Sparse Networks Tolerating Random Faults

Toshinori Yamada and Shuichi Ueno Department of Physical Electronics, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152–8552, Japan {vamada, ueno}@ss.titech.ac.jp

Abstract

This paper proposes a general method to construct a fault-tolemnt network G^* for any network G with Nprocessors such that G^* has O(N) processors and contains a fault-free isomorphic copy of G with high probability even if processors fail independently with constant probability. Based on the construction, we also show that we can construct such fault-tolerant networks with O(N) processors and $O(M \log N)$ communication links for a circulant network, hypercube, de Bruijn network, shuffle-exchange network, and cube-connectedcycles with N processors and M communication links.

1. Introduction

This paper considers the following problem in connection with the design of fault-tolerant interconnection networks for multiprocessor systems: Given an N-vertex graph G, construct an O(N)-vertex graph G^* with a minimum number of edges such that even after deleting vertices from G^* independently with constant probability, the remaining graph contains G as a subgraph, with probability converging to 1, as $N \to \infty$. G^* is called an RFT (random-fault-tolerant) graph for G. Let V(G) and E(G) be the vertex set and edge set of a graph G, respectively. Fraigniaud, Kenyon, and Pelc showed that for any N-vertex graph G, there exists an RFT graph for G with $O(|E(G)| \cdot \log^2 N)$ edges, and that there exists a graph G such that any RFT graph for G has $\omega(|E(G)|)$ edges. It is also known that for an N-vertex path [1, 2], cycle [2], and tree with bounded vertex degree[3], there exist RFT graphs with O(N) edges; for an N-vertex mesh and torus[5], there exist RFT graphs with $O(N \log \log N)$ edges; and for an N-vertex tree, there exists an RFT graph with $O(N \log N)$ edges [2].

In this paper, we propose a general method to con-

struct an RFT graph for any graph. Based on the construction, we show that if G is an N-vertex circulant graph, hypercube, de Bruijn graph, shuffle-exchange graph, or cube-connected-cycles, we can construct an RFT graph for G with $O(|E(G)| \cdot \log N)$ edges.

2. General Construction

For any positive integer k, let $[k] = \{0, 1, \ldots, k-1\}$. For any set of S, a collection $\mathcal{S} = \{S_0, S_1, \ldots, S_{k-1}\}$ of subsets of S is a partition of S if $\bigcup_{i \in [k]} S_i = S$ and $S_i \cap S_j = \emptyset$ for any $i \neq j$.

Let G be any N-vertex graph. For any partition $\mathcal{V} = \{V_0, V_1, \dots, V_{k-1}\}$ of V(G), define

$$\Lambda(G, \mathcal{V}) = \{(i, j) \mid \exists (u, v) \in E(G) (u \in V_i, v \in V_j) \}$$

and

$$\lambda(G, \mathcal{V}) = |\Lambda(G, \mathcal{V})|.$$

Let 0 be the probability for each vertex tobe deleted. The deleted and undeleted vertices are saidto be faulty and fault-free, respectively.

Let $\mathcal{V} = \{V_0, V_1, \dots, V_{k-1}\}$ be any partition of V(G) such that $|V_i| \leq \alpha \ln N$ for any $i \in [k]$ and $k \leq \beta N / \ln N$ for some fixed positive numbers α and β . Let V_0^*, V_1^*, \dots , and V_{k-1}^* be k sets such that $|V_i^*| = \lceil \gamma \ln N \rceil$ for any $i \in [k]$ and $V_i^* \cap V_j^* = \emptyset$ for any $i \neq j$, where

$$\gamma = \frac{(\sqrt{2\alpha + 1} + 1)^2}{2(1 - p)}.$$

Note that γ is fixed since α and p are fixed. Then, $G^*[\mathcal{V}]$ is the graph defined as follows:

$$\begin{array}{lll} V(G^*[\mathcal{V}]) &=& V_0^* \cup V_1^* \cup \dots \cup V_{k-1}^*; \\ E(G^*[\mathcal{V}]) &=& \left\{ (u^*, v^*) \, \middle| \begin{array}{c} u^* \in V_i^*, \; v^* \in V_j^*, \\ (i, j) \in \Lambda(G, \mathcal{V}) \end{array} \right\}. \end{array}$$

Theorem 1 Let G be any N-vertex graph, and let $\mathcal{V} =$ $\{V_0, V_1, \ldots, V_{k-1}\}$ be any partition of V(G) such that $|V_i| = O(\ln N)$ and $k = O(N/\ln N)$. Then $G^*[\mathcal{V}]$ is an RFT graph for G with $O(\lambda(G, \mathcal{V}) \cdot \log^2 N)$ edges.

