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Abstract  Thig paper considers wavelength division multiplexing (WDM) networks with wavelength trans-
lators located at nodes. We first give a simple proof ef the NP-hardness of the problem of minimizing
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1 Introduction

All-optical networks are networks using optical
transmission and maintaining optical datapaths
through the nodes. Wavelength division multiplex-
ing (WDM) is used to enhance the capacity of the
network. In WDM networks, in order to set up
a number of communications between given pairs
of nodes, routes (called lightpaths) are chosen and
wavelengths are assigned to each link along each

lightpath so that no two lightpaths going through -

the same link use the same wavelength along the
link. Since the wavelength is a scarce resource, it
is a fundamental problem to minimize the number of
wavelengths used to set up the communications.

WDM networks are classified roughly into two
categories: wavelength selective (WS) networks and
wavelength interchanging (WI) networks. In WS
networks, the links in a lightpath must be assigned
the same wavelength, whereas in WI networks wave-
length translators located at nodes are used to
change wavelengths along lightpaths and the links in
a lightpath may be assigned different wavelengths.
For WS networks, the problem of minimizing the
number of wavelengths is formulated as the mini-
mum path coloring problem and has been extensively
studied in the literature. (See[1, 3, 6, 7, 8, 9, 15] for
example.) For WI networks, the problem is reduced
to the minimum congestion routing problem which
is NP-hard in general.

We show in Section 4 that the minimum conges-
tion routing problem can be solved in polynomial
time for the tree of rings, which is a popular real
world topology. We make use of results on rings by
Wilfong and Winkler [13]. Some approximation re-
sults are also mentioned. In Section 3, we consider
the problem of minimizing the number of wavelength
translators. More precisely, the problem is to min-
imize the number of nodes with wavelength trans-
lators which allow the network to run at maximum
capacity. We give a simple proof to show that the
problem is NP-hard in general, which was proved in
[13]. Many tractable cases including trees of rings
are also considered.

2 Definitions

Let G be a graph, and let V(G) and E(G) denote
the vertex and edge set of G, respectively. dg (v) is
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the degree of v € V(@R), and A (G) is the maximum
degree of a vertex in G. If D is a directed graph
(digraph), we denote the arc set of D by A(D).

The network Ng of a graph G is the digraph ob-
tained from G by replacing each edge e of G with
two oppositely oriented arcs with the same ends as
e. A routing Re on Ng is a collection of directed
paths (dipaths) on Ng. Let

P.(Re) ={P € Rg | e € A(P)}.

Define
v(e, Rg) = |Pe (Re)|

and

v(Re) = elﬁl(ax v(e, Rg)-

v(Rg) is called the congestion of Rg.

A wavelength assignment ¢. for B¢ on an arc
e € A(Ng) is a one-to-one mapping from P, (Rg)
to {1,2,...,v(Rg)}. A wavelength assignment ¢ for
R is defined as

¢ = {0 | e € A(Ng)}.

¢ for Rg is valid with respect to S C V(Ng)(=
V(G)) if for every vertex v ¢ S and every dipath
P € Rg containing arcs (u, v) and (v,w), ¢(u,.)(P) =
(v,w)(P). S is called a sufficient setfor G if there ex-
ists a valid wavelength assignment for every routing.
A sufficient set corresponds to a set of nodes with
wavélength translators. Notice also that the number
of wavelengths of a valid wavelength assignment for
Rg is optimal for Rg since the congestion of Rg is
a trivial lower bound for the number of wavelengths.

A tree T is a spider if T has at most one vertex
of degree’at least 3. ‘A veriex v in a tree T is called
a leaf if 67 (v) = 1.

A (u,v)-chain in a graph G is a (u,v)-path
(u, wy,ws,...,wg,v) (k> 0) such that ég (w;) = 2
for any 1 < i < k and ¢ (u),6c(v) > 3. wand v
are the ends of the chain.

