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Abstract: We consider the problem of embedding graphs into hypercubes with minimal congestion.
Kim and Lai showed that for a given N-vertex graph G and a hypercube it is NP-complete to determine
whether G is embeddable in the hypercube with unit congestion, but G can be embedded with unit
congestion in a hypercube of dimension 6log N if the maximum degree of a vertex in G is no more
than 6log N . Bhatt et al. showed that every N-vertex binary tree can be embedded in a hypercube of
dimension  log N with O (1 ) congestion. In this paper, we extend the results above and show the
following: (1) Every N-vertex graph G can be embedded with unit congestion in a hypercube of dimension
2log N if the maximum degree of a vertex in G is no more than 2log N , and (2) every N-vertex binary
tree can be embedded in a hypercube of dimension  log N with congestion at most 5. The former
answers a question posed by Kim and Lai. The latter is the first result that shows a simple embedding
of a binary tree into an optimal-sized hypercube with an explicit small congestion of 5. This partially
answers a question posed by Bhatt et al. The embeddings proposed here are quite simple and can be
constructed in polynomial time. q 1999 John Wiley & Sons, Inc. Networks 33: 71–77, 1999

1. INTRODUCTION We consider minimal congestion embeddings of
graphs in hypercubes, which are well known as one of
the most popular processor interconnection graphs forThe problem of efficiently implementing parallel algo-
parallel machines. It was pointed out by Kim and Lai [2]rithms on parallel machines has been studied as the graph-
that minimal congestion embeddings are very importantembedding problem, which is to embed the communica-
for a hypercube that uses circuit switching for node-to-tion graph underlying a parallel algorithm within the pro-
node communication such as Intel iPSC/2 [4].cessor interconnection graph for a parallel machine with

Let G be a graph and let V (G) and E(G) denote theminimal communication overhead. It is well known that
vertex set and edge set of G , respectively. We denote bythe dilation and/or congestion of the embedding are lower
D(G) the maximum degree of a vertex in G . A tree T isbounds on the communication delay, and the problem
said to be binary if D(T ) ° 3. An embedding »f, r … ofof embedding a guest graph within a host graph with
a graph G into a graph H is defined by a one-to-oneminimal dilation and /or congestion has been exten-
mapping f : V (G) r V ( H) , together with a mapping rsively studied.
that maps each edge (u , £) √ E(G) onto a path r(u , £)
in H that connects f(u) and f(£) . f and r are called the
labeling and routing of an embedding »f, r … , respec-Correspondence to: A. Matsubayashi

q 1999 John Wiley & Sons, Inc. CCC 0028-3045/99/010071-07

71

846A/ 8U26$$846A 11-12-98 12:25:42 netwa W: Networks



72 MATSUBAYASHI AND UENO

tively. The dilation of an edge e √ E(G) under »f, r … Theorem 2. Every N-vertex binary tree can be embedded
in Q(log N) with congestion at most 5.is the length of the path r(e) . The dilation of an embed-

ding »f, r … is the maximum dilation of an edge in G .
The congestion of an edge e * √ E(H) under »f, r … is Theorem 2 is the first result that shows a simple embed-
the number of edges e in G such that r(e) contains e*. ding of a binary tree into an optimal-sized hypercube with
The congestion of an embedding »f, r … is the maximum an explicit small congestion of 5. The embedding is quite
congestion of an edge in H . The n-cube (n-dimensional simple: We used the postorder labeling of vertices and a
cube) Q(n) is the graph with 2 n vertices labeled 0 through greedy (shortest path) routing for edges, and the embed-
2 n 0 1 such that two vertices are joined by an edge if ding can be constructed in polynomial time. It is interest-
and only if their labels in the binary representation differ ing that such a simple embedding guarantees a small con-
by exactly one bit. We assume that the bits are numbered gestion of 5. We do not know an N-vertex binary tree that
0 through n 0 1. An edge (u , £) in Q(n) is called an i- cannot be embedded in Q(log N) with unit congestion
edge ( i-dimensional edge) if the labels of u and £ in the except K1,3 (a complete bipartite graph). The authors veri-
binary representation differ in the i th bit (0 ° i ° n fied that every N-vertex binary tree except K1,3 can be
0 1). It is well known that Q(n) is n-connected. embedded in Q(log N) with unit congestion if N ° 16.

