, denoted by $D_n(k)$, is defined as follows: $V(D_n(k)) = [k]^n$; $E(D_n(k)) = \{(u, v) | \exists i v_i = (u_i \pm 1) \mod k, \forall j \neq i u_j = v_j\}$, where $u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)$. $D_n(2)$ is called the *n*-cube (*n*-dimensional cube). It is easy to see that $D_n(k)$ is connected and $|V(D_n(k))| = k^n$. If $k \ge 3$, $|E(D_n(k))| = nk^n$, since the degree of each vertex of $D_n(k)$ is 2n. Since the degree of each vertex of $D_n(2)$ is n, $|E(D_n(2))| = 2^{n-1}$. An edge (u, v) is called an *i*-edge (*i*-dimensional edge) if $v_i = (u_i \pm 1) \mod k$ and $u_j = v_j$ for any $j \neq i$.

Let *M* be an $m \times n$ matrix over [k], which is an *m* by *n* matrix consisting of 0's, 1's, ..., and (k - 1)'s. Let \mathbf{r}_i and \mathbf{c}_j denote the *i*-th row and the *j*-th column of *M*, respectively. Define $R(M) = {\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m}$ and $C(M) = {\mathbf{c}_1, \mathbf{c}_2, ..., \mathbf{c}_n}$.

The matric graph associated with an $m \times n$ matrix M over [k], denoted by $G_k(M)$, is defined as follows: $V(G_k(M)) = [k]^n$; any two vertices **u** and **v** are joined by $|\{r \in R(M) | u + v = r\}|$ parallel edges if k = 2, and $|\{r \in R(M) | u = v + r\}| + |\{r \in R(M) | v = u\}|$ + r | parallel edges otherwise, where vector addition is performed modulo k. An edge (u, v) of $G_k(M)$ is said to be of dimension $r(\in R(M))$ if u = v + r or v = u+ r. For $r \in R(M)$, $E_k(r)$ is the set of all edges of dimension **r** of $G_k(M)$. For $S \subseteq R(M)$, $E_k(S) = \bigcup_{\mathbf{r} \in S} \mathbb{C}$ $E_k(\mathbf{r})$. If $k \ge 3$, each vertex of $G_k(M)$ is incident to two edges of dimension *r* for any $r \in R(M)$, and so the degree of each vertex of $G_k(M)$ is 2m. Thus, $|E(G_k(M))|$ $= mk^n$ if $k \ge 3$. Since each vertex of $G_2(M)$ is incident to an edge of dimension r for any $r \in R(M)$, the degree of each vertex of $G_2(M)$ is m. Thus, $|E(G_2(M))| = m2^{n-1}$. For $S \subseteq R(M)$, let $M \setminus S$ denote the matrix obtained from a matrix M by deleting the rows of S. It is easy to see the following two lemmas from the definition of the matric graph:

Lemma 1. If I_n is the $n \times n$ unit matrix over [k], then $G_k(I_n)$ is isomorphic to $D_n(k)$. Moreover, the edges of dimension \mathbf{r}_i of $G_k(I_n)$ correspond to the *i*-edges of $D_n(k)$.

Lemma 2. $G_k(M \setminus S)$ is isomorphic to $G_k(M) \setminus E_k(S)$.

Lemma 3. If a matrix M over [k] has a column consisting of 0's, then $G_k(M)$ is disconnected.

Proof. Assume that $c_i = 0$ for some *i*. Define $V_j = \{v \in V(G_p(M)) | v_i = j\}$ for any $j \in [k]$, where $v = (v_1, \ldots, v_n)$. (V_0, \ldots, V_{k-1}) is a partition of $V(G_k(M))$. Since $c_i = 0$, there exists no edge joining a vertex in V_0 and a vertex in $V(G_k(M)) - V_0 = V_1 \cup \cdots \cup V_{k-1}$. Hence, $G_k(M)$ is disconnected.

Let p be a prime. It should be noted that the addition and multiplication modulo p corresponds to the addition and multiplication over GF(p), respectively.

Lemma 4. If M' is a matrix obtained from an $m \times n$ matrix M over GF(p) by elementary column operations, then $G_p(M')$ is isomorphic to $G_p(M)$.

Proof. Let $\lambda \neq 0$, $\lambda \in [p]$. It suffices to prove the following: (i) If M' is a matrix obtained from M by multiplying column c_{j_1} by λ , $1 \leq j_1 \leq n$, then $G_p(M')$ is isomorphic to $G_p(M)$; (ii) if M' is a matrix obtained from M by exchanging column c_{j_1} with column c_{j_2} , $1 \leq j_1 < j_2 \leq n$, then $G_p(M')$ is isomorphic to $G_p(M)$; and (iii) if M' is a matrix obtained from M by adding column λc_{j_2} to $c_{j_1}, j_1 \neq j_2$, then $G_p(M')$ is isomorphic to $G_p(M)$.

