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Abstract: Motivated by the design of fault-tolerant multiprocessor interconnection networks, this paper
considers the following problem: Given a positive integer t and a graph H , construct a graph G from H
by adding a minimum number D( t , H ) of edges such that even after deleting any t edges from G the
remaining graph contains H as a subgraph. We estimate D( t , H ) for the torus, which is well known as a very
important interconnection network for multiprocessor systems. q 1998 John Wiley & Sons, Inc. Networks 32:
181–188, 1998

1. INTRODUCTION Let Dn(k) denote the n-dimensional k 1 k 1 rrr

1 k torus. Dn(2) is known as the n-cube. The following
results can be found in the literature:Motivated by the design of fault-tolerant multiprocessor

interconnection networks, this paper considers the follow-
(I) [18, 21, 26] D(1, Dn(2)) Å 2 n01 .ing problem: Given a positive integer t and a graph H ,

construct a graph G from H by adding a minimum number
(II) [28] D( t , Dn(2)) Å OS t2 n01log2S n

t 0 1
/ cDD ,of edges such that even after deleting any t edges from

G the remaining graph contains H as a subgraph. We
construct such graphs by adding a small number of edges if t ¢ 2, where c Å 1 / log2e .
for the torus, which is well known as an important inter- (III) [10] D( t , Dn(p)) ° tpn , if t ° p / 1 0 n and p
connection network for multiprocessor systems. Many re- is a prime.
lated results can be found in the literature.

Let G be a graph and let V (G) and E(G) denote the In this paper, we generalize the results above and show
vertex set and the edge set of G , respectively. For any S the following:
⊆ E(G) , G"S is the graph obtained from G by deleting
the edges of S . 1. D(1, Dn(k)) ° kn , if k ¢ 3.

Let t be a positive integer and let H be a graph. A
2. D( t , Dn(pl)) ° ( t 0 1)pln{2 logp(n / ( t 0 1) / cp)

graph G is called a t-EFT ( t-edge-fault-tolerant) graph / cp} / pln , if t ¢ 2 and pl ¢ 3,
for H if G"S contains H as a subgraph for every S

3. D( t , Dn(pl)) ° tp ln , if t ° p / 1 0 n and pl ¢ 3,⊆ E(G) , with ÉSÉ ° t . Let D( t , H) denote the minimum
number of edges added to H to construct a t-EFT graph

where p is a prime, k and l are positive integers, and cpfor H with ÉV ( H)É vertices.
Å 1 / logp e .

The notion of the matric graph was introduced in [28]
as a natural generalization of the hypercube. The upperCorrespondence to: S. Ueno; e-mail: ueno@ss.titech.ac.jp
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182 YAMADA AND UENO

bound for D( t , Dn(2)) in (II) was proved by constructing Lemma 1. If In is the n 1 n unit matrix over [k] , then
Gk(In) is isomorphic to Dn(k) . Moreover, the edges ofmatric graphs associated with basis matrices of error-

correcting binary linear codes. The essentially same con- dimension ri of Gk(In) correspond to the i-edges of Dn(k) .
struction was proposed in [13] independent of [28].
Here, we further extend the notion of the matric graph to Lemma 2. Gk(M"S) is isomorphic to Gk(M)"Ek(S) .
be a generalization of the torus. The upper bounds for
D( t , Dn(k)) in (1) , (2) , and (3) are proved by con- Lemma 3. If a matrix M over [k] has a column con-
structing t-EFT matric graphs for Dn(k) associated with

sisting of 0’s, then Gk(M) is disconnected.
basis matrices of error-correcting linear codes. It is inter-
esting that the t-EFT matric graphs for Dn(k) proposed Proof. Assume that ci Å 0 for some i . Define Vj

here have a strong fault-tolerance property. We show that Å {v √ V (Gp(M))É£i Å j} for any j √ [k] , where v
even after deleting tkn edges of t different dimensions Å (£1 , . . . , £n) . (V0 , . . . , Vk01) is a partition of
from a t-EFT matric graph for Dn(k) the remaining graph V (Gk(M)) . Since ci Å 0 , there exists no edge joining
still contains Dn(k) as a subgraph. a vertex in V0 and a vertex in V (Gk(M)) 0 V0 Å V1