Kim and Lai [2] showed that for a given N-vertex In this connection, based on some conjecture, Wagner
graph G and a hypercube it is NP-complete to determine [7] mentioned a heuristic algorithm which would embed
whether G is embeddable in the hypercube with unit con- every N-vertex binary tree into Q(log N) with dilation
gestion, but G can be embedded with unit congestion in and congestion both at most 2.
Q(6log N) if D(G) ° 6log N . They posed the ques- The paper is organized as follows: We prove Theorems
tion of whether G can be embedded with unit congestion 1 and 2 in Sections 2 and 3, respectively. In Section 4,
in a hypercube of dimension less than 6log N . We we conclude with remarks on dilations of our embeddings
answer the question by proving the following theorem: and some other remarks.

Theorem 1. Every N-vertex graph G can be embedded
2. PROOF OF THEOREM 1with unit congestion in Q(2log N) if D(G) ° 2log N .

Let V (G) Å {0, 1, . . . , N 0 1} and n Å  log N . We
The basic idea of the embedding is quite simple: We

assume that D(G) ° 2n . We construct an embedding
adopt a plain labeling of vertices and a simple routing

»f1 , r1 … of G into Q(2n) with unit congestion. We define
for edges, and the embedding can be constructed in poly-

the labeling f1 in Section 2.1. In Section 2.2, we consider
nomial time. We do not know whether G can be embed-

an arc coloring of a digraph associated with G . We define
ded with unit congestion in a hypercube of dimension

the routing r1 in Section 2.3 based on the results in Sec-
less than 2log N . However, we can show that some

tion 2.2. We analyze the congestion of embedding »f1 ,
graphs can be embedded with unit congestion in hyper-

r1 … in Section 2.4.
cubes of asymptotically smaller dimensions. More pre-
cisely, we can easily show by combining the results of
Saad and Shultz [5] and Valiant [6] that every N-vertex 2.1. Labeling f1
tree T with D(T )° 4 can be embedded with unit conges-

The labeling f1 : V (G) r V (Q(2n)) is defined as fol-tion in a hypercube of dimension log N / O(1) , and
lows: For each u √ V (G) , f1(u) Å u(2 n / 1), that is,every N-vertex planar graph G with D(G) ° 4 can be
the binary representation of f1(u) is the concatenationembedded with unit congestion in a hypercube of dimen-
of two copies of the binary representation of u .sion log N / 2 log log N / O(1) .

Bhatt et al. [1] showed that every N-vertex binary
tree can be embedded in Q(log N) with dilation and 2.2. Arc Coloring
congestion both O(1) . Although their embedding is opti-

In this section, we consider an arc coloring of a digraphmal to within a constant factor, there is much room for
associated with G which will be used to define routingreducing the dilation and/or congestion. They posed the
r1 . The associated digraph D of G is the digraph obtainedquestion of finding a simple embedding of binary trees
from G by replacing each edge e of G by two oppositelyinto hypercubes with smaller dilation and/or congestion.
oriented arcs with the same ends as e . We denote theMonien and Sudborough [3] partially answered the ques-
vertex set and arc set of D by V ( D) and A(D) , respec-tion by proving that every N-vertex binary tree can be
tively. We denote an arc a by [u , £] if u is the tail of aembedded in Q(log N) with dilation at most 5. We also
and £ is its head. Let G/D (u) denote the set of arcs withpartially answer the question by proving the following

theorem: tail u , and d/D (u) Å ÉG/D (u)É. Let G0D (u) denote the set
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connecting f1(u) and f1(£) in Q(2n) as the concatena-of arcs with head u , and d0D (u) Å ÉG0D (u)É. Since D(G)
tion of P[u , £] connecting f1(u) and m(u , £) in Q 0

u(n)° 2n , d/D (u) ° 2n and d0D (u) ° 2n for any u √ V ( D) .
We construct a coloring C of the arcs of D with two and P[£, u] connecting f1(£) and m(u , £) in Q 1

£
(n) .