Proof: We prove the theorem by a series of lemmas. It is easy to see the following two lemmas.

Lemma 1
$$|V(G^*[\mathcal{V}])| \leq \frac{\beta N}{\ln N} \cdot \lceil \gamma \ln N \rceil.$$

Lemma 2 $|E(G^*[\mathcal{V}])| < \lambda(G, \mathcal{V}) \cdot [\gamma \ln N]^2$.

Now we prove that $G^*[\mathcal{V}]$ is an RFT graph for G. We need a few probabilistic notations and lemmas.

For any event E, let Prob[E] denote the probability of E. For any random variable X and real number r, let $\{X < r\}$ denote the event that X < r. The probability of $\{X \leq r\}$ is denoted by $\operatorname{Prob}[X \leq r]$ instead of $\operatorname{Prob}[\{X \leq r\}]$. The following inequality is well-known as Chernoff Bound.

Lemma 3 [4] Let X be the binomial variable with parameters m and q, that is, the number of successes in m Bernoulli trials with probabilities q for success and 1-q for failure. Then, for any constant $0 < \epsilon < 1$,

$$\operatorname{Prob}[X \le (1-\epsilon)qm] \le \exp(-\frac{1}{2}\epsilon^2 qm).$$

Lemma 4 Let Y_i be the number of fault-free vertices of V_i^* . Then, for any $i \in [k]$,

$$\operatorname{Prob}[Y_i \le \alpha \ln N] \le \frac{1}{N}$$

Moreover,

$$\operatorname{Prob}\left[\bigcup_{i=0}^{k-1} \{Y_i \le \alpha \ln N\}\right] \le \frac{\beta}{\ln N}.$$

Proof : Set $\epsilon = 2/(\sqrt{2\alpha + 1} + 1)$, q = 1 - p, and $m = \lceil \gamma \ln N \rceil$. Since $0 < \epsilon < 1$,

$$\begin{aligned} &(1-\epsilon)qm \\ &\geq \quad \frac{\sqrt{2\alpha+1}-1}{\sqrt{2\alpha+1}+1} \cdot (1-p) \cdot \frac{(\sqrt{2\alpha+1}+1)^2}{2(1-p)} \cdot \ln N \\ &= \quad \frac{2\alpha}{(\sqrt{2\alpha+1}+1)^2} \cdot \frac{(\sqrt{2\alpha+1}+1)^2}{2} \cdot \ln N \\ &= \quad \alpha \ln N, \end{aligned}$$

and

$$\begin{aligned} &\frac{1}{2}\epsilon^2 qm \\ &\geq \quad \frac{1}{2} \cdot \frac{4}{(\sqrt{2\alpha+1}+1)^2} \cdot (1-p) \cdot \frac{(\sqrt{2\alpha+1}+1)^2}{2(1-p)} \cdot \ln N \\ &= \quad \ln N, \end{aligned}$$

we obtain by Lemma 3 that

$$\begin{aligned} \operatorname{Prob}[Y_i \leq \alpha \ln N] &\leq \operatorname{Prob}[Y_i \leq (1-\epsilon)qm] \\ &\leq \exp(-\frac{1}{2}\epsilon^2 qm) \\ &\leq \frac{1}{N}. \end{aligned}$$

Moreover,

$$\operatorname{Prob}\left[\bigcup_{i=0}^{k-1} \{Y_i \le \alpha \ln N\}\right] \le \sum_{i=0}^{k-1} \operatorname{Prob}\left[Y_i \le \alpha \ln N\right]$$
$$\le \frac{\beta}{\ln N}.$$

Lemma 5 $G^*[\mathcal{V}]$ is an RFT graphs for G.

Proof: Let ϕ be a one-to-one mapping from V(G)to $V(G^*[\mathcal{V}])$ such that $\phi(v)$ is a fault-free vertex of V_i^* for any $v \in V_i$. By Lemma 4, such ϕ exists with probability at least $1 - (\beta / \ln N)$.

Now we show that $(\phi(u), \phi(v)) \in E(G^*[\mathcal{V}])$ for any $(u,v) \in E(G)$. Let $u \in V_i$ and $v \in V_j$. Then, $(i,j) \in$ $\Lambda(G, \mathcal{V})$. Since $\phi(u) \in V_i^*$ and $\phi(v) \in V_j^*$, we conclude that $(\phi(u), \phi(v)) \in E(G^*[\mathcal{V}])$. Hence $G^*[\mathcal{V}]$ is an RFT graphs for G.

This completes the proof of Theorem 1.

Since $\lambda(G, \mathcal{V}) \leq |E(G)|$, we obtain the following corollary.