< rrr < Vk01 . Hence, Gk(M) is disconnected. j

2. MATRIC GRAPHS AND TORI Let p be a prime. It should be noted that the addition
and multiplication modulo p corresponds to the addition

Let k ¢ 2 be an integer and let [k] Å {0, 1, . . . , k and multiplication over GF(p) , respectively.
0 1}. The n-dimensional k 1 k 1 rrr1 k torus, denoted
by Dn(k) , is defined as follows: V ( Dn(k)) Å [k] n ;

Lemma 4. If M* is a matrix obtained from an m 1 nE(Dn(k)) Å {(u , v)É∃i £i Å (ui { 1)mod k , ∀ j x i uj matrix M over GF(p) by elementary column operations,Å £j}, where u Å (u1 , u2 , . . . , un) and v Å (£1 , £2 , . . . ,
then Gp(M *) is isomorphic to Gp(M) .

£n) . Dn(2) is called the n-cube (n-dimensional cube). It
is easy to see that Dn(k) is connected and ÉV ( Dn(k))É Proof. Let l x 0, l √ [p] . It suffices to prove the
Å kn . If k ¢ 3, ÉE(Dn(k))É Å nkn , since the degree of following: ( i) If M* is a matrix obtained from M by
each vertex of Dn(k) is 2n . Since the degree of each multiplying column cj1 by l, 1 ° j1 ° n , then Gp(M *)
vertex of Dn(2) is n , ÉE(Dn(2))É Å 2 n01 . An edge (u , is isomorphic to Gp(M) ; ( ii ) if M * is a matrix obtained
v) is called an i-edge ( i-dimensional edge) if £i Å (ui from M by exchanging column cj1 with column cj2 , 1
{ 1)mod k and uj Å £j for any j x i . ° j1 õ j2 ° n , then Gp(M *) is isomorphic to Gp(M) ;

Let M be an m 1 n matrix over [k] , which is an m
and (iii ) if M* is a matrix obtained from M by adding

by n matrix consisting of 0’s, 1’s, . . . , and (k 0 1)’s.
column lcj2

to cj1 , j1 x j2 , then Gp(M *) is isomorphic to
Let ri and cj denote the i-th row and the j-th column of

Gp(M) .M , respectively. Define R(M) Å {r1 , r2 , . . . , rm} and
C(M) Å {c1 , c2 , . . . , cn}. Proof of ( i) . Let w1 be a mapping from V (Gp(M))

The matric graph associated with an m 1 n matrix to V (Gp(M *)) such that
M over [k] , denoted by Gk(M) , is defined as follows:
V (Gk(M)) Å [k] n ; any two vertices u and v are joined

w1(v) Å (£1 , . . . , l£j1 , . . . , £n) .by É{r √ R(M)Éu / v Å r}É parallel edges if k Å 2,
and É{r √ R(M)Éu Å v / r}É / É{r √ R(M)Év Å u

If w1(u) Å w1(v), then uj Å £j ( j x j1) and luj1 Å l£j1 ./ r}É parallel edges otherwise, where vector addition is
Thus, uj1 Å £j1 , and so u Å v . Thus, w1 is a one-to-oneperformed modulo k . An edge (u , v) of Gk(M) is said
mapping. Since ÉV (Gp(M))É Å ÉV (Gp(M *))É Å pn , w1to be of dimension r(√R(M)) if u Å v / r or v Å u
is a bijection./ r . For r √ R(M) , Ek(r) is the set of all edges of