Proof of (i). Let φ_1 be a mapping from $V(G_p(M))$ to $V(G_p(M'))$ such that

$$\varphi_1(\mathbf{v}) = (v_1, \ldots, \lambda v_{j_1}, \ldots, v_n)$$

If $\varphi_1(\boldsymbol{u}) = \varphi_1(\boldsymbol{v})$, then $u_j = v_j$ $(j \neq j_1)$ and $\lambda u_{j_1} = \lambda v_{j_1}$. Thus, $u_{j_1} = v_{j_1}$, and so $\boldsymbol{u} = \boldsymbol{v}$. Thus, φ_1 is a one-to-one mapping. Since $|V(G_p(M))| = |V(G_p(M'))| = p^n, \varphi_1$ is a bijection.

Let \mathbf{r}'_i denote the *i*-th row of M'. If $\mathbf{r}_i = (x_1, \ldots, x_n)$, then $\mathbf{r}'_i = (x_1, \ldots, \lambda x_{j_1}, \ldots, x_n)$. Since $\mathbf{u} + \mathbf{r}_i = \mathbf{v}$ if and only if $\varphi_1(\mathbf{u}) + \mathbf{r}'_i = \varphi_1(\mathbf{v})$, and $\mathbf{v} + \mathbf{r}_i = \mathbf{u}$ if and only if $\varphi_1(\mathbf{v}) + \mathbf{r}'_i = \varphi_1(\mathbf{u})$, we conclude that (\mathbf{u}, \mathbf{v}) $\in E(G_p(M))$ if and only if $(\varphi_1(\mathbf{u}), \varphi_1(\mathbf{v})) \in E(G_p(M'))$. Thus, $G_p(M)$ is isomorphic to $G_p(M')$.

Proof of (ii). Let φ_2 be a mapping from $V(G_p(M))$ to $V(G_p(M'))$ such that

$$\varphi_2(\mathbf{v}) = (v_1, \ldots, v_{j_2}, \ldots, v_{j_1}, \ldots, v_n).$$

If $\varphi_2(\boldsymbol{u}) = \varphi_2(\boldsymbol{v})$, then $u_j = v_j$ $(1 \le j \le n)$, and so $\boldsymbol{u} = \boldsymbol{v}$. Thus, φ_2 is a bijection.

If $\mathbf{r}_i = (x_1, \ldots, x_n)$, then $\mathbf{r}'_i = (x_1, \ldots, x_{j_2}, \ldots, x_{j_1}, \ldots, x_n)$. Since $\mathbf{u} + \mathbf{r}_i = \mathbf{v}$ if and only if $\varphi_2(\mathbf{u}) + \mathbf{r}'_i = \varphi_2(\mathbf{v})$, and $\mathbf{v} + \mathbf{r}_i = \mathbf{u}$ if and only if $\varphi_2(\mathbf{v}) + \mathbf{r}'_i = \varphi_2(\mathbf{u})$, we conclude that $(\mathbf{u}, \mathbf{v}) \in E(G_p(M))$ if and only if $(\varphi_2(\mathbf{u}), \varphi_2(\mathbf{v})) \in E(G_p(M'))$. Thus, $G_p(M)$ is isomorphic to $G_p(M')$.

Proof of (iii). Let φ_3 be a mapping from $V(G_p(M))$ to $V(G_p(M'))$ such that

$$\varphi_3(\mathbf{v}) = (v_1, \ldots, v_{j_1} + \lambda v_{j_2}, \ldots, v_n).$$

If $\varphi_3(\boldsymbol{u}) = \varphi_3(\boldsymbol{v})$, then $u_j = v_j$ $(j \neq j_1)$ and $u_{j_1} + \lambda u_{j_2}$ = $v_{j_1} + \lambda v_{j_2}$. Since $u_{j_2} = v_{j_2}$, we obtain $u_{j_1} = v_{j_1}$, and so $\boldsymbol{u} = \boldsymbol{v}$. Thus, φ_3 is a bijection.

If $\mathbf{r}_i = (x_1, \ldots, x_n)$, then $\mathbf{r}'_i = (x_1, \ldots, x_{j_1} + \lambda x_{j_2}, \ldots, x_n)$. Since $\mathbf{u} + \mathbf{r}_i = \mathbf{v}$ if and only if $\varphi_3(\mathbf{u}) + \mathbf{r}'_i = \varphi_3(\mathbf{v})$, and $\mathbf{v} + \mathbf{r}_i = \mathbf{u}$ if and only if $\varphi_3(\mathbf{v}) + \mathbf{r}'_i = \varphi_3(\mathbf{u})$, we conclude that $(\mathbf{u}, \mathbf{v}) \in E(G_p(M))$ if and only if $(\varphi_3(\mathbf{u}), \varphi_3(\mathbf{v})) \in E(G_p(M'))$. Thus, $G_p(M)$ is isomorphic to $G_p(M')$.

Theorem 1. For any $n \times n$ matrix M over GF(p), $G_p(M)$ is isomorphic to $D_n(p)$ if and only if M is non-singular.

Proof. If *M* is nonsingular, then we can obtain the unit matrix I_n from *M* by elementary column operations. Thus, $G_p(M)$ is isomorphic to $D_n(p)$ by Lemmas 1 and 4.

If *M* is singular, then we can obtain a matrix with a column consisting of 0's from *M* by elementary column operations. Thus, $G_p(M)$ is not isomorphic to $D_n(p)$, since $G_p(M)$ is disconnected by Lemmas 3 and 4.

Corollary 1. For any $m \times n$ matrix M over GF(p), $G_p(M)$ contains $D_n(p)$ as a subgraph if and only if the rank of M is n.