For a graph G and S C V(G), define the graph

-G(S) as follows [13]: V(G(S)) consists of the vertices

in V'\S together with pairs (s, ) for each s € S and
each edge e incident to s in G; E(G(S)) consists of
the edges {u,v} of G, where u,v ¢ S, together with
{(s,e) ,v} whenever e = {s,v}, where s € S, and
{(s, e}, (t,e)} whenever s and t are adjacent vertices
of §.

~A16__
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3 Minimum Number qf Wave-
length Translators

We consider in this section the following problem.

MINIMUM SUFFICIENT SET
INSTANCE: Graph G.

QUESTION: Find a sufficient set for ¢ of minimum
cardinality.

The networks which require nc wavelength trans-
lators at all are characterized as follows indepen-
dently by Wiifong and Winkler [13] and by Gargano,
Hell, and Perennes {5).

Theorem I ([5, 13]) The empty set is sufficient
for G if and only if G is a spider. |

Based on Theorem I, the sufficient set can be char-
acterized as follows.

Theorem II ([13]) S C V(G) is sufficient for G if
and only if every component of G(S5) is a spider.

The following theorem is proved in [13] by a some-
what complicated method based on the characteriza-
tion of sufficient sets in Theorem II.

Theorem 1 MINIMUM SUFFICIENT SET is NP-
hard. |

‘We will show a simple proof of Theorem 1 based
on a new characterization of the sufficient set.

3.1 Proof of Theorem 1

It is easy to see the following two lemmas from the
definition of G(S).

Lemma 1 For any path P and spider G, o graph
obiatned from P and G by identifying an endvertex
of P and a leaf of G is a spider. |

Lemma 2 If § C V(G) is sufficient for G then
S\{v € §|ég(v) =1} is also sufficient for G. 1

Theorem 2 For any connected graph G with
A(G) > 3, and any sufficient set S for G, there
exists a sufficient set S’ for G such that |5’ < ||
anddc{v) >3 foranyv € S'.

__1?__
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Proof: From Lemma 2, assume without loss of
generality that dg(v) > 2 for every v € S. Let
x(8) = |{v € S| 6c(v) =2}|. The proof is by in-
duction of x(S). :

If x(8) = 0 then the theorem is true by putting
§'=8.

Assume that the theorem is true for the case
when x(S) = k& >.0, and consider the case when
x{8) = &k + 1 for induction. Let v be a vertex in S
with g (v) = 2, let =, be a nearest vertex to v with
8c (zy) > 3, and let y, € S be a nearest vertex to
z, on the (v, z,)-path. Consider S$; =S U {z,} and
52 =S\ {y} =SU{z,}\ {yv}- Since S is sufficient
for G, S is also sufficient for G. Let e; be the edge
incident to ¥, in the (z,, ¥y )-path and let ex be the
other edge incident to y,. Let G; and G2 be the con-
nected components of G(S5;) containing (y,,e:} and
{yy,e2), respectively, and let G; be the connected
component of G(Sz) containing y,. In order to prove
that S, is a sufficient set for G, it is sufficient to prove
that G5 is a spider, since the other connected com-
ponents of G(S) are contained in G(S;), and hence
spiders. Note that Gy is obtained from G, and G3
by identifying (y,,e1) and (y,,e2) into one vertex
y». Thus, G3 is a spider from Lemma 1, and so 5,
is a sufficient set for G such that |S;} < |S]. Note
that x(S:) = k. Thus, by the induction hypothesis,
there exists a sufficient set §' C V(G) for G such
that {S'] < |S2] < |S] and 8 (v) > 3 for any v € 5,
which completes the proof. |

A sufficient set S for a graph G is said to be select
if g (v) > 3 for any v € S. The following is a direct
consequence of Theorem 2. ‘

Thecrem 3 For any connecied graph G with
A (G) > 3, there exists a minimum sufficient set for
G which is select. - B

A connected graph G with A{G) < 2is a path
or ring. Since a path is a spider by definition, the
empty set is sufficient for a path. It is easy to see
that a set consisting of just one vertex is sufficient
for a ring. Therefore, we consider, in what follows,
graphs with maximum degree at least 3.