Let r*i denote the i-th row of M*. If ri Å (x1 , . . . , xn) ,dimension r of Gk(M) . For S ⊆ R(M) , Ek(S) Å <r√S

then r *i Å (x1 , . . . , lxj1 , . . . , xn) . Since u / ri Å v ifEk(r) . If k ¢ 3, each vertex of Gk(M) is incident to two
and only if w1(u) / r *i Å w1(v) , and v / ri Å u if andedges of dimension r for any r√ R(M) , and so the degree
only if w1(v) / r *i Å w1(u) , we conclude that (u , v)of each vertex of Gk(M) is 2m . Thus, ÉE(Gk(M))É
√ E(Gp(M)) if and only if (w1(u), w1(v)) √ E(Gp(M*)).Å mkn if k ¢ 3. Since each vertex of G2(M) is incident
Thus, Gp(M) is isomorphic to Gp(M *) .to an edge of dimension r for any r √ R(M) , the degree

of each vertex of G2(M) is m . Thus, ÉE(G2(M))ÉÅm2n01 .
Proof of ( ii ) . Let w2 be a mapping from V (Gp(M))For S ⊆ R(M) , let M"S denote the matrix obtained from

to V (Gp(M *)) such thata matrix M by deleting the rows of S . It is easy to see
the following two lemmas from the definition of the ma-

w2(v) Å (£1 , . . . , £j2 , . . . , £j1 , . . . , £n) .tric graph:
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FAULT-TOLERANT GRAPHS FOR TORI 183

If w2(u) Å w2(v) , then uj Å £j (1 ° j ° n) , and so u / rrr / amrm)mod k Å 0 holds for a1 , a2 , . . . , am

√ [k] , then a1 Å a2 Å rrr Å am Å 0. It should be notedÅ v . Thus, w2 is a bijection.
If ri Å (x1 , . . . , xn) , then r*i Å (x1 , . . . , xj2 , . . . , that Ik is a generalization of the linear independency. The

xj1 , . . . , xn) . Since u / ri Å v if and only if w2(u) following theorem does hold even if k is not a prime:
/ r*i Å w2(v), and v / ri Å u if and only if w2(v) / r*i

Theorem 2. For any n 1 n matrix M over [k] , Gk(M)Å w2(u) , we conclude that (u , v) √ E(Gp(M)) if and
is isomorphic to Dn(k) if and only if M has property Ik .only if (w2(u) , w2(v)) √ E(Gp(M *)) . Thus, Gp(M) is

isomorphic to Gp(M *) .
Proof. In what follows, we denote Gk(M) and Dn(k)

Proof of ( iii ) . Let w3 be a mapping from V (Gp(M)) by G and D , respectively.
to V (Gp(M *)) such that Assume that M has property Ik . Let f be a mapping

from V ( D) to V (G) such that f(v) Å (£1r1 / £2r2

/ rrr / £nrn)mod k , where v Å (£1 , £2 , . . . , £n) . Ifw3(v) Å (£1 , . . . , £j1 / l£j2 , . . . , £n) .
f(u) Å f(v) , then

If w3(u) Å w3(v) , then uj Å £j ( j x j1) and uj1 / luj2
f(u) 0 f(v) Å (u1r1 / u2r2 / rrr / unrn)mod kÅ £j1 / l£j2 . Since uj2 Å £j2 , we obtain uj1 Å £j1 , and so

u Å v . Thus, w3 is a bijection. 0 (£1r1 / £2r2 / rrr / £nrn)mod k Å 0 ,
If ri Å (x1 , . . . , xn) , then r *i Å (x1 , . . . , xj1 / lxj2 ,

. . . , xn) . Since u / ri Å v if and only if w3(u) / r *i that is,
Å w3(v) , and v / ri Å u if and only if w3(v) / r *i
Å w3(u) , we conclude that (u , v) √ E(Gp(M)) if and ((u1 0 £1)r1 / (u2 0 £2)r2 / rrr

only if (w3(u) , w3(v)) √ E(Gp(M *)) . Thus, Gp(M) is
/ (un 0 £n)rn)mod k Å 0 .

