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Abstract

This paper proposes a general method to construct

a fault-tolerant network G� for any network G with N
processors such that G� has O(N ) processors and con-

tains a fault-free isomorphic copy of G with high prob-

ability even if processors fail independently with con-

stant probability. Based on the construction, we also

show that we can construct such fault-tolerant networks

with O(N ) processors and O(M logN ) communication

links for a circulant network, hypercube, de Bruijn net-

work, shu�e-exchange network, and cube-connected-

cycles with N processors and M communication links.

1. Introduction

This paper considers the following problem in con-
nection with the design of fault-tolerant interconnec-
tion networks for multiprocessor systems: Given an
N -vertex graph G, construct an O(N )-vertex graph G�

with a minimum number of edges such that even after
deleting vertices from G� independently with constant
probability, the remaining graph contains G as a sub-
graph, with probability converging to 1, as N ! 1.
G� is called an RFT (random-fault-tolerant) graph for
G. Let V (G) and E(G) be the vertex set and edge set
of a graph G, respectively. Fraigniaud, Kenyon, and
Pelc showed that for any N -vertex graph G, there ex-
ists an RFT graph for G with O(jE(G)j � log2N ) edges,
and that there exists a graph G such that any RFT
graph for G has !(jE(G)j) edges. It is also known
that for an N -vertex path[1, 2], cycle[2], and tree with
bounded vertex degree[3], there exist RFT graphs with
O(N ) edges; for an N -vertex mesh and torus[5], there
exist RFT graphs with O(N log logN ) edges; and for
an N-vertex tree, there exists an RFT graph with
O(N logN ) edges [2].

In this paper, we propose a general method to con-

struct an RFT graph for any graph. Based on the con-
struction, we show that if G is an N -vertex circulant
graph, hypercube, de Bruijn graph, shu�e-exchange
graph, or cube-connected-cycles, we can construct an
RFT graph for G with O(jE(G)j � logN ) edges.

2. General Construction

For any positive integer k, let [k] = f0;1; . . . ; k�1g.
For any set of S, a collection S = fS0; S1; . . . ; Sk�1g
of subsets of S is a partition of S if

S
i2[k] Si = S and

Si \ Sj = ; for any i 6= j.

Let G be any N-vertex graph. For any partition
V = fV0; V1; . . . ; Vk�1g of V (G), de�ne

�(G;V) = f(i; j)j 9(u; v) 2 E(G)(u 2 Vi; v 2 Vj)g

and

�(G;V) = j�(G;V)j:
Let 0 < p < 1 be the probability for each vertex to

be deleted. The deleted and undeleted vertices are said
to be faulty and fault-free, respectively.

Let V = fV0; V1; . . . ; Vk�1g be any partition of
V (G) such that jVij � � lnN for any i 2 [k] and
k � �N= lnN for some �xed positive numbers � and
�. Let V �0 ; V

�
1 ; . . ., and V �k�1 be k sets such that

jV �
i j = d lnNe for any i 2 [k] and V �i \ V �j = ; for

any i 6= j, where

 =
(
p
2�+ 1 + 1)2

2(1� p)
:

Note that  is �xed since � and p are �xed. Then,
G�[V ] is the graph de�ned as follows:

V (G�[V]) = V �

0 [ V �1 [ � � � [ V �

k�1;

E(G�[V]) =

�
(u�; v�)

���� u
� 2 V �i ; v

� 2 V �

j ;

(i; j) 2 �(G;V)
�
:



Theorem 1 Let G be any N -vertex graph, and let V =
fV0; V1; . . . ; Vk�1g be any partition of V (G) such that

jVij = O(lnN ) and k = O(N= lnN ). Then G�[V] is an
RFT graph for G with O(�(G;V) � log2N ) edges.

Proof : We prove the theorem by a series of lemmas.
It is easy to see the following two lemmas.

Lemma 1 jV (G�[V ])j � �N

lnN
� d lnNe.

Lemma 2 jE(G�[V ])j � �(G;V) � d lnNe2.
Now we prove that G�[V ] is an RFT graph for G.

We need a few probabilistic notations and lemmas.
For any event E, let Prob[E] denote the probability

of E. For any random variable X and real number
r, let fX � rg denote the event that X � r. The
probability of fX � rg is denoted by Prob[X � r]
instead of Prob[fX � rg]. The following inequality is
well-known as Cherno� Bound.