Proof. If the rank of M is n, then there exists $S \subset R(M)$ with |S| = m - n such that $M \setminus S$ is an $n \times n$ nonsingular matrix over GF(p). Thus, $G_p(M \setminus S)$ is isomorphic to $D_n(p)$ by Theorem 1, and so $G_p(M)$ contains $D_n(p)$ as a subgraph by Lemma 2.

If the rank of *M* is less than *n*, then we can obtain a matrix with a column consisting of 0's from *M* by elementary column operations. Thus, $G_p(M)$ is disconnected by Lemmas 3 and 4. Since $|V(G_p(M))| = |V(D_n(p))| = p^n$, we conclude that $G_p(M)$ does not contain $D_n(p)$ as a subgraph.

For any vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ consisting of integers, $\mathbf{v} \mod k$ is defined as $(v_1 \mod k, v_2 \mod k, \dots, v_n \mod k)$. An $m \times n$ matrix M over [k] is said to have property \mathcal{I}_k if the following condition is satisfied: If $(a_1\mathbf{r}_1 + a_2\mathbf{r}_2)$

+ \cdots + $a_m r_m$)mod k = 0 holds for $a_1, a_2, \ldots, a_m \in [k]$, then $a_1 = a_2 = \cdots = a_m = 0$. It should be noted that \mathcal{I}_k is a generalization of the linear independency. The following theorem does hold even if k is not a prime:

Theorem 2. For any $n \times n$ matrix M over [k], $G_k(M)$ is isomorphic to $D_n(k)$ if and only if M has property \mathcal{G}_k .

Proof. In what follows, we denote $G_k(M)$ and $D_n(k)$ by G and D, respectively.

Assume that *M* has property \mathcal{J}_k . Let ϕ be a mapping from V(D) to V(G) such that $\phi(\mathbf{v}) = (v_1\mathbf{r}_1 + v_2\mathbf{r}_2 + \cdots + v_n\mathbf{r}_n) \mod k$, where $\mathbf{v} = (v_1, v_2, \ldots, v_n)$. If $\phi(\mathbf{u}) = \phi(\mathbf{v})$, then

$$\phi(\boldsymbol{u}) - \phi(\boldsymbol{v}) = (u_1\boldsymbol{r}_1 + u_2\boldsymbol{r}_2 + \cdots + u_n\boldsymbol{r}_n) \mod k$$
$$- (v_1\boldsymbol{r}_1 + v_2\boldsymbol{r}_2 + \cdots + v_n\boldsymbol{r}_n) \mod k = \boldsymbol{0},$$

that is,

$$((u_1 - v_1)\mathbf{r}_1 + (u_2 - v_2)\mathbf{r}_2 + \cdots + (u_n - v_n)\mathbf{r}_n) \mod k = \mathbf{0}.$$
 (1)

For any i = 1, 2, ..., n, let $a_i = u_i - v_i$ if $u_i \ge v_i$, and $a_i = u_i - v_i + k$ otherwise. It should be noted that $a_i \in [k]$, and if $a_i = 0$, then $u_i = v_i$. By Eq. (1), we have

$$(a_1\mathbf{r}_1 + a_2\mathbf{r}_2 + \cdots + a_n\mathbf{r}_n) \mod k = \mathbf{0},$$

and so $a_i = 0$ for any *i* since *M* has property \mathcal{I}_k . Thus, $u_i = v_i$ for any i = 1, 2, ..., n, and ϕ is a one-to-one mapping. Since $|V(D)| = |V(G)| = k^n$, ϕ is a bijection.

Now we prove that ϕ is an isomorphism between *G* and *D*. It is sufficient to show that $(u, v) \in E(D)$ if and only if $(\phi(u), \phi(v)) \in E(G)$. If $(u, v) \in E(D)$, then $v = (u + e_i) \mod k$ or $u = (v + e_i) \mod k$ for some *i*, where e_i is the *i*-dimensional unit vector. Thus, $\phi(v)$ $= (\phi(u) + r_i) \mod k$ or $\phi(u) = (\phi(v) + r_i) \mod k$, and so $(\phi(u), \phi(v)) \in E(G)$. If $(\phi(u), \phi(v)) \in E(G)$, then $\phi(v) = (\phi(u) + r_i) \mod k$ or $\phi(u) = (\phi(v) + r_i) \mod k$ for some *i*. Thus, $\phi(v) = (\phi(u) + \phi(e_i)) \mod k$ or $\phi(u) = (\phi(v) + \phi(e_i)) \mod k$, that is, $\phi(v) = \phi((u + e_i) \mod k)$ or $\phi(u) = \phi((v + e_i) \mod k)$. Since ϕ is a bijection from $[k]^n$ to $[k]^n$, $v = (u + e_i) \mod k$ or u $= (v + e_i) \mod k$, and so $(u, v) \in E(D)$. Thus, (u, v) $\in E(D)$ if and only if $(\phi(u), \phi(v)) \in E(G)$. Hence, ϕ is an isomorphism and *G* is isomorphic to *D*.