(1)
isomorphic to Gp(M *) . j

For any i Å 1, 2, . . . , n , let ai Å ui 0 £i if ui ¢ £i , andTheorem 1. For any n 1 n matrix M over GF(p) ,
ai Å ui 0 £i / k otherwise. It should be noted that aiGp(M) is isomorphic to Dn(p) if and only if M is non-
√ [k] , and if ai Å 0, then ui Å £i . By Eq. (1) , we havesingular.

Proof. If M is nonsingular, then we can obtain the unit (a1r1 / a2r2 / rrr / anrn)mod k Å 0 ,
matrix In from M by elementary column operations. Thus,
Gp(M) is isomorphic to Dn(p) by Lemmas 1 and 4.

and so ai Å 0 for any i since M has property Ik . Thus,
If M is singular, then we can obtain a matrix with a

ui Å £i for any i Å 1, 2, . . . , n , and f is a one-to-one
column consisting of 0’s from M by elementary column

mapping. Since ÉV ( D)ÉÅ ÉV (G)ÉÅ kn , f is a bijection.
operations. Thus, Gp(M) is not isomorphic to Dn(p) ,

Now we prove that f is an isomorphism between G
since Gp(M) is disconnected by Lemmas 3 and 4. j

and D . It is sufficient to show that (u , v) √ E(D) if and
only if (f(u) , f(v)) √ E(G) . If (u , v) √ E(D) , then

Corollary 1. For any m 1 n matrix M over GF(p) ,
v Å (u / ei )mod k or u Å (v / ei )mod k for some i ,

Gp(M) contains Dn(p) as a subgraph if and only if the
where ei is the i-dimensional unit vector. Thus, f(v)

rank of M is n. Å (f(u) / ri )mod k or f(u) Å (f(v) / ri )mod k , and
so (f(u) , f(v)) √ E(G) . If (f(u) , f(v)) √ E(G) , thenProof. If the rank of M is n , then there exists S
f(v) Å (f(u) / ri )mod k or f(u) Å (f(v) / ri )mod, R(M) with ÉSÉ Å m 0 n such that M"S is an n
k for some i . Thus, f(v) Å (f(u) / f(ei ))mod k or1 n nonsingular matrix over GF(p) . Thus, Gp(M"S) is
f(u) Å (f(v) / f(ei ))mod k , that is, f(v) Å f((uisomorphic to Dn(p) by Theorem 1, and so Gp(M) con-
/ ei )mod k) or f(u) Å f((v / ei )mod k) . Since f istains Dn(p) as a subgraph by Lemma 2.
a bijection from [k] n to [k] n , v Å (u / ei )mod k or uIf the rank of M is less than n , then we can obtain a
Å (v / ei )mod k , and so (u , v) √ E(D) . Thus, (u , v)matrix with a column consisting of 0’s from M by elemen-
√ E(D) if and only if (f(u) , f(v)) √ E(G) . Hence, ftary column operations. Thus, Gp(M) is disconnected by
is an isomorphism and G is isomorphic to D .Lemmas 3 and 4. Since ÉV (Gp(M))É Å ÉV ( Dn(p))É

Assume that M does not have property Ik . Since f isÅ pn , we conclude that Gp(M) does not contain Dn(p)
not a one-to-one mapping and ÉV ( D)É Å ÉV (G)É Å kn ,as a subgraph. j

there exists some v √/ f(V ( D)) . If G is connected, then
there exists a path P from 0 to v . Let P Å v0v1rrrvd ,For any vector v Å (£1 , £2 , . . . , £n) consisting of inte-
where v0 Å 0 and vd Å v . Then, for any j Å 1, 2, . . . ,gers, v mod k is defined as (£1mod k , £2mod k , . . . , £nmod
d , there exists some i such that vj Å (vj01 / ri )mod k ork) . An m 1 n matrix M over [k] is said to have property

Ik if the following condition is satisfied: If (a1r1 / a2r2 vj Å (vj01 0 ri )mod k . Since v Å ( d
jÅ1 (vj 0 vj01) , v can
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184 YAMADA AND UENO

be expressed as v Å (a1r1 / a2r2 / rrr / anrn)mod k zero vector is at least t / 1. Thus, t-DFT matric graphs
can be characterized by error-correcting linear codes. Re-for some integers a1 , a2 , . . . , and an . Thus, we conclude

that for a Å (a1 , a2 , . . . , an)mod k √ V ( D) , f(a) Å v , call that the minimum distance for a linear code C is
min{dH(u , v)Éu x v , u , v √ C }, where dH(u , v) is thea contradiction. Thus, G is disconnected, and, hence, G

is not isomorphic to D . j Hamming distance between u and v , that is, the number
of positions in which they differ.

