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Abstract

This paper proposes a general method to construct
a fault-tolerant network G* for any network G with N
processors such that G* has O(N) processors and con-
tains a fauli-free isomorphic copy of G with high prob-
ability even if processors fail independently with con-
stant probability. Based on the construction, we also
show that we can construct such fault-tolerant networks
with O(N) processors and O(M log N) communication
links for a circulant network, hypercube, de Bruiyn net-
work, shuffle-exchange network, and cube-connected-
cycles with N processors and M communication links.

1. Introduction

This paper considers the following problem in con-
nection with the design of fault-tolerant interconnec-
tion networks for multiprocessor systems: Given an
N-vertex graph G, construct an O(N)-vertex graph G*
with a minimum number of edges such that even after
deleting vertices from G* independently with constant
probability, the remaining graph contains G as a sub-
graph, with probability converging to 1, as N — oo.
G is called an RFT (random-fault-tolerant) graph for
G. Let V(G) and E(G) be the vertex set and edge set
of a graph G, respectively. Fraigniaud, Kenyon, and
Pelc showed that for any N-vertex graph G, there ex-
ists an RFT graph for G with O(|E(G)|-log® N) edges,
and that there exists a graph G such that any RFT
graph for G has w(|E(G)|) edges. Tt is also known
that for an N-vertex path[l, 2], cycle[2], and tree with
bounded vertex degree[3], there exist RFT graphs with
O(N) edges; for an N-vertex mesh and torus[5], there
exist RFT graphs with O(N loglog N) edges; and for
an N-vertex tree, there exists an RFT graph with
O(N log N) edges [2].

In this paper, we propose a general method to con-

struct an RFT graph for any graph. Based on the con-
struction, we show that if G is an N-vertex circulant
graph, hypercube, de Bruijn graph, shuffle-exchange
graph, or cube-connected-cycles, we can construct an

RFT graph for G with O(|E(G)]| - log N) edges.
2. General Construction

For any positive integer k, let [k] = {0,1,... k—1}.
For any set of S, a collection & = {So,51,...,5k-1}
of subsets of S is a partition of S if Uie[k] S; = S and
SinS; =0 for any i # j.

Let G be any N-vertex graph. For any partition
V={Vo,W,...,Vi_1} of V(G), define

AG V) =A{(i,))] Au,v) € E(G)(u e Vi,veV;)}

and

MG, V) = |AG, V).

Let 0 < p < 1 be the probability for each vertex to
be deleted. The deleted and undeleted vertices are said
to be faulty and fault-free, respectively.

Let V = {Vo,Vi,...,Ve_1} be any partition of
V(G) such that |V;] < alnN for any ¢ € [k] and
k < BN/In N for some fixed positive numbers « and
B. Let V5, Vi,..., and V_, be k sets such that
[Vi*| = [yIn NT for any i € [k] and V> NV = 0 for
any ¢ # j, where

(V2a +1+1)?

v =

2(1 - p)

Note that v is fixed since « and p are fixed. Then,
G*[V] is the graph defined as follows:

Ve =
BEY) = {(a*,m

VO*le*U"'UVk*_l;
u* c Vi*’ v* c Vj*’
(i,7) € MG, V) '




Theorem 1 Let G be any N -vertex graph, and letV =
Vo, Vi,...,Ve_1} be any partition of V(G) such that
[Vi|=O(nN) and k = O(N/InN). Then G*[V] is an
RFT graph for G with O(MG, V) -log® N) edges.

Proof: We prove the theorem by a series of lemmas.
It is easy to see the following two lemmas.

OGN

InN

Lemma 2 |[E(G*V])| < A(G,V) - [yIn N2

Lemma 1 |V (G*[V])| < “[yInNTJ.

Now we prove that G*[V] is an RFT graph for G.
We need a few probabilistic notations and lemmas.