Lemma 3 [4] Let X be the binomial variable with pa-

rameters m and q, that is, the number of successes in

m Bernoulli trials with probabilities q for success and

1� q for failure. Then, for any constant 0 < � < 1,

Prob[X � (1� �)qm] � exp(�1

2
�2qm):

Lemma 4 Let Yi be the number of fault-free vertices

of V �

i . Then, for any i 2 [k],

Prob[Yi � � lnN ] � 1

N
:

Moreover,

Prob[
k�1[

i=0

fYi � � lnNg] � �

lnN
:

Proof : Set � = 2=(
p
2�+ 1 + 1), q = 1 � p, and

m = d lnNe. Since 0 < � < 1,

(1� �)qm

�
p
2�+ 1� 1p
2�+ 1 + 1

� (1� p) � (
p
2�+ 1 + 1)2

2(1� p)
� lnN

=
2�

(
p
2�+ 1 + 1)2

� (
p
2�+ 1 + 1)2

2
� lnN

= � lnN;

and

1

2
�2qm

� 1

2
� 4

(
p
2�+ 1 + 1)2

� (1� p) � (
p
2�+ 1 + 1)2

2(1� p)
� lnN

= lnN;

we obtain by Lemma 3 that

Prob[Yi � � lnN ] � Prob[Yi � (1� �)qm]

� exp(�1

2
�2qm)

� 1

N
:

Moreover,

Prob[
k�1[

i=0

fYi � � lnNg] �
k�1X

i=0

Prob[Yi � � lnN ]

� �

lnN
:

Lemma 5 G�[V ] is an RFT graphs for G.

Proof : Let � be a one-to-one mapping from V (G)
to V (G�[V ]) such that �(v) is a fault-free vertex of
V �

i for any v 2 Vi. By Lemma 4, such � exists with
probability at least 1� (�= lnN).

Now we show that (�(u); �(v)) 2 E(G�[V ]) for any
(u; v) 2 E(G). Let u 2 Vi and v 2 Vj . Then, (i; j) 2
�(G;V). Since �(u) 2 V �

i and �(v) 2 V �

j , we conclude
that (�(u); �(v)) 2 E(G�[V ]). Hence G�[V ] is an RFT

graphs for G.
This completes the proof of Theorem 1.

Since �(G;V) � jE(G)j, we obtain the following
corollary.

Corollary 1 Let G be any N-vertex graph, and let

V = fV0; V1; . . . ; Vk�1g be any partition of V (G) such

that jVij = O(lnN ) and k = O(N= lnN ). G�[V ] is an

RFT graph for G with O(jE(G)j � log2N ) edges.

This corollary means that, for any N -vertex graph G,
there exists an RFT graph for GwithO(jE(G)j�log2N )
edges, which is also obtained in [2].

3. RFT Graphs for Circulant Graphs

Let N be a positive integer and let S � [N ]. The N-
vertex circulant graph with connection set S, denoted
by CN (S), is the graph de�ned as follows:

V (CN (S)) = [N ];

E(CN (S)) = f(u; v)j 9s 2 S(v = (u� s) mod N )g:

An edge (u; v) is said to be of o�set s if v = (u �
s) mod N .

It is easy to see the following lemma.



Lemma 6 Let S0 = fsj s 2 S and s � N=2g [ fN �
sj s 2 S and s > N=2g. Then CN (S

0) is isomorphic to

CN (S). Moreover,

jE(CN (S))j =

�
(2jS0j � 1)N=2 if N=2 2 S;
jS0jN otherwise.

Let cN = dlogNe and kN = dN=cNe. De�ne
Ui = fv 2 [N ]j bv=cN c = ig for any i 2 [kN ]. Then,
UN = fU0;U1; . . . ;UkN�1g is a partition of [N ] such
that jUij � cN � logN + 1 for any i 2 [kN ] and
jUN j = kN = dN=cNe � (N= logN ) + 1.

Theorem 2 C�
N (S)[UN ] is an RFT graph for CN (S)

with O(jE(CN (S))j � logN ) edges.

Proof : By Lemma 6, we may assume that if s 2 S
then s � N=2. Thus, By Theorem 1 and Lemma 6, it
su�ces to prove that �(CN (S);UN ) = O(jSjN= logN ).