Theorem 3 allows us 10 consider only vertices of
degree at least 3. We remove other vertices by the
following procedure.
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Input: Graph G.
Step 1: P={v e V(G) | éc (v) =1}

Step 2: Q = {v e V(G) | é¢ (v) = 2}.
for each v € Q begin
e Let e; = {v,u;} and ez = {v,u2} be the
edges incident to v.
* E(G) = B(G)\ {e1,e2} U {{u1, u2}}.
e if g (v) = 0 then V(G) = V(G)\ {v}.

end

Step 3:
for each v € P begin
if 6 (v) = 1 then
V(G) = V(G)\ {v},

E(G) = E(G)\ {e}, where ¢ is the edge in-
cident to v.

endif

end

Step 4: Remove the parallel edges from E(G), leav-
ing one of them.

Figure 1: Procedure CONTRACT

In step 2, the vertices on all chains and all tails
are removed from G. In step 3, the pendant vertices
and the edges incident to them in the original graph
G are removed from G such that every connected
component in G has at least one vertex. The graph
obtained from G by procedure CONTRACT is called
the contracted graph of G, and denoted by G,. No-
tice that the input of procedure CONTRACT is any
graph, and so the contracted graph is defined for any
graph. In particular, the contracted graph of a path
is consisting of just one vertex, and the contracted
graph of a ring is consisting of a vertex with a self-
loop.

It is easy to see the following lemmas.

Lemma 3 For any connected graph G with A (G) >
3, V(Gy) ={v| éc (v) > 3}. |

Lemma 4 Any two vertices u and v in G are con-
nected by an edge if and only if G has a (u,v)-chain.
]
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Now, we are ready to state our characterization
for the select sufficient set. A subset C C V(G) is
called a vertez cover of a graph G if at least one
endvertex of every edge belongs to C.

Theorem 4 For any connected graph G with
A(G) > 3, S C V(G) is a select sufficient set for
G if and only if S is a vertez cover for G,.

Proof: Let S C V(G) be a select sufficient set for G
and assume that S is not a vertex cover of G. Then,
there exists an edge e = {u,v} € E(G,) such that e
is not covered by vertices from S, that is u,v € S.
Thus, we have a (u, v)-chain C in G from Lemma 4.
Since S is a select sufficient set, any vertex in C
is not in S, and so the vertices in C is contained
in a connected component G' of G(S). Note that
dc () > 3 and dg (v) > 3. Thus, if u # v then
G’ is not a spider, which is a contradiction to the
assumption that S is a sufficient set for G. Hence
we conclude that 4 = v. Then, G' contains a ring
as a subgraph and so G’ is not a spider, which is a
contradiction.

Conversely, let S C V(G,) be a vertex cover for
G., and assume that S is not a select sufficient set.
Then, there exists a connected component G’ of G(S)
such that G’ is not a spider. There are two cases to
be considered:

(i) G’ has at least two vertex with degree at least
3. Then, there exists a (u,v)-chain in G’, and so the
vertices in the (u,v)-chain in G is not in §. Then,
G, has the edge e = {u,v} such that u,v € S, that
is, e is not covered by vertices from S, which is a
contradiction.

(ii) G' has at most one vertex with degree at least
3, but aring R. If G’ is a ring then G is disconnected
or A (G) = 2. Hence G is not a ring. Since G' has at
most one vertex with degree at least 3, the vertex v
with d¢: (v) > 3 is in R, that is, there exists a (v, v)-
chain C in G’, and so vertices in G corresponding to
C is not in S. Then, G., has the self-loop e = {v, v}
such that v ¢ S, that is, e is not covered by vertices
from S, which is a contradiction. |

It is easy to see that for any connected graph G
with A(G) < 2 ie. path or ring, § C V(G) is a
minimum sufficient set for G if S is a minimum vertex
cover for G.,. Thus, we have the following theorem
from Theorem 4.