Theorem 4. For any m 1 n matrix M over GF(p) ,3. t-DFT MATRIC GRAPHS FOR Dn (k )
Gp(M) is a t-DFT matric graph for Dn(p) if and only if
C(M) is a basis of an n-dimensional linear code overLet M be an m 1 n matrix over [k] . Gk(M) is called a
GF(p) with minimum distance at least t / 1.t-DFT ( t-dimension-fault-tolerant) matric graph for

Dn(k) if Gk(M)"Ek(S) (ÅGk(M"S)) contains Dn(k) as
a subgraph for any S ⊆ R(M) , with ÉSÉ ° t . Define L( t , The following bounds for the existence of n-dimen-
n , k) Å min{ÉE(Gk(M))É 0 ÉE(Dn(k))ÉÉGk(M) sional linear codes over GF(p) with minimum distance
: t-DFT matric graph for Dn(k)}. Since the degree of at least t / 1 are well known. (See, e.g., [24]) .
each vertex of Gk(M) is m if k Å 2 and 2m otherwise,
the problem of finding L( t , n , k) is equivalent to the one Theorem I. If there exists an n-dimensional linear code
of finding the minimum number of rows of a matrix M over GF(p) with minimum distance at least t / 1 and
such that Gk(M) is a t-DFT matric graph for Dn(k) . length m, then

3.1. The Case When k is a Prime p pm0n ¢ ∑
 t /2

iÅ0

(p 0 1) iSm

i D .
The following theorem characterizes the t-DFT matric j
graph for Dn(p) . Recall that the Hamming weight of a
vector v over GF(p) is the number of nonzero elements Theorem II. If
of v :

pm0n ú ∑
t01

iÅ0

(p 0 1) iSm 0 1

i D ,Theorem 3. For any m 1 n matrix M over GF(p) ,
Gp(M) is a t-DFT matric graph for Dn(p) if and only if
the Hamming weight of any linear combination of C(M)
is at least t / 1. then there exists an n-dimensional linear code over GF(p)

with minimum distance at least t / 1 and length m . jProof. Assume that there exists a linear combination
of C(M) such that its Hamming weight is at most t . Then,

The inequalities of Theorems I and II are well knownwe can obtain a matrix M * with a column (say, the j-th
as Hamming-bound and Varsharmov–Gilbert-bound, re-column) of Hamming weight at most t from M by some
spectively. It should be noted that Theorem II is provedelementary column operations. Let S be the set of rows
constructively. In what follows, we estimate L( t , n , p)of M corresponding to the rows S * of M * whose j-th
from Theorems 4, I, and II. We need a few lemmas:elements are nonzeros. Since the j-th column of M *"S *

consists of 0’s, Gp(M *"S *) does not contain Dn(p) as a
subgraph by Corollary 1. Since Gp(M"S) is isomorphic Lemma 5. For 1 ° k ° m,
to Gp(M*"S*) by Lemma 4 and ÉSÉ Å ÉS*É ° t , we
conclude that Gp(M) is not a t-DFT matric graph for Dn(p). H (p 0 1)m

k Jk

° ∑
k

iÅ0

(p 0 1) iSm

i D ° pkSm

k D .Conversely, assume that the Hamming weight of any
linear combination of C(M) is at least t / 1. Then,
C(M"S) is linearly independent for any S ⊆ R(M) with

Proof. Let Sp(m , k) Å ( k
iÅ0 (p 0 1) i(m

i ) .
ÉSÉ ° t , and the rank of M"S is n . Thus, Gp(M"S)

First, consider the first inequality. Trivially,contains Dn(p) as a subgraph by Corollary 1, and we
conclude that Gp(M) is a t-DFT matric graph for Dn(p) .

j Sp(m , k) ¢ (p 0 1) kSm

k D ¢ (p 0 1) k

Theorem 3 means that for any m 1 n matrix M over
GF(p) , Gp(M) is a t-DFT matric graph for Dn(p) if and

1 m(m 0 1)rrr(m 0 k / 1)
k!