Notice that the embedding »f1 , r1 … defined above cancolors {0, 1} such that both of the following two condi-
tions are satisfied: We denote by C[u , £] the color of an be constructed in polynomial time.
arc [u , £] assigned by C . Define that X 0

C(w) Å {[w ,
x]É[w , x] √ G/D (w) , C[w , x] Å 0}, and X 1

C(w) Å {[w , 2.4. Congestion of »f1 , r1 …y]É[w , y] √ G/D (w) , C[w , y] Å 1}.

Condition 1. For each edge (u, £) √ E(G) , C[u, £] Lemma 4. The congestion of »f1 , r1 … is one.
Å 0 if and only if C[£, u] Å 1 .

Proof. It suffices to show that P[u , £] and P[s , t] are
edge-disjoint for any distinct arcs [u , £] , [s , t] √ A(D) .Condition 2. For any vertex u √ V ( D) , ÉX 0

C(u)É ° n
and ÉX 1

C(u)É ° n. CASE 1. C[u , £] x C[s , t] . We may assume without loss
of generality that C[u , £] Å 0 and C[s , t] Å 1. Since

Lemma 3. There exists a 2-arc coloring of D satisfying Q 0
u(n) and Q 1

s (n) are edge-disjoint, and P[u , £] and
Conditions 1 and 2 . P[s , t] are contained in Q 0

u(n) and Q 1
s (n) , respec-

tively, P[u , £] and P[s , t] are edge-disjoint.
Proof. It is well known that G has an orientation D *

such that Éd/D =(u) 0 d0D =(u)É ° 1 for any u √ V ( D *) . CASE 2. C[u , £] Å C[s , t] . We assume that C[u , £]
It follows that d/D =(u) ° n and d0D =(u) ° n for any u Å C[s , t] Å 0. The proof for the case when C[u , £]
√ V ( D *) since D(G) ° 2n . Moreover, for each (u , £) Å C[s , t] Å 1 can be accomplished by a similar argu-
√ E(G) , exactly one of the associated arcs [u , £] and ment and is omitted.
[£, u] of D is contained in G/D =(u) < G0D =(u) . Thus,

CASE 2.1. u x s . Since Q 0
u(n) and Q 0

s (n) are vertex-
ÉG/D (u) > G/D =(u)É ° n and ÉG/D (u) 0 G/D =(u)É

disjoint, and P[u , £] and P[s , t] are contained inÅ ÉG0D (u) > G0D =(u)É ° n for any u √ V ( D) . For each
Q 0

u(n) and Q 0
s (n) , respectively, P[u , £] and P[s , t]

vertex u √ V ( D) , we assign color 0 to the arcs in
are edge-disjoint.

G/D (u) > G/D =(u) and color 1 to the arcs in G/D (u)
0 G/D =(u) . The resulting 2-arc coloring of D satisfies CASE 2.2. u Å s . Since [u , £] , [u , t] √ X 0

C(u) , P[u , £]
Conditions 1 and 2. j and P[u , t] are edge-disjoint by definition. j

This completes the proof of Theorem 1.2.3. Routing r1

For two vertices w and w * of G , let m(w , w *) be the
vertex of Q(2n) labeled with w2 n / w *. There exists a 3. PROOF OF THEOREM 2
2-arc coloring C of D satisfying Conditions 1 and 2 by
Lemma 3. For a vertex w √ V (G) , suppose that Let T be an N-vertex binary tree and n Å  log N . We
X 0