For any event E| let Prob[FE] denote the probability
of F. For any random variable X and real number
r, let {X < r} denote the event that X < r. The
probability of {X < r} is denoted by Prob[X < r]
instead of Prob[{X < r}]. The following inequality is
well-known as Chernoff Bound.

Lemma 3 [4] Let X be the binomial variable with pa-
rameters m and q, that 1s, the number of successes in
m Bernoulli trials with probabilities q for success and
1 — q for failure. Then, for any constant 0 < ¢ < 1,

1
Prob[X < (1 —€)gm] < exp(—§€2qm).

Lemma 4 Let Y; be the number of fault-free vertices

of Vi*. Then, for any i € [k],

1
ProblV; < alnN|] < —.
rob[V; < alnN] < v
Moreover,
h—1 3
Prob[iL__JO{Yi <aln N} < W
Proof : Set ¢ = 2/(v2a+1+1), ¢ =1 —p, and
m = [vInNT. Since 0 < € < 1,
(1 —¢)gm
V2a+1-1 (V2 + T+ 1)*
—(l—-p) ————— -InN
V2a+1+1 2(1-p)
20 (V2 + T+ 1)* Y
f— . - 1n
(V2a+1+1)2 2
= «alnN,
and
1
§ezqm
1 4 V2 T+ 1)?
2 (V2a+141)2 2(1-p)
= InN,

we obtain by Lemma 3 that

Prob[Y; < aln N] < Prob[Y; < (1 — €)gm]

1
< exp(—§€2qm)
1
< —.
- N
Moreover,
h—1 h—1
Prob[U{Yi <alnN}] < ZProb[Yi < alnN]
1=0 i=0
< —6 .
-~ InN

Lemma 5 G*[V] is an RFT graphs for G.

Proof : Let ¢ be a one-to-one mapping from V(&)
to V(G*[V]) such that ¢(v) is a fault-free vertex of
V;* for any v € V;. By Lemma 4, such ¢ exists with
probability at least 1 — (3/In N).

Now we show that (¢(u), ¢(v)) € E(G*[V]) for any
(u,v) € E(G). Let w € V; and v € V;. Then, (4,j) €
A(G,V). Since ¢(u) € V" and ¢(v) € V", we conclude
that (¢(u), ¢(v)) € E(G*[V]). Hence G*[V] is an RFT
graphs for G. i

This completes the proof of Theorem 1. |

Since A(G,V) < |E(G)|, we obtain the following

corollary.

Corollary 1 Let G be any N-vertex graph, and let
V={V,Vi,...,Vi_1} be any partition of V(G) such
that |Vi| = O(InN) and k = O(N/In N). G*[V] is an
RFT graph for G with O(|E(G)| - log® N) edges.

This corollary means that, for any N-vertex graph G,
there exists an RFT graph for G with O(|E(G)|-log” N)

edges, which is also obtained in [2].

3. RFT Graphs for Circulant Graphs

Let N be a positive integer and let S C [N]. The N-
vertex circulant graph with connection set S, denoted

by Cn(S), is the graph defined as follows:

V(Cn(9) = [N];
E(Cn(S)) {(u,v)] Is € S(v = (u=£ s) mod N)}.

An edge (u,v) is said to be of offset s if v = (u %+
s) mod N.
It is easy to see the following lemma.



Lemma 6 Let S" = {s| s € S and s < N/2} U{N —
sl s €S and s > N/2}. Then Cn(S') is isomorphic to
Cn(S). Moreover,

B (218" = 1)N/2 if N/2 €S,
[E(CN ()] = {|S’|N otherwise.

Let ey = [logN| and kv = [N/eny]. Define
Ui ={v € [N]| |v/ew| = i} for any i € [ky]. Then,
Uy = {Uy, Uy, ..., Upy—1} is a partition of [N] such
that |U;] < exy < logN 4+ 1 for any ¢ € [ky] and
|L1N| = ]CN = |_N/CN—| S (N/logN) + 1.

Theorem 2 C%(S)[Un] is an RFT graph for Cn(S)
with O(JE(Cn(S))| - log N) edges.