Consider any edge (u; v) 2 E(CN (S)) of o�set s 2
S. Assume without loss of generality that v = (u +
s) mod N . Let u = icN + a and v = jcN + b, where
0 � a;b < cN . Then u 2 Ui and v 2 Uj . We have the
following two cases:

(i) u < N � s: We have v = u+ s. Then, jcN + b =
icN + a + s, and so j = i + (s + a � b)=cN . Since i
and j are integers, l = (s + a � b)=cN is an integer.
Thus, bs=cNc = l+ b(b� a)=cN c. that is l = bs=cNc �
b(b � a)=cN c. Since 0 � a; b < cN , b(b � a)=cNc = 0
or �1, and so l = bs=cN c or l = bs=cNc + 1. Hence
j = i+ bs=cN c or j = i+ bs=cN c + 1.

(ii) u � N �s: We have v = u+ s�N . Then, jcN +
b = icN + a+ s�N , and so j = i+(a� b+ s�N )=cN .
Since N = kN cN �d by the de�nition of kN , we obtain
j = i � kN + (a � b + d + s)=cN , where 0 � d < cN .
Since i and j are integers, l = (a � b + d + s)=cN is
an integer. Thus, bs=cNc = l + b(b� a � d)=cN c, that
is l = bs=cN c � b(b � a � d)=cNc. Since 0 � a; b; d <
cN , b(b � a � d)=cN c = 0, �1, or �2, and so we have
l = bs=cNc, l = bs=cNc + 1, or l = bs=cNc + 2. Hence
j = (i+bs=cN c) mod kN , j = (i+bs=cNc+1) mod kN ,
or j = (i+ bs=cN c+ 2) mod kN .

Thus,

�(CN (S);UN )

�

�
(i; j)

���� i; j 2 [kN ]; s 2 [S]; r 2 [3];
j = (i � bs=cNc + r) mod kN

�

and we have

�(CN (S);UN ) � 3jSjkN �
3jSjN

logN
+ 3jSj = O(

jSjN

logN
):

4. RFT Graphs for Hypercubic Graphs

For any v = [vn; vn�1; . . . ; v1] 2 [2]n, let

�(v) = [vn�1; . . . ; v1; vn];

�i(v) = [vn; . . . ; vi+1; vi; vi�1; . . . ; v1]; and

�i(v) = [vi; . . . ; v1];

where vi denotes the complement of vi, that is vi = 1
if vi = 0, and vi = 0 otherwise.

Let

Vx = fv 2 [2]nj �n�dlogne(v) = xg

for any x 2 [2]n�dlogne and let

Vn = fVxj x 2 [2]n�dlogneg:

Then Vn is a partition of [2]n such that jVxj � 2 logN
for any x 2 [2]n�dlogne and jVnj � N= logN , where
N = j[2]nj = 2n.

4.1. RFT Graphs for Hypercubes

The n-cube (n-dimensional cube) Q(n) is the graph
de�ned as follows:

V (Q(n)) = [2]n;

E(Q(n)) = f(u; v)j v = �i(u); 1 � i � ng:

It is easy to see that jV (Q(n))j = N and jE(Q(n))j =
(N logN )=2, where N = 2n. An edge (u; v) is called an
i-edge if v = �i(u). A graph G is called a hypercube if
G is isomorphic to Q(n) for some n.

Theorem 3 Q�(n)[Vn] is an RFT graph for Q(n) with
O(N log2N ) edges.

Proof : By Theorem 1, it su�ces to prove that
�(Q(n);Vn) = O(N ).

Consider any i-edge (u; v) 2 E(Q(n)). Let x =
�n�dlogne(u) and y = �n�dlogne(v). It is easy to see
that y = �i(x) if 1 � i � n � dlogne, and x = y
otherwise. Thus,

�(Q(n);Vn) � f(x; y)j y = �i(x) or x = yg;

and we have

�(Q(n);Vn) � f
1

2
(n� dlogne) + 1g � 2n�dlogne

� f
1

2
(logN � log logN ) + 1g �

N

logN

= O(N ):



4.2. RFT Graphs for de Bruijn Graphs

The n-dimensional de Bruijn graph dB(n) is the
graph de�ned as follows:

V (dB(n)) = [2]n;

E(dB(n)) = f(u; v)j v = �(u) or u = �(v)g

[

8<
:(u; v)

������
v = �1(�(u))

or
u = �1(�(v))

9=
; :

It is easy to see that jV (dB(n))j = N and jE(dB(n))j =
2N , where N = 2n.