Assume that *M* does not have property \mathcal{I}_k . Since ϕ is not a one-to-one mapping and $|V(D)| = |V(G)| = k^n$, there exists some $v \notin \phi(V(D))$. If *G* is connected, then there exists a path *P* from **0** to *v*. Let $P = v_0 v_1 \cdots v_d$, where $v_0 = \mathbf{0}$ and $v_d = v$. Then, for any $j = 1, 2, \ldots, d$, there exists some *i* such that $v_j = (v_{j-1} + r_i) \mod k$ or $v_j = (v_{j-1} - r_i) \mod k$. Since $v = \sum_{j=1}^d (v_j - v_{j-1})$, *v* can be expressed as $\mathbf{v} = (a_1\mathbf{r}_1 + a_2\mathbf{r}_2 + \cdots + a_n\mathbf{r}_n) \mod k$ for some integers a_1, a_2, \ldots , and a_n . Thus, we conclude that for $\mathbf{a} = (a_1, a_2, \ldots, a_n) \mod k \in V(D)$, $\phi(\mathbf{a}) = \mathbf{v}$, a contradiction. Thus, *G* is disconnected, and, hence, *G* is not isomorphic to *D*.

3. *t*-DFT MATRIC GRAPHS FOR $D_n(k)$

Let *M* be an $m \times n$ matrix over [k]. $G_k(M)$ is called a *t*-DFT (*t*-dimension-fault-tolerant) matric graph for $D_n(k)$ if $G_k(M) \setminus E_k(S)$ (= $G_k(M \setminus S)$) contains $D_n(k)$ as a subgraph for any $S \subseteq R(M)$, with $|S| \leq t$. Define $\Lambda(t, n, k) = \min\{|E(G_k(M))| - |E(D_n(k))||G_k(M) : t$ -DFT matric graph for $D_n(k)\}$. Since the degree of each vertex of $G_k(M)$ is *m* if k = 2 and 2*m* otherwise, the problem of finding $\Lambda(t, n, k)$ is equivalent to the one of finding the minimum number of rows of a matrix *M* such that $G_k(M)$ is a *t*-DFT matric graph for $D_n(k)$.

3.1. The Case When k is a Prime p

The following theorem characterizes the *t*-DFT matric graph for $D_n(p)$. Recall that the Hamming weight of a vector \mathbf{v} over GF(p) is the number of nonzero elements of \mathbf{v} :

Theorem 3. For any $m \times n$ matrix M over GF(p), $G_p(M)$ is a t-DFT matric graph for $D_n(p)$ if and only if the Hamming weight of any linear combination of C(M) is at least t + 1.

Proof. Assume that there exists a linear combination of C(M) such that its Hamming weight is at most t. Then, we can obtain a matrix M' with a column (say, the j-th column) of Hamming weight at most t from M by some elementary column operations. Let S be the set of rows of M corresponding to the rows S' of M' whose j-th elements are nonzeros. Since the j-th column of $M' \setminus S'$ consists of 0's, $G_p(M' \setminus S')$ does not contain $D_n(p)$ as a subgraph by Corollary 1. Since $G_p(M \setminus S)$ is isomorphic to $G_p(M' \setminus S')$ by Lemma 4 and $|S| = |S'| \leq t$, we conclude that $G_p(M)$ is not a t-DFT matric graph for $D_n(p)$.

Conversely, assume that the Hamming weight of any linear combination of C(M) is at least t + 1. Then, $C(M \setminus S)$ is linearly independent for any $S \subseteq R(M)$ with $|S| \leq t$, and the rank of $M \setminus S$ is n. Thus, $G_p(M \setminus S)$ contains $D_n(p)$ as a subgraph by Corollary 1, and we conclude that $G_p(M)$ is a *t*-DFT matric graph for $D_n(p)$.

Theorem 3 means that for any $m \times n$ matrix M over GF(p), $G_p(M)$ is a *t*-DFT matric graph for $D_n(p)$ if and only if C(M) is a basis of an *n*-dimensional vector space over GF(p) such that the Hamming weight of any non-

zero vector is at least t + 1. Thus, *t*-DFT matric graphs can be characterized by error-correcting linear codes. Recall that the minimum distance for a linear code *C* is min{ $d_H(u, v) | u \neq v, u, v \in C$ }, where $d_H(u, v)$ is the Hamming distance between u and v, that is, the number of positions in which they differ.

Theorem 4. For any $m \times n$ matrix M over GF(p), $G_p(M)$ is a t-DFT matric graph for $D_n(p)$ if and only if C(M) is a basis of an n-dimensional linear code over GF(p) with minimum distance at least t + 1.

The following bounds for the existence of *n*-dimensional linear codes over GF(p) with minimum distance at least t + 1 are well known. (See, e.g., [24]).

Theorem I. If there exists an n-dimensional linear code over GF(p) with minimum distance at least t + 1 and length m, then

$$p^{m-n} \geq \sum_{i=0}^{\lfloor t/2 \rfloor} (p-1)^i \binom{m}{i} .$$

Theorem II. If

$$p^{m-n} > \sum_{i=0}^{i-1} (p-1)^i {m-1 \choose i},$$

then there exists an n-dimensional linear code over GF(p) with minimum distance at least t + 1 and length m.