C(w) Å {[w , x1] , [w , x2] , . . . , [w , xk]}, and construct an embedding »f2 , r2 … of T into Q(n) with
X 1

C(w) Å {[w , y1] , [w , y2] , . . . , [w , yl]}, where k congestion at most 5. We define »f2 , r2 … in Section 3.1.
Å ÉX 0

C(w)É and l Å ÉX 1
C(w)É. k ° n and l ° n since In Section 3.2, we show some lemmas on the postorder

C satisfies Condition 2. Let Q 0
w(n) and Q 1

w(n) be the n- numbering. In Section 3.3, we analyze the congestion of
dimensional subcubes of Q(2n) induced by the vertices »f2 , r2 … based on the results of Section 3.2.
{w2 n / iÉ0 ° i ° 2 n 0 1} and the vertices { i2 n / wÉ0
° i ° 2 n 0 1}, respectively. Notice that f1(w)

3.1. Embedding »f2 , r2 …√ V (Q 0
w(n)) > V (Q 1

w(n)) and that m(w , w *)
√ V (Q 0

w(n)) > V (Q 1
w =(n)) . Since Q 0

w(n) is n-con- The embedding that we propose here is quite simple: We
nected, there exist k vertex-disjoint paths Pi in Q 0

w(n) choose a vertex of T with degree at most two as the root
connecting f1(w) and m(w , xi ) (1 ° i ° k) . Define that of T , and we suppose that T is a rooted tree. Without loss
P[w , xi ] Å Pi (1 ° i ° k) . Also, since Q 1

w(n) is n- of generality, we assume that for each vertex u of T the
connected, there exist l vertex-disjoint paths P *j in number of left descendants of u ( i.e., the number of verti-

ces of left subtree rooted at u) is not less than that ofQ 1
w(n) connecting f1(w) and m(yj , w) (1 ° j ° l) .

Define that P[w , yj] Å P *j (1 ° j ° l) . right descendants of u . Give each vertex of T a number
from 0 through N 0 1 according to the postorder number-Now we define the routing r1 . Let (u , £) be an edge

of G . We may assume that C[u , £] Å 0 and C[£, u] Å 1 ing of T so that the left most leaf has the number 0.
We define the labeling f2 : V (T ) r V (Q(n)) as fol-since C satisfies Condition 1. Define the path r1(u , £)
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lows: For each u √ V (T ) , f2(u) is the vertex of Q(n) mR Å t 0 s 0 1. (3)
labeled with the postorder number of u .

We define the routing r2 as follows: Let (u , £) be an From (1), (2) , and (3), we have t 0 s ° s 0 u / 1, as
edge of T , and f2(u)õ f2(£) . The path r2(u , £) connect- desired. j
ing f2(u) and f2(£) in Q(n) starts at f2(u) and passes
through i-edges in the increasing order of i such that the
binary representations of f2(u) and f2(£) differ in the 3.3. Congestion of »f2 , r2 …
i th bit. Thus, r2 is a greedy (shortest path) routing for

In this section, we show that the congestion of »f2 , r2 …edges.
is no more than 5. We will prove this by a series ofNotice that the embedding »f2 , r2 … defined above can
lemmas. Let bit(m , k) denote the number (0 or 1) in thebe constructed in polynomial time.
k th bit (k ¢ 0) in the binary representation of a nonnega-In what follows, for each u √ V (T ), we denote the
tive integer m . For each edge (u , £) √ E(T ) and anpostorder number of u and f2(u) simply by u . In addition,
integer k (0 ° k ° n 0 1), define that dir((u , £) , k)if we denote an edge of T by (u, £), we assume that u õ £.
Å bit(£, k) 0 bit(u , k) . If some paths in Q(n) contain
an edge d √ E(Q(n)) , then the paths are said to share