¢ (p 0 1) kSm

k D
k

.only if C(M) is a basis of an n-dimensional vector space
over GF(p) such that the Hamming weight of any non-
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FAULT-TOLERANT GRAPHS FOR TORI 185

Now consider the second inequality. By induction on
pm0n ¢ ∑

k

iÅ0

(p 0 1) iSm

i D ¢ H (p 0 1)m

k Jk

,m and k ,

1. Since Sp(m , 1) Å (p 0 1)m / 1 ° pm and Sp(k , k)
Å pk , the claim is true if k Å 1 or m Å k . where k Å t

2
. Hence,

2. Let 2 ° k õ m and assume that the claim is true for
Sp(m , k *) , Sp(m*k) , and Sp(m *, k *) with m ú m * and
k ú k *. Since

m 0 n ¢ k logp
(p 0 1)m

k
¢ k logp

(p 0 1)n

k
. j

Sm

i D Å Sm 0 1

i D / Sm 0 1

i 0 1 D Theorem 6. There exists an m 1 n matrix M over GF(p)
such that Gp(M) is a t-DFT matric graph for Dn(p) ( t
¢ 2) and

for any i , 1 ° i ° m 0 1, Sp(m , k) Å Sp(m 0 1, k)
/ (p 0 1)rSp(m 0 1, k 0 1). Thus,

m ° n / ( t 0 1)H2 logpS n

t 0 1
/ cpD / cpJ / 1,

Sp(m , k)° pkSm 0 1

k D / (p 0 1) rpk01Sm 0 1

k 0 1 D
where cp Å 1 / logpe.

Proof. By Theorems 4 and II, if° pk
rHSm 0 1

k D / Sm 0 1

k 0 1 DJ Å pkSm

k D . j

pm0n ú ∑
t01

iÅ0

(p 0 1) iSm 0 1

i D , (2)
Lemma 6 [16].

Sm

k D ° S em

k Dk

. then there exists an m 1 n matrix M over GF(p) such
that Gp(M) is a t-DFT matric graph for Dn(p) . Let m *j
be the minimum number of m satisfying (2). Then,

Lemma 7. Let y ¢ 1 / logpe. If x 0 logpx ° y, then x
° y / 2 logpy .

pm=010n ° ∑
t01

iÅ0

(p 0 1) iSm * 0 2

i D
Proof. Assume contrary that x ú y / 2 logpy and let

g(z) Å z 0 logp z . Since g(z) is an increasing function
for z ú logp e and x ú y / 2 logp y ¢ 1 / logp e , we ° ∑

t01

iÅ0

(p 0 1) iSm * 0 1

i D .have

g(x) 0 y ú g(y / 2 logpy) 0 y
Thus, by Lemmas 5 and 6,

Å 2 logpy 0 logp(y / 2 logpy) Å logp
y 2

y / 2 logpy
.

pm=010n ° H ep(m * 0 1)
t 0 1 Jt01

,
Since y 2 ¢ y / 2 logp y for any y ¢ 1 / logp e , we
obtain x 0 logp x ú y , which is a contradiction. j

that is,
Theorem 5. Let M be an m 1 n matrix over GF(p) . If
Gp(M) is a t-DFT matric graph for Dn(p) ( t ¢ 2) , then

m* 0 1 0 n ° ( t 0 1)S logp
m * 0 1
t 0 1

/ 1 / logp eD ,

m ¢ n / t

2
logp

(p 0 1)n

 t /2
.

that is,Proof. If Gp(M) is a t-DFT matric graph for Dn(p) ,
then C(M) is a basis of an n-dimensional linear code
over GF(p) with minimum distance at least t / 1 by m* 0 1

t 0 1
0 logp

m * 0 1
t 0 1

° n

t 0 1
/ cp .