The inequalities of Theorems I and II are well known as Hamming-bound and Varsharmov–Gilbert-bound, respectively. It should be noted that Theorem II is proved constructively. In what follows, we estimate $\Lambda(t, n, p)$ from Theorems 4, I, and II. We need a few lemmas:

Lemma 5. For $1 \le k \le m$,

$$\left\{\frac{(p-1)m}{k}\right\}^k \le \sum_{i=0}^k (p-1)^i \binom{m}{i} \le p^k \binom{m}{k}.$$

Proof. Let $S_p(m, k) = \sum_{i=0}^{k} (p - 1)^i {m \choose i}$. First, consider the first inequality. Trivially,

$$S_p(m,k) \ge (p-1)^k \binom{m}{k} \ge (p-1)^k$$
$$\times \frac{m(m-1)\cdots(m-k+1)}{k!} \ge (p-1)^k \binom{m}{k}^k.$$

Now consider the second inequality. By induction on m and k,

- 1. Since $S_p(m, 1) = (p 1)m + 1 \le pm$ and $S_p(k, k) = p^k$, the claim is true if k = 1 or m = k.
- 2. Let $2 \le k < m$ and assume that the claim is true for $S_p(m, k'), S_p(m'k)$, and $S_p(m', k')$ with m > m' and k > k'. Since

$$\binom{m}{i} = \binom{m-1}{i} + \binom{m-1}{i-1}$$

for any $i, 1 \le i \le m - 1$, $S_p(m, k) = S_p(m - 1, k) + (p - 1) \cdot S_p(m - 1, k - 1)$. Thus,

$$S_{p}(m,k) \leq p^{k} \binom{m-1}{k} + (p-1) \cdot p^{k-1} \binom{m-1}{k-1}$$
$$\leq p^{k} \cdot \left\{ \binom{m-1}{k} + \binom{m-1}{k-1} \right\} = p^{k} \binom{m}{k}.$$

Lemma 6 [16].

$$\binom{m}{k} \leq \left(\frac{em}{k}\right)^k.$$

Lemma 7. Let $y \ge 1 + \log_p e$. If $x - \log_p x \le y$, then $x \le y + 2 \log_p y$.

Proof. Assume contrary that $x > y + 2 \log_p y$ and let $g(z) = z - \log_p z$. Since g(z) is an increasing function for $z > \log_p e$ and $x > y + 2 \log_p y \ge 1 + \log_p e$, we have

$$g(x) - y > g(y + 2 \log_p y) - y$$

= 2 \log_p y - \log_p (y + 2 \log_p y) = \log_p \frac{y^2}{y + 2 \log_p y}

Since $y^2 \ge y + 2 \log_p y$ for any $y \ge 1 + \log_p e$, we obtain $x - \log_p x > y$, which is a contradiction.

Theorem 5. Let *M* be an $m \times n$ matrix over GF(p). If $G_p(M)$ is a t-DFT matric graph for $D_n(p)$ ($t \ge 2$), then

$$m \ge n + \left\lfloor \frac{t}{2} \right\rfloor \log_p \frac{(p-1)n}{\lfloor t/2 \rfloor}$$

Proof. If $G_p(M)$ is a *t*-DFT matric graph for $D_n(p)$, then C(M) is a basis of an *n*-dimensional linear code over GF(p) with minimum distance at least t + 1 by Theorem 4. Thus, by Theorem I and Lemma 5, we have

$$p^{m-n} \ge \sum_{i=0}^{k} (p-1)^{i} {m \choose i} \ge \left\{ \frac{(p-1)m}{k} \right\}^{k},$$

where
$$k = \left\lfloor \frac{t}{2} \right\rfloor$$
. Hence,

$$m - n \ge k \log_p \frac{(p-1)m}{k} \ge k \log_p \frac{(p-1)n}{k}$$
.

Theorem 6. There exists an $m \times n$ matrix M over GF(p) such that $G_p(M)$ is a t-DFT matric graph for $D_n(p)$ ($t \ge 2$) and

$$m \le n + (t-1) \left\{ 2 \log_p \left(\frac{n}{t-1} + c_p \right) + c_p \right\} + 1,$$

where $c_p = 1 + \log_p e$.

Proof. By Theorems 4 and II, if

$$p^{m-n} > \sum_{i=0}^{t-1} (p-1)^i \binom{m-1}{i},$$
 (2)

then there exists an $m \times n$ matrix M over GF(p) such that $G_p(M)$ is a *t*-DFT matric graph for $D_n(p)$. Let m' be the minimum number of m satisfying (2). Then,

$$p^{m'-1-n} \leq \sum_{i=0}^{t-1} (p-1)^{i} \binom{m'-2}{i}$$
$$\leq \sum_{i=0}^{t-1} (p-1)^{i} \binom{m'-1}{i}.$$

Thus, by Lemmas 5 and 6,

$$p^{m'-1-n} \leq \left\{\frac{ep(m'-1)}{t-1}\right\}^{t-1},$$

that is,

$$m' - 1 - n \le (t - 1) \left(\log_p \frac{m' - 1}{t - 1} + 1 + \log_p e \right),$$

that is,

$$\frac{m'-1}{t-1} - \log_p \frac{m'-1}{t-1} \le \frac{n}{t-1} + c_p.$$

Since $c_p = 1 + \log_p e$, by putting x = (m' - 1)/(t - 1)and $y = n/(t - 1) + c_p$ in Lemma 7, we obtain

$$\frac{m'-1}{t-1} \le \frac{n}{t-1} + c_p + 2 \log\left(\frac{n}{t-1} + c_p\right).$$