3.2. Properties of Postorder Numbering d . We can easily see the following lemma from the
definition of r2 :The following lemmas on the postorder numbering will

be used in the next section to analyze the congestion of
Lemma 7. For any distinct edges (u, £) , (s, t) √ E(T ) ,»f2 , r2 … .
r2(u, £) and r2(s, t) share a k-edge in Q(n) if and only
if the following three conditions are satisfied:Lemma 5. For any distinct edges (u, £) , (s, t) √ E(T )

(u ° s) , u õ s õ t ° £ or u õ £ ° s õ t.
Condition 3. dir((u, £) , k) x 0 and dir((s, t) , k) x 0 .Proof. Since the vertices of T are labeled according

to the postorder numbering, each y √ V (T ) is adjacent
Condition 4. If k õ n 0 1 , the (n 0 k 0 1)-bit stringsto at most one vertex with a label more than y . Thus, u
consisting of the (k / 1)st bit through the (n 0 1)st bitx s and we may assume that u õ s . Define that I Å {x
in the binary representations of u and s are identical.√ V (T )Éu õ x õ £}. I is the set of right descendants of

£ if u is the left child of £, and I is the empty set if u is
Condition 5. If k ú 0 , the k-bit strings consisting of thethe right child of £. It follows that any x √ I is adjacent
0th bit through the (k 0 1)st bit in the binary representa-only to vertices of I < {£}. Thus, if s √ I , then t √ I
tions of £ and t are identical. j< {£}. This means that u õ s õ t ° £. If s √/ I , we

have u õ £ ° s õ t by the assumption that u õ s and
the definition of I . j Lemma 8. For any distinct edges (u, £) , (s, t) √ E(T )

such that
Lemma 6. For any distinct edges (u, £) , (s, t) √ E(T )
(u õ s õ t ° £) , t 0 s ° s 0 u / 1 . u õ s õ t õ £ and

Proof. Since u õ s õ t ° £, u is the left child of £

dir((u, £) , k) Å dir((s, t) , k) , (4)
and both s and t are right descendants of £. If s is the
right child of t , then t 0 s Å 1 and the lemma is immedi-

if r2(u, £) and r2(s, t) share a k-edge in Q(n) , thenate. Thus, we assume that s is the left child of t . Let
mL and mR be the numbers of left descendants and right

t 0 s ° 2 k , and (5)descendants of t , respectively, and let w be the vertex
with the minimum postorder number in the descendants
of s . It follows that £ 0 u ú 2 k/1 . (6)

Proof. We have bit(u , k) Å bit(s , k) x bit(£, k)w 0 u ¢ 1. (1)
Å bit( t , k) from (4) and Lemma 7 (Condition 3). Thus,
s 0 u õ 2 k and £ 0 t ¢ 2 k/1 by Lemma 7 (ConditionsSince mL 0 1 is the number of descendants of s and mL
4 and 5). Therefore, we have (5) by Lemma 6 and (6)¢ mR ,
since u õ t . j

s 0 w Å mL 0 1 ¢ mR 0 1. (2)
Lemma 9. For any distinct edges (u, £) , (s, t) √ E(T )
such thatSince s is the left child of t ,
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u , £, and s are identical by Lemma 7 (Condition 4). Thus,u õ s õ t Å £ , (7)
dir((u , £) , k) Å 1 and dir((s , t) , k) Å 01 by Lemma 7
(Condition 3).if r2(u, £) and r2(s, t) share a k-edge in Q(n) , then

We next show the sufficiencies: Assume that dir((u ,
£) , k) Å dir((s , t) , k) x 0. It follows from Lemma 12t 0 s ° 2 k . (8)
that (u , £) and (s , t) satisfy exactly one of (4) , (7) , (9) ,