Theorem 4. Thus, by Theorem I and Lemma 5, we have

8U27 0831/ 8u27$$0831 08-17-98 15:49:55 netwa W: Networks



186 YAMADA AND UENO

Since cp Å 1 / logp e , by putting x Å (m * 0 1)/( t 0 1) Lemma 8. Let k Å k1k2 , where ki ¢ 2 for i Å 1 , 2.
Then, an n 1 n matrix M over [k ] has property Ik ifand y Å n / ( t 0 1) / cp in Lemma 7, we obtain
and only if M mod k1 has property Ik1

and M mod k2

has property Ik2
.m * 0 1

t 0 1
° n

t 0 1
/ cp / 2 logS n

t 0 1
/ cpD .

Proof. Assume that M does not have property Ik , that
is, there exists some a1 , a2 , . . . , an √ [k] , not all zero,
such thatHence,

(a1r1 / a2r2 / rrr / anrn)mod k Å 0 . (3)
m*° n / ( t 0 1)H2 logS n

t 0 1
/ cpD / cpJ / 1. j

Let a *i Å aimod k1 for i Å 1, 2, . . . , n . Then, (a *1 r1

/ a *2 r2 / rrr / a *n rn)mod k1 Å 0 by Eq. (3) . Thus, if
Since the numbers of edges of Gp(M) and Dn(p) are a*i x 0 for some i , then M mod k1 does not have property

mpn and npn , respectively, we obtain from Theorems 5 and Ik1
. If a *i Å 0 for any i Å 1, 2, . . . , n , then a 9i Å ai /k1

6 the following upper and lower bounds for L(t , n , p): √ [k2] for any i Å 1, 2, . . . , n and they are not all zero.
Since (a 91 r1 / a 92 r2 / rrr / a 9n rn)mod k2 Å 0 by Eq.Theorem 7. For any prime p ¢ 3,
(3) , M mod k2 does not have property Ik2

.
Conversely, assume that M mod ki does not have prop-t

2
pn logp

(p 0 1)n

 t /2
° L( t , n , p) erty Iki

for i Å 1 or i Å 2. We may assume without loss
of generality that M mod k1 does not have property Ik1

.
Then, there exists a1 , a2 , . . . , an √ [k1] , not all zero,° ( t 0 1)pnH2 logpS n

t 0 1
/ cpD / cpJ / pn , such that (a1r1 / a2r2 / rrr / anrn)mod k1 Å 0 . Since

k2a1 , k2a2 , . . . , k2an √ [k] and (k2a1r1 / k2a2r2 / rrr

/ k2anrn)mod k Å 0 , we conclude that M does not have
where t ¢ 2 and cp Å 1 / logpe. j property Ik . j

Since the numbers of edges of G2(M) and Dn(2) are Corollary 2. Let p be a prime and let l be a positive
m2 n01 and n2 n01 , respectively, we obtain from Theorems integer. Then, an n 1 n matrix M over [pl] has property
5 and 6 Ipl if and only if M mod p has property Ip .

Proof. The proof is by induction on l usingt

2
2 n01log2

n

 t /2
° L( t , n , 2) Lemma 8. j

Corollary 3. Let x be a positive integer and let k° ( t 0 1)2 n01H2 log2S n

t 0 1
/ c2D / c2J / 2 n01 ,

Å pl1
1

pl2
2
rrrplxx , where pi is a prime and li is a positive

integer for any i, 1 ° i ° x. Then, an n 1 n matrix M
over [k] has property Ik if and only if M mod pi has

which was proved in [28]. We can show the precise value property Ipi
for any i Å 1 , 2 , . . . , x.