Hence,

$$m' \le n + (t-1) \left\{ 2 \log \left(\frac{n}{t-1} + c_p \right) + c_p \right\} + 1.$$

Since the numbers of edges of $G_p(M)$ and $D_n(p)$ are mp^n and np^n , respectively, we obtain from Theorems 5 and 6 the following upper and lower bounds for $\Lambda(t, n, p)$:

Theorem 7. For any prime $p \ge 3$,

$$\left\lfloor \frac{t}{2} \right\rfloor p^n \log_p \frac{(p-1)n}{\lfloor t/2 \rfloor} \le \Lambda(t, n, p)$$
$$\le (t-1)p^n \left\{ 2 \log_p \left(\frac{n}{t-1} + c_p \right) + c_p \right\} + p^n,$$

where $t \ge 2$ and $c_p = 1 + \log_p e$.

Since the numbers of edges of
$$G_2(M)$$
 and $D_n(2)$ are $m2^{n-1}$ and $n2^{n-1}$, respectively, we obtain from Theorems 5 and 6

$$\left\lfloor \frac{t}{2} \right\rfloor 2^{n-1} \log_2 \frac{n}{\lfloor t/2 \rfloor} \le \Lambda(t, n, 2)$$
$$\le (t-1)2^{n-1} \left\{ 2 \log_2 \left(\frac{n}{t-1} + c_2 \right) + c_2 \right\} + 2^{n-1},$$

which was proved in [28]. We can show the precise value of $\Lambda(1, n, p)$ as follows:

Theorem 8. $\Lambda(1, n, p) = p^n$ for any prime $p \ge 3$.

Proof. If *M* is the $n \times (n + 1)$ matrix over GF(p) obtained from I_n by adding a row consisting of 1's, then *M* satisfies the condition of Theorem 3 for t = 1. Thus, $\Lambda(1, n, p) \leq p^n$.

If *M* is an $m \times n$ matrix over GF(p) such that $G_p(M)$ is a 1-DFT matric graph for $D_n(p)$, then $m \ge n + 1$, and so $\Lambda(1, n, p) \ge p^n$.

3.2. The Case When $k \ge 3$ is an integer

For any matrix $M = (m_{ij})$ consisting of integers, let $M \mod k = (m_{ij} \mod k)$.

Lemma 8. Let $k = k_1k_2$, where $k_i \ge 2$ for i = 1, 2. Then, an $n \times n$ matrix M over [k] has property \mathcal{I}_k if and only if $M \mod k_1$ has property \mathcal{I}_{k_1} and $M \mod k_2$ has property \mathcal{I}_{k_2} .

Proof. Assume that M does not have property \mathcal{I}_k , that is, there exists some $a_1, a_2, \ldots, a_n \in [k]$, not all zero, such that

$$(a_1\mathbf{r}_1 + a_2\mathbf{r}_2 + \cdots + a_n\mathbf{r}_n) \mod k = \mathbf{0}.$$
(3)

Let $a'_i = a_i \mod k_1$ for i = 1, 2, ..., n. Then, $(a'_1 \mathbf{r}_1 + a'_2 \mathbf{r}_2 + \cdots + a'_n \mathbf{r}_n) \mod k_1 = \mathbf{0}$ by Eq. (3). Thus, if $a'_i \neq 0$ for some i, then $M \mod k_1$ does not have property \mathcal{G}_{k_1} . If $a'_i = 0$ for any i = 1, 2, ..., n, then $a''_i = a_i/k_1 \in [k_2]$ for any i = 1, 2, ..., n and they are not all zero. Since $(a''_1 \mathbf{r}_1 + a''_2 \mathbf{r}_2 + \cdots + a''_n \mathbf{r}_n) \mod k_2 = \mathbf{0}$ by Eq. (3), $M \mod k_2$ does not have property \mathcal{G}_{k_2} .

Conversely, assume that $M \mod k_i$ does not have property \mathcal{J}_{k_i} for i = 1 or i = 2. We may assume without loss of generality that $M \mod k_1$ does not have property \mathcal{J}_{k_1} . Then, there exists $a_1, a_2, \ldots, a_n \in [k_1]$, not all zero, such that $(a_1\mathbf{r}_1 + a_2\mathbf{r}_2 + \cdots + a_n\mathbf{r}_n) \mod k_1 = \mathbf{0}$. Since $k_2a_1, k_2a_2, \ldots, k_2a_n \in [k]$ and $(k_2a_1\mathbf{r}_1 + k_2a_2\mathbf{r}_2 + \cdots + k_2a_n\mathbf{r}_n) \mod k = \mathbf{0}$, we conclude that M does not have property \mathcal{J}_k .

Corollary 2. Let p be a prime and let l be a positive integer. Then, an $n \times n$ matrix M over $[p^{l}]$ has property $\mathcal{I}_{p^{l}}$ if and only if $M \mod p$ has property \mathcal{I}_{p} .

Proof. The proof is by induction on l using Lemma 8.