Proof. Since t Å £, bit (u , k) Å bit(s , k) x bit(£, k) and (11). If (u , £) and (s , t) satisfy (9) or (11), then it
Å bit( t , k) by Lemma 7 (Condition 3). Therefore, s 0 u follows from the necessities that dir((u , £) , k) Å 1 and
õ 2 k by Lemma 7 (Condition 4). By Lemma 6, we have dir((s , t) , k) Å 01, a contradiction. Thus, (u , £) and (s ,
(8) . j t) satisfy either (4) or (7) . Assume that dir((u , £) , k)

Å 1 and dir((s , t) , k) Å 01. It follows from Lemma 12
Lemma 10. For any distinct edges (u, £) , (s, t) √ E(T ) that (u , £) and (s , t) satisfy exactly one of (4) , (7) , (9) ,
such that and (11). If (u , £) and (s , t) satisfy (4) or (7) , then it

follows from the necessities that dir((u , £) , k) Å dir((s ,
u õ s õ t õ £ and t) , k) x 0, a contradiction. Thus, (u , £) and (s , t) satisfy

either (9) or (11). jdir((u, £) , k) x dir((s, t) , k) , (9)

For distinct edges e1 , e2 , . . . , and rl in T , supposeif r2(u, £) and r2(s, t) share a k-edge in Q(n) , then
that r2(e1) , r2(e2) , . . . , and r2(el) share a k-edge d
√ E(Q(n)) . If dir(e1 , k) Å dir(e2 , k) Å rrr Å dir(el ,t 0 s ° 2 k/1 . (10)
k) x 0, then r2(e1) , r2(e2) , . . . , and r2(el) are said to

Proof. s 0 u õ 2 k/1 by Lemma 7 (Condition 4). share d in the same direction.
Thus, we have (10) by Lemma 6. j

Lemma 14. For any distinct edges (u, £) , (s, t) , andLemma 11. For any distinct edges (u, £) , (s, t) √ E(T )
(w, x) in T which are a matching, r2(u, £) , r2(s, t) , andsuch that
r2(w, x) do not share an edge in the same direction.

u õ £ ° s õ t, (11) Proof. We may assume without loss of generality that
u õ s õ w . Assume that r2(u , £) and r2(s , t) share a

if r2(u, £) and r2(s, t) share a k-edge in Q(n) , then k-edge e √ E(Q(n)) in the same direction. Since (u , £)
and (s , t) are a matching of T , we have u õ s õ t õ £

£ 0 u õ 2 k/1 . (12) from Lemma 13. Thus, it follows from Lemma 8 that t
0 s ° 2 k . If r2(s , t) and r2(w , x) share e in the sameProof. s0 uõ 2 k/1 by Lemma 7 (Condition 4). Since
direction, we have s õ w õ x õ t from Lemma 13, and it

£ ° s , we have (12). j
follows from Lemma 8 that t 0 sú 2 k/1 , a contradiction.

jLemma 12. Any distinct edges (u, £) , (s, t) √ E(T ) (u
õ s) satisfy exactly one of (4) , (7) , (9) , and (11) .

Lemma 15. For any distinct edges (u, £) , (s, t) , and
Proof. Immediate from Lemma 5. j (w, x) in T which are incident to a vertex, r2(u, £) ,

r2(s, t) , and r2(w, x) do not share an edge in the same
Lemma 13. For any distinct edges (u, £) , (s, t) √ E(T ) direction.
(u õ s) such that r2(u, £) and r2(s, t) share a k-edge
in Q(n) , (u, £) and (s, t) satisfy either (4) or (7) if and Proof. Suppose that r2(u , £) , r2(s , t) , and r2(w , x)
only if dir((u, £) , k) Å dir((s, t) , k) x 0 , and (u, £) and share an edge in the same direction. Then, we have £ Å t
(s, t) satisfy either (9) or (11) if and only if dir((u, £) , Å x by Lemma 13. Therefore, u õ £, s õ £ and w õ £.
k) Å 1 and dir((s, t) , k) Å 01 . This is a contradiction, however, since each y √ V (T )

is adjacent to at most two vertices with labels less than
Proof. We first show the necessities: If (u , £) and (s ,

y by the definition of the postorder numbering. j
t) satisfy either (4) or (7) , then dir((u , £) , k) Å dir((s ,
t) , k) x 0 from the proofs of Lemmas 8 and 9. If (u , £)