of L(1, n , p) as follows:
Proof. The proof is by induction on x using Corollary

Theorem 8. L(1 , n, p) Å pn for any prime p ¢ 3. 2 and Lemma 8. j

Proof. If M is the n 1 (n / 1) matrix over GF(p)
Theorem 9. L(1 , n, k) Å kn for any integer k ¢ 3.obtained from In by adding a row consisting of 1’s, then

M satisfies the condition of Theorem 3 for t Å 1. Thus, Proof. If M is the (n / 1) 1 n matrix obtained from
L(1, n , p) ° pn . In by adding a row consisting of 1’s, then Gp(M) is a

If M is an m 1 n matrix over GF(p) such that Gp(M) 1-DFT matrix graph for Dn(p) for any prime p . Thus, if
is a 1-DFT matric graph for Dn(p) , then m ¢ n / 1, and M* is the matrix obtained from M by deleting any one
so L(1, n , p) ¢ pn . j row, then Gp(M *) is isomorphic to Dn(p) , and so M * has

property Ip by Theorem 2. By Corollary 3, M* has prop-
erty Ik for any positive integer k ¢ 3, and so Gk(M *) is3.2. The Case When k ¢ 3 Is an Integer
isomorphic to Dn(k) by Theorem 2. Hence, Gk(M) is a
1-DFT matric graph for Dn(k) , and L(1, n , k) ° kn .For any matrix M Å (mij) consisting of integers, let M

mod k Å (mijmod k) . If M is a m 1 n matrix such that Gk(M) is a 1-DFT
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matric graph for Dn(k) , then m ¢ n / 1, and so L(1, n , Theorem 12. D(1 , Dn(k)) ° kn for any integer k ¢ 3.
jk) ¢ kn . j

Theorem 13. Let p be a prime and let l be a positiveLemma 9. Let p be a prime and let M be an m 1 n
integer where pl ¢ 3. Then,matrix over GF(p) . If Gp(M) is a t-DFT matric graph

for Dn(p) , then Gpl (M) is a t-DFT matric graph for
D( t , Dn(pl)) ° ( t 0 1)plnDn(pl) , where l is a positive integer.

Proof. If Gp(M) is a t-DFT matric graph for Dn(p) , 1 H2 logpS n

t 0 1
/ cpD / cpJ / pln ,

then, for any S , R(M) with ÉSÉ ° t , there exists some
S * , R(M) 0 S with ÉS *É Å m 0 n 0 ÉSÉ such that
Gp(M"S"S *) is isomorphic to Dn(p) . Then, M"S"S *

where t ¢ 2 and cp Å 1 / logpe. jhas property Ip by Theorem 2, and so property Ipl by
Corollary 2. Thus, Gpl (M"S"S *) is isomorphic to Dn(pl)

Theorem 14. Let p be a prime and let l be a positiveby Theorem 2. Hence, Gpl (M) is a t-DFT matric graph
integer where pl ¢ 3. Then,for Dn(pl) . j

D( t , Dn(pl)) ° tp ln ,Theorem 10. Let p be a prime and let l be a positive
integer where pl ¢ 3. Then,

where t ° p / 1 0 n . j

L( t , n , pl) ° ( t 0 1)pln

On the other hand, we have the following lower bound:

1 H2 logpS n

t 0 1
/ cpD / cpJ / pln ,

D( t , Dn(k)) ¢ 1
2tk

n , (4)

since the degree of each vertex of a t-EFT graph for Dn(k)where t ¢ 2 and cp Å 1 / logpe.
is at least 2n / t . It is an interesting open problem to

Proof. The proof is by Lemma 9 and Theorem 6. j close the gap between bounds in theorems above and (4).

Theorem III [10]. Let n be an integer where n ¢ 2 , The authors are grateful to Professor Y. Kajitani for his
and let p ¢ n 0 1 be a prime. Then, there exists an m encouragement. The research is a part of the CAD21 Project

at TIT.1 n matrix M over GF(p) such that Gp(M) is a t-DFT
matric graph for Dn(p) and m Å n / t where t ° p
/ 1 0 n.
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