Corollary 3. Let x be a positive integer and let $k = p_1^{l_1} p_2^{l_2} \cdots p_x^{l_x}$, where p_i is a prime and l_i is a positive integer for any $i, 1 \le i \le x$. Then, an $n \times n$ matrix M over [k] has property \mathcal{I}_k if and only if M mod p_i has property \mathcal{I}_{p_i} for any i = 1, 2, ..., x.

Proof. The proof is by induction on x using Corollary 2 and Lemma 8.

Theorem 9. $\Lambda(1, n, k) = k^n$ for any integer $k \ge 3$.

Proof. If *M* is the $(n + 1) \times n$ matrix obtained from I_n by adding a row consisting of 1's, then $G_p(M)$ is a 1-DFT matrix graph for $D_n(p)$ for any prime *p*. Thus, if *M'* is the matrix obtained from *M* by deleting any one row, then $G_p(M')$ is isomorphic to $D_n(p)$, and so *M'* has property \mathcal{I}_p by Theorem 2. By Corollary 3, *M'* has property \mathcal{I}_k for any positive integer $k \ge 3$, and so $G_k(M')$ is a 1-DFT matric graph for $D_n(k)$, and $\Lambda(1, n, k) \le k^n$.

If M is a $m \times n$ matrix such that $G_k(M)$ is a 1-DFT

matric graph for $D_n(k)$, then $m \ge n + 1$, and so $\Lambda(1, n, k) \ge k^n$.

Lemma 9. Let p be a prime and let M be an $m \times n$ matrix over GF(p). If $G_p(M)$ is a t-DFT matric graph for $D_n(p)$, then $G_{p'}(M)$ is a t-DFT matric graph for $D_n(p')$, where l is a positive integer.

Proof. If $G_p(M)$ is a *t*-DFT matric graph for $D_n(p)$, then, for any $S \subset R(M)$ with $|S| \leq t$, there exists some $S' \subset R(M) - S$ with |S'| = m - n - |S| such that $G_p(M \setminus S \setminus S')$ is isomorphic to $D_n(p)$. Then, $M \setminus S \setminus S'$ has property \mathscr{I}_p by Theorem 2, and so property $\mathscr{I}_{p'}$ by Corollary 2. Thus, $G_{p'}(M \setminus S \setminus S')$ is isomorphic to $D_n(p^1)$ by Theorem 2. Hence, $G_{p'}(M)$ is a *t*-DFT matric graph for $D_n(p^1)$. ■

Theorem 10. Let p be a prime and let l be a positive integer where $p^{l} \ge 3$. Then,

$$\begin{split} \Lambda(t, n, p^{l}) &\leq (t-1)p^{ln} \\ &\times \left\{ 2 \log_{p} \left(\frac{n}{t-1} + c_{p} \right) + c_{p} \right\} + p^{ln}, \end{split}$$

where $t \ge 2$ and $c_p = 1 + \log_p e$.

Proof. The proof is by Lemma 9 and Theorem 6. ■

Theorem III [10]. Let *n* be an integer where $n \ge 2$, and let $p \ge n - 1$ be a prime. Then, there exists an $m \\ \times n \text{ matrix } M \text{ over } GF(p) \text{ such that } G_p(M) \text{ is a t-DFT} matric graph for <math>D_n(p)$ and m = n + t where $t \le p + 1 - n$.

Theorem 11. Let p be a prime and let l be a positive integer where $p^l \ge 3$. Then,

$$\Lambda(t, n, p^l) = t p^{ln},$$

where $t \leq p + 1 - n$.

Proof. By Lemma 9 and Theorem III, $\Lambda(t, n, p^l) \leq tp^{ln}$. If *M* is a $m \times n$ matrix over $[p^l]$ such that $G_{p'}(M)$ is a *t*-DFT matric graph for $D_n(p^l)$, then $m \geq n + t$, and so $\Lambda(t, n, p^l) \geq tp^{ln}$.

4. *t*-EFT GRAPHS FOR $D_n(k)$

Since a *t*-DFT matric graph for $D_n(k)$ is also a *t*-EFT graph for $D_n(k)$, we have $\Delta(t, D_n(k)) \leq \Lambda(t, n, k)$. Thus, we obtain Theorems 12, 13, and 14 from Theorems 9, 10, and 11, respectively. **Theorem 12.** $\Delta(1, D_n(k)) \leq k^n$ for any integer $k \geq 3$.

Theorem 13. Let p be a prime and let l be a positive integer where $p^{l} \ge 3$. Then,

$$\Delta(t, D_n(p^l)) \le (t-1)p^{ln}$$

$$\times \left\{ 2 \log_p \left(\frac{n}{t-1} + c_p\right) + c_p \right\} + p^{ln},$$

where $t \ge 2$ and $c_p = 1 + \log_p e$.

Theorem 14. Let p be a prime and let l be a positive integer where $p^{l} \ge 3$. Then,

$$\Delta(t, D_n(p^l)) \le t p^{ln},$$

where $t \leq p + 1 - n$.

On the other hand, we have the following lower bound:

$$\Delta(t, D_n(k)) \ge \frac{1}{2}tk^n, \tag{4}$$

since the degree of each vertex of a *t*-EFT graph for $D_n(k)$ is at least 2n + t. It is an interesting open problem to close the gap between bounds in theorems above and (4).