Theorem 4 dB�(n)[Vn] is an RFT graph for dB(n)
with O(N logN ) edges.

Proof : By Theorem 1, it su�ces to prove that
�(dB(n);Vn) = O(N= logN ).

Consider any edge (u; v) 2 E(dB(n)). Assume with-
out loss of generality that v = �(u) or v = �1(�(u)).
Let x = �n�dlogne(u) and y = �n�dlogne(v). It is easy
to see that y = �(x) or y = �1(�(x)). Thus,

�(dB(n);Vn) � f(x; y)j y = �(x) or x = �(y)g

[

8<
:(x; y)

������
y = �1(�(x))

or
x = �1(�(y))

9=
; ;

and we have

�(dB(n);Vn) � 2n�dlogne+1 �
2N

logN
= O(

N

logN
):

4.3. RFT Graphs for Shu�e-Exchange
Graphs

The n-dimensional shu�e-exchange graph SE(n) is
the graph de�ned as follows:

V (SE(n)) = [2]n;

E(SE(n)) = f(u; v)j v = �(u) or u = �(v)g

[ f(u; v)j v = �1(u)g:

It is easy to see that jV (SE(n))j = N and jE(SE(n))j =
3N=2, where N = 2n.

Theorem 5 SE�(n)[Vn] is an RFT graph for SE(n)
with O(N logN ) edges.

Proof : By Theorem 1, it su�ces to prove that
�(SE(n);Vn) = O(N= logN ).

Consider any edge (u; v) 2 E(SE(n)). Let x =
�n�dlogne(u) and y = �n�dlogne(v). If v = �(u) then
we have y = �(x) or y = �1(�(x)). If v = �1(u) then
x = y. Thus,

�(SE(n);Vn) � f(x; y)j y = �(x) or x = �(y)g

[

8<
:(x; y)

������
y = �1(�(x))

or
x = �1(�(y))

9=
;

[ f(x; y)j x = yg;

and we have

�(SE(n);Vn) � 3 � 2n�dlogne �
3N

logN
= O(

N

logN
):

4.4. RFT Graphs for CCC's

The n-dimensional cube-connected-cycles(CCC),
denoted by CCC(n), is the graph de�ned as follows:

V (CCC(n)) = [2]n � [n];

E(CCC(n)) = f([v; i]; [v; j])j j = (i� 1) mod ng

[ f([u; i]; [v; i])j v = �i+1(u)g;

where u; v 2 [2]n and i; j 2 [n]. It is easy to see that
jV (CCC(n))j = N and jE(CCC(n))j = 3N=2, where
N = n2n.

Let

V 0
[x;i] = f[u; i] 2 V (CCC(n))j �n�dlogne(u) = xg

for any x 2 [2]n�dlogne and i 2 [n] and let

V0
n = fV[x;i]j x 2 [2]n�dlogne; i 2 [n]g:

It is easy to see that V 0
n is a partition of V (CCC(n))

such that jV[x;i]j � 2 logN for any x 2 [2]n�dlogne and
i 2 [n], and jV0

nj � 2N= logN .

Theorem 6 CCC�(n)[V 0
n] is an RFT graph for

CCC(n) with O(N logN) edges.

Proof : By Theorem 1, it su�ces to prove that
�(CCC(n);Vn) = O(N= logN ).

Consider any edge ([u; i]; [v; j]) 2 E(CCC(n)). Let
x = �n�dlogne(u) and y = �n�dlogne(v). If u = v then
x = y. If v = �i+1(u) then y = �i+1(x) or x = y.
Thus,

�(CCC(n);V 0
n)

� f([x; i]; [y; j]j x = y; j = (i � 1) mod ng

[ f[x; i]; [y; j]j y = �i+1(x); i = jg

[ f[x; i]; [y; j]j x = y; i = jg;



and we have

�(CCC(n);V 0
n
) �

5

2
n2n�dlogne

�
5N

logN

= O(
N

logN
):
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