Let d be a k-edge of Q(n) . We define thatand (s , t) satisfy (9) , then dir((u , £) , k) Å 1 and dir((s ,
t) , k) Å 01 by Lemma 7 (Conditions 3 and 4). Assume
that (u , £) and (s , t) satisfy (11). If k õ n 0 1, then the H/(d) Å {eÉe √ E(T ) ,
(n 0 k 0 1)-bit strings consisting of the (k / 1)st bit
through the (n 0 1)st bit in the binary representations of dir(e , k) Å 1, r2(e) contains d},

846A/ 8U26$$846A 11-12-98 12:25:42 netwa W: Networks



76 MATSUBAYASHI AND UENO

H0(d) Å {eÉe √ E(T ) ,

dir(e , k) Å 01, r2(e) contains d}.

Lemma 16. ÉH/(d)É ° 3 and ÉH0(d)É ° 3 for any d
√ E(Q(n)), that is, the congestion of »f2 , r2… is at most 6.

Proof. Suppose that d is a k-edge (0 ° k ° n 0 1).
If all edges in H/(d) are incident to a vertex, then
ÉH/(d)É ° 2 by Lemma 15. We next consider the case
that there are edges (u , £) , (s , t) √ H/(d) (uõ s) which
are a matching of T . Then, we have u õ s õ t õ £ by
Lemma 13, and it follows from Lemma 8 that

£ 0 u ú 2 k/1 . (13) Fig. 1. An example with 58 vertices of binary trees for which
the congestion of »f2 , r2 … is 5.

Suppose that there exists an edge (w , x) √ H/(d)
0 {(u , £) , (s , t)}. By Lemma 14, (w , x) is adjacent to
(u , £) or (s , t) . It follows from Lemma 13 that we have either u õ s õ t

If (w , x) is adjacent to (u , £) , then x Å £ from Lemma õ £ or u õ £ ° s õ t for (u , £) and (s , t) . However, if
13. Thus, we have x 0 w ° 2 k by Lemma 9 and (13). u õ s õ t õ £, then t 0 s ° 2 k/1 from Lemma 10, which
Since t õ £ Å x , it follows from Lemma 13 that w õ s is a contradiction. Thus, u õ £ ° s õ t and we have
õ tõ x for (w , x) and (s , t) . Thus, we have x0 wú 2 k/1

from Lemma 8, which is a contradiction. Therefore, (w , £ 0 u õ 2 k/1 (15)
x) is adjacent to (s , t) , and x Å t from Lemma 13. In
addition, (w , x) is the only edge in H/(d) adjacent to by Lemma 11. Suppose that (w , x) and (y , z) are any
(s , t) by Lemma 15. Thus, we conclude that ÉH/(d)É distinct edges in H/(d) (w õ y) . We have x 0 w õ 2 k/1

° 3. from (15). It follows that x Å z , for, otherwise, w õ y
Similarly, we can show that ÉH0(d)É ° 3. j õ z õ x from Lemma 13, and we have x 0 w ú 2 k/1 by

Lemma 8, which is a contradiction. Therefore, ÉH/(d)É
Lemma 17. The congestion of »f2 , r2 … is at most 5 . ° 2 by Lemma 15.