_.18__
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Theorem 5 For any graph G, S i3 @ minimum suf-
ficient set for G if S is a minimum vertezx cover for
G.. ’ ’ B

Now, we are going to complete the proof of The-
orem 1. We will show that the following decision
version of MINIMUM SUFFICIENT SET:

SUFFICIENT SET

INSTANCE: Graph G and a positive integer K <
[V(G)I.

QUESTION: Is there a sufficient set of size K or less
for G7

is NP-complete.

It is easy to see that SUFFICIENT SET belongs to
NP.

We will reduce the following problem:

VERTEX COVER

INSTANCE: Graph G and positive integer K <
V(G)I.

QUESTION: Is there a vertex cover of size K or less
for G 7

to SUFFICIENT SET. Let G and K be the graph and a
positive integer in an arbiirary instance of VERTEX
Cover. We construct a graph G’ such that there
.exists a sufficient set S’ for G* with |§'| < X if and
only if there exists a vertex cover S for G with |S| <
K.

Let G' be the graph obtained from G by adding
3 — b6¢ (v) new vertices adjacent to v for each vertex
v € V(G), with ég (v) < 2. G’ can be constructed
from G in O({V{G}]) time.

Consider the contracted graph G', of G'. Let
Vo = {v € V{G'} | 8¢ (v) = 1}. Note that dg (v) >
3 for any v € V(G')\V,. Also note that the subgraph
of G’ induced by V(G'}\Vj is the graph G. Thus, G',,
is identical to G from Lemma 2.

Let S C V(G){(= V(G',)) be a vertex cover for G
with |S} < K. Then, § is a select sufficient set for
G’ with |S| < K from Theorem 4.

Conversely, let § C V(G’) be a sufficient set for G’
with |S| < K. From Theorem 2, there exists a select
sufficient set S* for G’ such that |S'| < |S]| < K.
Then, §’ is a vertex cover for G{= G',) with |§'| < K
from Theorem 4.

Since VERTEX COVER is a well-known NP-
complete problem [4], SUFFICIENT SET is also NP-
complete. |

and Communication Engineers

3.2 Tractable Cases

Let 7(G) denote the cardinality of a minimum vertex
cover for G. For any V' C V(G), let G[V’] denote
the subgraph of G induced by V.

Lemma 5 If (V},..., Vi) is a partition of V(G),

&
7(G) =2 ) T (GVi)).
i=1
Sketch of Proof: Since, for any V; {(1<i<k),all
edges in E(G[V;]) should be covered by vertices from
V;, the right hand side of the inequality is a lower
bound for 7(G). |

3.2.1 Trees

It is easy to see the following lemma from the defini-
tion of a contracted graph.

Lemma 6 G, is a tree if G is a tree. 1

Theorem 6 MINIMUM SUFFICIENT SET is solvable
in polynomial time for trees.

Proof: Since a minimum vertex cover can be found
in polynomial time for bipartite graphs [14] and a
tree is a bipartite graph, MINIMUM SUFFICIENT SET
is solvable in polynomial time for trees from Theo-
rem 5 and Lemma 6. |

3.2.2 Partial k-trees

Let K,, be the compleie on n vertices. The class of
k-trees is defined recursively as follows [15]:

1. K; is a k-tree.

2. I G is a k-tree and % vertices v;,v3,...,0; in-
duce a complete subgraph of G, then the graph
G’ defined as V(G') = V(G)U{w} and E(G") =
E(G)U{{vi,w} | 1 <i <k} isa k-tree where w
is a new vertex not contained in G.

3. All k-trees can be formed with rules (1) and (2).

A graph is a partial k-tree if it is a subgraph of a
k-tree.

A graph H is a minor of a graph G if H is iso-
morphic to a graph obtained from a subgraph of G
by coniracting edges. A contracted graph of G is a
minor of G from the definition of contracted graphs.
Since a minor of a partial k-tree is a partial k-tree,
we obtain the following lemma.

~_19._
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Lemma 7 For any partial k-iree G, the graph ob-
tained from G., by removing all self-loops is a partial
k-tree. |

The following lemma can be found in [2].