The authors are grateful to Professor Y. Kajitani for his encouragement. The research is a part of the CAD21 Project at TIT.

REFERENCES

- [1] M. Ajitai, N. Alon, J. Bruck, R. Cypher, C. T. Ho, and M. Naor, Fault tolerant graphs, perfect hash functions and disjoint paths. *Proceedings of the IEEE Symposium* on Foundations of Computer Science (1992) 693–702.
- [2] N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks. *Discr. Math.* 72 (1988) 15–19.
- [3] F. Annexstein, Fault tolerance in hypercube-derivative networks. *Proceedings of the ACM Symposium on Parallel Algorithms and Architectures* (1989) 179–188.
- [4] B. Becker and H. U. Simon, How robust is the *n*-cube? *Info. Comput.* **77** (1988) 162–178.
- [5] J. Bruck, R. Cypher, and C. T. Ho, Fault-tolerant meshes with minimal numbers of spares. *Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing* (1991) 288–295.
- [6] J. Bruck, R. Cypher, and C. T. Ho, Fault-tolerant meshes and hypercubes with minimal numbers of spares. *IEEE Trans. Comput.* (1993) 1089–1104.

- [7] J. Bruck, R. Cypher, and C. T. Ho, Fault-tolerant meshes with small degree. *Proceedings of the ACM Symposium* on Parallel Algorithms and Architectures (1993) 1–10.
- [8] J. Bruck, R. Cypher, and C. T. Ho, Fault-tolerant de Bruijn and shuffle-exchange networks. *IEEE Trans. Parallel Distrib. Syst.* 5 (1994) 548–553.
- [9] J. Bruck, R. Cypher, and C. T. Ho, Tolerating faults in a mesh with a row of spare nodes. *Theor. Comput. Sci.* 128 (1994) 241–252.
- [10] J. Bruck, R. Cypher, and C. T. Ho, Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes. *IEEE Trans. Comput.* 44 (1995) 150–155.
- [11] J. Bruck, R. Cypher, and D. Soroker, Running algorithms efficiently on faulty hypercubes. *Proceedings of the ACM Symposium on Parallel Algorithms and Architectures* (1990) 37–44.
- [12] J. Bruck, R. Cypher, and D. Soroker, Tolerating faults in hypercubes using subcube partitioning. *IEEE Trans. Comput.* **41** (1992) 599–605.
- [13] J. Bruck and C. T. Ho, Fault-tolerant cube graphs and coding theory. Preprint (1995).
- [14] A. A. Farrag and R. J. Dawson, Designing optimal faulttolerant star networks. *Networks* 19 (1989) 707–716.
- [15] A. A. Farrag and R. J. Dawson, Fault-tolerant extensions of complete multipartite networks. *Proceedings of the* 9th International Conference on Distributed Computing Systems (1989) 143–150.
- [16] W. Feller, An Introduction to Probability Theory and Its Applications. Modern Asia Edition, 2 ed., 1 John Wiley & Sons, Inc., New York (1964).
- [17] N. Graham, F. Harary, M. Livingston, and Q. F. Stout, Subcube fault-tolerance in hypercubes. *Info. Comput.* 102 (1993) 280–314.

- [18] F. Harary and J. P. Hayes, Edge fault tolerance in graphs. *Networks* 23 (1993) 135–142.
- [19] J. Hastad, F. T. Leighton, and M. Newman, Fast computations using faulty hypercubes. *Proceedings of the ACM Symposium on Theory of Computing* (1989) 251–284.
- [20] J. P. Hayes, A graph model for fault-tolerant computing systems. *IEEE Trans. Comput.* C-25 (1976) 875–883.
- [21] C. T. Ho, An observation on the bisectional interconnection networks. *IEEE Trans. Comput.* 41 (1992) 873– 877.
- [22] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Raghavan, S. Rao, C. Thomborson, and A. Tsantilas, Asymptotically tight bounds for computing with faulty arrays of processors. *Proceedings of the IEEE Symposium on Foundations of Computer Science* (1990) 285–296.
- [23] M. Paoli, W. W. Wong, and C. K. Wong, Minimum k-Hamiltonian graphs. J. Graph Theory 10 (1986) 79–95.
- [24] W. W. Peterson and E. J. Weldon, Jr., *Error-Correcting Codes*, 2nd ed. MIT Press, Cambridge, MA (1972).
- [25] A. L. Rosenberg, Fault-tolerant interconnection networks, a graph theoretic approach. Workshop on Graph-Theoritec Concepts in Computer Science, Trauner Veriag, Linz (1983) 286–297.
- [26] S. Ueno, A. Bagchi, S. L. Hakimi, and E. F. Schmeichel, On minimum fault-tolerant networks. *SIAM J. Discr. Math.* 6 (1993) 565–574.
- [27] W. W. Wong and C. K. Wong, Minimum k-Hamiltonian graphs. J. Graph Theory 8 (1984) 155–165.
- [28] T. Yamada, K. Yamamoto, and S. Ueno, Fault-tolerant graphs for hypercubes and tori. *Proceedings of the 28th HICSS* II (1995) 499–505.
- [29] G. W. Zimmerman and A. H. Esfahanian, Chordal rings as fault-tolerant loops. *Discr. Appl. Math.* 37/38 (1992) 563–573.