Proof: By Lemma 6, we may assume that if s € §
then s < N/2. Thus, By Theorem 1 and Lemma 6, it
suffices to prove that A(Cnx(5),Un) = O(|S|N/log N).

Consider any edge (u,v) € E(Cn(S)) of offset s €
S. Assume without loss of generality that v = (u +
symod N. Let v = icy + a and v = jeny + b, where
0<a,b<cy. Then u € U; and v € U;. We have the
following two cases:

(i) u < N —s: We have v = u+s. Then, jey +5b =
icy+a+s,andso j =i+ (s+a—b)/eny. Since ¢
and j are integers, | = (s + a — b)/cy is an integer.
Thus, [s/en] =14+ [(b—a)/en]. thatis [ = [s/en] —
[(b—a)/en]. Since 0 < a,b < ey, [(b—a)/en] =0
or —1, and so [ = [s/en] or | = [s/en]| + 1. Hence
J=1i+[s/en]| or j=i+ [s/en] + 1.

(i) u > N —s: We have v = u+s—N. Then, jey +
b=dey+a+s—N,andsoj=i+(a—b+s—N)/en.
Since N = kycy —d by the definition of &y, we obtain
J=i—ky+(a—b+d+s)/en, where 0 < d < cy.
Since ¢ and j are integers, [ = (a — b+ d + s)/en is
an integer. Thus, |s/en] =1+ |(b—a — d)/en], that
isl=|s/en] = [(b—a—d)/en]|. Since 0 < a,b,d <
en, [(b—a—d)/en| =0, =1, or =2, and so we have
l=l|s/en], l=|s/en]+1,0rl = |s/en] + 2. Hence
J=(i+[s/en]) mod kn, j = (i+[s/en]+1) mod ky,
or j=(i+ [s/en]| + 2) mod ky.

Thus,

A(CN(S),Un)

.| 4,5 €elkn], s€S], rel3]
< {(Z’j)‘ j:(i:I:J[fs/cNJ—l—r) mod ky }

and we have

3|51V _ |S|V
log N +315] = O(logN)'

/\(CN(S),UN) < 3|S|]€N <

4. RFT Graphs for Hypercubic Graphs

For any v = [vp,vp_1,...,v1] € [2]", let

o(v) = [vpn-1,...,01,0n],
XZ(U) = [vna~~~avi+1a7iavi—1a"'avl]a and
pi(v) = v, ..., 0],

where 7; denotes the complement of v;, that is 77 = 1
if v; = 0, and v; = 0 otherwise.
Let

Ve = {U € [2]n| Pn—[logn] (U) = l‘}
for any x € [2]*~M°8”1 and let
Vo ={Vel z € [Q]H_rlogn]}“

Then V, is a partition of [2]” such that |V, | < 2log N
for any = € [2]*~ 18”1 and |V,| < N/log N, where
N =1[2]*| = 2.

4.1. RFT Graphs for Hypercubes

The n-cube (n-dimensional cube) Q(n) is the graph
defined as follows:

V(Qmn) = [2%;

{(uav)| v = Xi(u)a 1<i<n}

It is easy to see that |V(Q(n))| = N and |E(Q(n))| =
(N log N)/2, where N = 2". An edge (u,v) is called an
i-edge if v = y;(u). A graph G is called a hypercube if
(i is isomorphic to Q(n) for some n.

Theorem 3 Q*(n)[V,] is an RFT graph for Q(n) with
O(N log? N) edges.

Proof : By Theorem 1, it suffices to prove that
A(Q(n),Vy) = O(N).

Consider any i-edge (u,v) € F(Q(n)). Let z =
Pr—Togn] () and ¥y = pn_fiogn1(v). It is easy to see
that y = yi(z) if 1 < i < n—[logn], and z = y
otherwise. Thus,

AQ(n),Vn) € {(2,9)| y = xi(w) or z =y},

and we have

A@(n), V) < {%(n — [logn]) + 1} - 2~ Tlosn]
1 N
< {2(10gN—loglogN)+1}.logN

O(N).