Lemma 8 A minimum vertez cover can be found in
polynomial time for partial k-trees. |

Theorem 7 MINIMUM SUFFICIENT SET solvable in
polynomial time for partial k-trees.

Proof: Let G be a partial k-tree, and let Vj be
the set of vertices in G, with self-loops. Then,
T(Gy[Vo]) = |Vo|- Thus, 7(G4) > 7(G,[V(G)\V]) +
|Vo| from Lemma 5.

Let S' be a minimum vertex cover for
G,[V(G)\Vo]. Since G4[V(G)\Vo] is a partial k-tree
from Lemma 7, S’ can be found in polynomial time.
Consider S = ' U Vy. It is easy to see that S is a
vertex cover for G,. Since |S'| = 7(G,[V(G)\W]),
we conclude that |S| = |S’| + |Vo| < 7(G,). Hence
S is a minimum vertex cover for G.,, and so S is a
minimum sufficient set for G from Theorem 5. |

3.2.3 Series-Parallel Graphs

A graph G is homeomorphic with a graph H if G and
H can be obtained from the same graph by subdi-
viding edges.

G is a series-parallel graph if no subgraph of G is
homeomorphic with K. Since a series-parallel graph
is a partial 2-tree [2], the following corollary is ob-
tained from Theorem 7.

Corollary 1 MINIMUM SUFFICIENT SET is solvable
in polynomial time for series-parallel graphs. i

3.2.4 Trees of Rings

A graph G is a tree of rings if any two rings in G share
at most one vertex and the graph obtained from G
by contracting the edges in the rings is a tree. Since
a tree of rings is a series-parallel graph as easily seen,
we have the following.

Corollary 2 MINIMUM SUFFICIENT SET is solvable
in polynomial time for trees of rings. |
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3.2.5 - Meshes. ..
An N x M mesh My is defined as follows:

V(Myxa) = {0,...,N =1} x {0,..., M — 1}
E(Mnxum) = {{(z,9),(p,a)} |

(,9),(pq) € V(Mnxu),

|z —pl + |y — gl = 1}.

It is easy to verify the following lentma.
Lemma 9 If G is an n-vertez mesh, 7(G) = | 2].

Let My be an N x N mesh. For N > 3, the
contracted graph (My), is obtained from My by
replacing every corner veriex and the edges incident
to it with a single edge. We denote here (My) , by
Wha.

Theorem 8 MINIMUM SUFFICIENT SET is solvable
in polynomial time for My with N > 3. Moreover,
If S be a minimum sufficient set for My,

3 ifN=3,
'5'={ %] #N>a

Proof: If N = 3, it is easy to see that § =
{(1,0),(1,1),(1,2)} is a minimum sufficient set.

Assume N > 4. Let Up = {0,1}, U =
{2,3,...,N—3},and U = {N — 2, N — 1}. For any
i,j € {0,1,2}, define V;; = (Us x U;) N V(Wy). It
is easy to see the following:

1. G[%’o], G[%,z], G[VZ‘Q], and G{V-z,z] are isomor-
phic to Kj;

2. 'G[I/o,l], G[‘fl'o], G[Vlg], and G[‘fz,l] are isomor-
phic to the 2 x (N — 4) mesh;

3. G[V1,1] is isomorphic to the (N —4) x (N — 4)
mesh.

Thus, from Lemmas 5 and 9,

T(Wn)>4-2+4-(N—4) + [MJ

2
N2
= I'—z—J .
Conversely, consider a minimum vertex cover U
for My, that is, U = V(Mpy) N M, where

My ={(z,y) ly=2z+k
st. z,y€ Z,k € {£1,+3,+5,...}}.
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U covers all edges in E(My) N E{(Wy).