Thus, we conclude that the congestion of »f2 , r2 … isProof. ÉH/(d)É ° 3 and ÉH0(d)É ° 3 for any d
at most 5. j√ E(Q(n)) by Lemma 16. If ÉH/(d)É° 2 and ÉH0(d)É

° 2 for any d √ E(Q(n)) , then the lemma is immediate.
This completes the proof of Theorem 2.Suppose first that ÉH/(d)É Å 3 for a k-edge d

√ E(Q(n)) . Then, H/(d) contains nonadjacent two
edges from the proof of Lemma 16. Let (u , £) be one of
such edges which satisfies (13). Then, we have £ 0 u 4. CONCLUDING REMARKS
ú 2 k/1 . Let (s , t) be an edge in H0(d) . It follows from
Lemma 13 that we have either u õ s õ t õ £ or u õ £ Although »f1 , r1 … may have a large dilation, we can also
° s õ t for (u , £) and (s , t) . However, if u õ £ ° s construct an embedding of G into Q(2n) with dilation at
õ t , then £ 0 u õ 2 k/1 from Lemma 11, which is a most 2n / 2 and unit congestion using a more sophisti-
contradiction. Thus, u õ s õ t õ £ and we have cated routing. It should be noted that the dilation of »f2 ,

r2 … is at most the diameter of the hypercube since r2 is
t 0 s ° 2 k/1 (14) a shortest path routing.

Our analysis of the congestion of »f2 , r2 … is tight
possible, that is, there exist binary trees for which theby Lemma 10. Suppose that (w , x) and (y , z) are any

distinct edges in H0(d) (w õ y) . We have x 0 w ° 2 k/1 congestion of »f2 , r2 … is exactly 5. For the tree shown
in Figure 1, the image paths of five bold edges by r2from (14). It follows that x Å z , for, otherwise, w õ y

õ z õ x from Lemma 13, and we have x 0 w ú 2 k/1 by share (10000, 10100) √ E(Q(6)) . This is also true when
we choose any vertex in the right subtree (represented asLemma 8, which is a contradiction. Therefore, ÉH0(d)É

° 2 by Lemma 15. the gray triangle) as the root. Moreover, the same situa-
tion occurs if the root is not in the right subtree. Thus,Suppose next that ÉH0(d)É Å 3 for a k-edge d

√ E(Q(n)) . Then, there exists an edge (s , t) √ H0(d) the congestion of »f2 , r2 … for the tree is independent of
the choice of the root.such that t 0 s ú 2 k/1 . Let (u , £) be an edge in H/(d) .

846A/ 8U26$$846A 11-12-98 12:25:42 netwa W: Networks



EMBEDDING OF GRAPHS INTO HYPERCUBES 77

[3] B. Monien and I. H. Sudborough, Simulating binary treesThe authors are grateful to Professor Y. Kajitani for his
on hypercubes, VLSI Algorithms and Architectures, Vol.encouragement. The research is a part of the CAD21 project at
319, Lecture Notes in Computer Science, J. H. Reif (Edi-TIT.
tor) , Springer-Verlag, New York, Berlin, 1988, pp. 170–
180.

[4] S. F. Nugent, The iPSC/2 direct-connect communications
REFERENCES technology, Third Conference on Hypercube Computers

and Applications, Pasadena, CA, Jan 1988.
[5] Y. Saad and M. H. Shultz, Topological properties of hy-[1] S. N. Bhatt, F. R. K. Chung, F. Thomson Leighton, and

percubes, IEEE Trans Comput 37 (1988), 862–872.A. L. Rosenberg, Efficient embeddings of trees in hyper-
cubes, SIAM J Comput 21 (1992), 151–162. [6] L. G. Valiant, Universality considerations in VLSI cir-

cuits, IEEE Trans Comput 30 (1981), 135–140.[2] Y. M. Kim and T. H. Lai, The complexity of congestion-
1 embedding in a hypercube, J Algor 12 (1991), 246– [7] A. Wagner, Embedding all binary trees in the hypercube,

J Parallel Distrib Comput 18 (1993), 33–43.280.

846A/ 8U26$$846A 11-12-98 12:25:42 netwa W: Networks