4.2. RFT Graphs for de Bruijn Graphs

The n-dimensional de Bruijn graph dB(n) is the
graph defined as follows:

V(dB(n)) = [2]%
E(dB(n)) =

It is easy to see that |V (dB(n))| = N and |E(dB(n))| =
2N, where N = 27,

Theorem 4 dB*(n)[V,] is an RFT graph for dB(n)
with O(N log N) edges.

Proof : By Theorem 1, it suffices to prove that
A(dB(n),V,) = O(N/log N).

Consider any edge (u,v) € E(dB(n)). Assume with-
out loss of generality that v = o(u) or v = y1(o(w)).
Let x = pp_fiogn1(v) and y = pp_qiogn (v). 1t is easy
to see that y = o(#) or y = x1(o(x)). Thus,

A(dB(n), V) < {(z,y)ly=o0(z) orz =a(y)}

{ y = x1(o(z)) }
U< (z,y) or ;

z = x1(o(y))
< 9gn— [logn]+1

and we have

2N N
< =0(
logN log N

MdB(n),V,) < ).

4.3. RFT Graphs for
Graphs

Shuffle-Exchange

The n-dimensional shuffle-exchange graph SE(n) is
the graph defined as follows:

V(SE(n)) = [2%
E(SE(n)) = {(u,v)]v=0(u)oru=0c(v)}
U{(u,0)] v = xa(u)}.

)

It is easy to see that |V (SE(n))| = N and |E(SE(n))| =
3N/2, where N = 2".

Theorem 5 SE*(n)[V,] is an RFT graph for SE(n)
with O(N log N) edges.

Proof : By Theorem 1, it suffices to prove that
A(SE(n),V,) = O(N/log N).

Consider any edge (u,v) € E(SE(n)). Let # =

Pr—Tlogn] (W) and ¥y = py_fiogn1(v). If v = o(u) then
we have y = o() or y = x1(o(2)). If v = x1(u) then
x = y. Thus,

A(SE(n),Vn) C

and we have

3N N

A(SE(n),V,) < 320 Mesnl < =0(; I~
0]

- logN

).

4.4. RFT Graphs for CCC’s

The n-dimensional cube-connected-cycles(CCC),

denoted by C'CC(n), is the graph defined as follows:

V(CCO(n)) =
E(CCC(n)) =

[2]" x [n];

([0, 0,31 5 = (5% 1) mod n)
UA{(fw, ), [v, ] v = xip1 ()},
where w,v € [2]" and i,j € [n]. Tt is easy to see that
[V(CCC(n))| = N and |[E(CCC(n))| = 3N/2, where
N = n2™.
Let

V[;:,z] = {[ual] € V(CCC(H))| Prn—[logn] (u) = l‘}
for any x € [2]*~ %871 and i € [n] and let
2"~ i e [n]}.

It is easy to see that V) is a partition of V(CCC(n))
such that |V}, ;| < 2log N for any « € [2]7~Megn]l and
i €[n], and V| <2N/log N.

Vr/z = {V[x,i]| EAS

Theorem 6 CCC*(n)[V',] is an RFT graph for
CCC(n) with O(N log N) edges.

Proof : By Theorem 1, it suffices to prove that
A(CCC(n),Vy,) = O(N/log N).
Consider any edge ([u,],[v,j]) € E(CCC(n)). Let
T = pn_flogn](¥) and ¥y = pp_fiogn](v). If u = v then
r =y Ifv=ry1(u then y = x;q1(x) or © = y.
Thus,

A(CCq(
c {(

n),V'n)

[,7,[y,J]l e = y,j = (i £ 1) mod n}
z, i), [y, Jll y = xi+1(x), i = j}

v 1l [y, ]l # =y, i=j}

Ul
Ul

Y
Y



and we have
ACcam),vh) < 2n2”—ﬂogn1
5N
- logN
N
O(logN)'
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