The following notation is used: v~ = (0,0), v =
(1,0), v, = (0,1), v, = (N —1,0), v, = (N ~2,0),
ol = (N-1,1),vx = (O,N-1), 07 = (,N -
1), 0% = (O,N-2),vx=(N-1LN-1),v5 =
(N -2,N 1), and v}, = (N — LN — 2). Then,
Wy is the graph obtained from My by replacing
Y, U, U5, ¥ » and the edges incident to them with
a single edge per every corner respectively.

If N is odd, four edges in E(Wy\E(My), ie.
{v},v;}}, {vg,v‘\j}, {v‘t\,v.?\}, and {vf;f,vj;} are
covered by vertices from {7 because all endvertices of
the edges are in U. Note that v<_,v~, ¢ U. Thus, U
is a vertex cover for Wy if N is odd. '

On the other hand, if N is even, four edges in
E{(Wn)\E(My) are not covered by vertices from U
because all endvertices of the edges are not in U.
Note that v<_, v, € U. In this case,

U' = U\{vn, o5, J U {82, 9%}

is a vertex cover for Wy if NV is even.

Therefore,
Tl={2+4+ ---+(N-1)} x2
:%X(N+1)><N2-1x2
2 _
=N2 ! (v is odd),

={1+3+---+(N-1)} x2

1 N
_ExNxEx?
2
=N? (N is even).

Thus, if § is a minimum vertex cover for Wy,
NQ
is1< |5

which shows an upper bound for |S|. Since both
bounds are equal, U/ and I/’ are a minimum vertex
cover for Wy with odd and even N, respectively. U
and U’ can be computed in O(N?). |

4 Minimum Number of Wave-
lengths
Let Ng be a WI networks, and

7= {(8:5,8:) | 8i,t;i € V(Ng),1 <i< k}

_21_
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be a set of node pairs (3;,¢;) to be connected by a
dipath from s; to &; ({s;,¢;)-dipath). A set of dipaths

Ro(r) = {P; | P is an (s, t;)-dipath, 1 < i <k}

is called s routing of . The congestion v(Rg(x)) of
Rg(w) is the maximum number of dipaths in Re(7)
using an arc of Ng, as define in Section 2. If Ng
has wavelength translators on nodes of a sufficient
set, for any routing Rg(7) of , there exists a valid
wavelength assignment using v(Rg (7)) wavelengths,
which is optimal for Rg(#). Thus the problem of set-
ting up the communications for = with the minimum
number of wavelengths is reduced to the following
problem.

MINIMUM CONGESTION ROUTING

INSTANCE: Network Ng and a set of node pairs
7= {(s0,:) | 81,t: € V(Ng),1 <i <k}

QUESTION: Find a routing of 7 with minimum con-
gestion.

The following is the only known nontrivial solv-
able case for MiniMUM CONGESTION ROUTING, as
far as the authors know.

Theorem III {[13]) MINIMUM CONGESTION
ROUTING s solvable in polynomial time for rings.

Theorem III can be easily extended to trees of
rings. Suppose Ng is a tree of rings, and R is a ring
in Ng. If an (s;, ¢;)-dipath P; passes through R, let p;
and g; be the first and last vertices of F; whichisin R,
respectively. Let mg be the set of such pairs (pi, ¢:)-
Since all possible (s,-,t,-)-dipathé contain both p; and
gi, the problem of minimizing the congestion on R is
reduced to MiNiIMUM CONGESTION ROUTING with R
and 7g as the instance. Thus, we have the following
from Theorem III.

Theorem 9 MiNniMuM CONGESTION ROUTING is
solvable in polynomial éime for trees of rings. |

Raghavan and Thompson [10] showed general
approximation algorithms for MINIMUM CONGES-
TION ROUTING using the multicommodity flow relax-
ation and the randomized rounding scheme. Klein-
berg [6] mentioned without proof that there exists
a constant-factor approximation algerithm for two-
dimensional meshes. An extensive survey of the
approximation of MINIMUM CONGESTION ROUT-
ING can be found in [11]. Among other things, it
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is shown that if the congestion is relatively large
(R2(log | A(Ng)})), there exists a constant-factor ap-
proximation algorithm for any network.
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