Corollary 1 Let G be any N-vertex graph, and let $\mathcal{V} = \{V_0, V_1, \dots, V_{k-1}\}$ be any partition of V(G) such that $|V_i| = O(\ln N)$ and $k = O(N/\ln N)$. $G^*[\mathcal{V}]$ is an RFT graph for G with $O(|E(G)| \cdot \log^2 N)$ edges.

This corollary means that, for any N-vertex graph G, there exists an RFT graph for G with $O(|E(G)| \cdot \log^2 N)$ edges, which is also obtained in [2].

3. RFT Graphs for Circulant Graphs

Let N be a positive integer and let $S \subset [N]$. The Nvertex circulant graph with connection set S, denoted by $C_N(S)$, is the graph defined as follows:

$$V(C_N(S)) = [N]; E(C_N(S)) = \{(u, v) | \exists s \in S(v = (u \pm s) \mod N)\}.$$

An edge (u, v) is said to be of offset s if $v = (u \pm v)$ s) mod N.

It is easy to see the following lemma.

Lemma 6 Let $S' = \{s | s \in S \text{ and } s \leq N/2\} \cup \{N - s | s \in S \text{ and } s > N/2\}$. Then $C_N(S')$ is isomorphic to $C_N(S)$. Moreover,

$$|E(C_N(S))| = \begin{cases} (2|S'|-1)N/2 & \text{if } N/2 \in S, \\ |S'|N & \text{otherwise.} \end{cases}$$

Let $c_N = \lceil \log N \rceil$ and $k_N = \lceil N/c_N \rceil$. Define $U_i = \{v \in [N] \mid \lfloor v/c_N \rfloor = i\}$ for any $i \in [k_N]$. Then, $\mathcal{U}_N = \{U_0, U_1, \dots, U_{k_N-1}\}$ is a partition of [N] such that $|U_i| \leq c_N \leq \log N + 1$ for any $i \in [k_N]$ and $|\mathcal{U}_N| = k_N = \lceil N/c_N \rceil \leq (N/\log N) + 1$.

Theorem 2 $C_N^*(S)[\mathcal{U}_N]$ is an RFT graph for $C_N(S)$ with $O(|E(C_N(S))| \cdot \log N)$ edges.

Proof: By Lemma 6, we may assume that if $s \in S$ then $s \leq N/2$. Thus, By Theorem 1 and Lemma 6, it suffices to prove that $\lambda(C_N(S), \mathcal{U}_N) = O(|S|N/\log N)$.

Consider any edge $(u, v) \in E(C_N(S))$ of offset $s \in S$. Assume without loss of generality that $v = (u + s) \mod N$. Let $u = ic_N + a$ and $v = jc_N + b$, where $0 \le a, b < c_N$. Then $u \in U_i$ and $v \in U_j$. We have the following two cases:

(i) u < N - s: We have v = u + s. Then, $jc_N + b = ic_N + a + s$, and so $j = i + (s + a - b)/c_N$. Since i and j are integers, $l = (s + a - b)/c_N$ is an integer. Thus, $\lfloor s/c_N \rfloor = l + \lfloor (b-a)/c_N \rfloor$. that is $l = \lfloor s/c_N \rfloor - \lfloor (b-a)/c_N \rfloor$. Since $0 \le a, b < c_N$, $\lfloor (b-a)/c_N \rfloor = 0$ or -1, and so $l = \lfloor s/c_N \rfloor$ or $l = \lfloor s/c_N \rfloor + 1$. Hence $j = i + \lfloor s/c_N \rfloor$ or $j = i + \lfloor s/c_N \rfloor + 1$.

(ii) $u \ge N-s$: We have v = u+s-N. Then, $jc_N + b = ic_N + a + s - N$, and so $j = i + (a - b + s - N)/c_N$. Since $N = k_N c_N - d$ by the definition of k_N , we obtain $j = i - k_N + (a - b + d + s)/c_N$, where $0 \le d < c_N$. Since *i* and *j* are integers, $l = (a - b + d + s)/c_N$ is an integer. Thus, $\lfloor s/c_N \rfloor = l + \lfloor (b - a - d)/c_N \rfloor$, that is $l = \lfloor s/c_N \rfloor - \lfloor (b - a - d)/c_N \rfloor$. Since $0 \le a, b, d < c_N$, $\lfloor (b - a - d)/c_N \rfloor = 0$, -1, or -2, and so we have $l = \lfloor s/c_N \rfloor$, $l = \lfloor s/c_N \rfloor + 1$, or $l = \lfloor s/c_N \rfloor + 2$. Hence $j = (i + \lfloor s/c_N \rfloor) \mod k_N$, $j = (i + \lfloor s/c_N \rfloor + 1) \mod k_N$.

Thus,

$$\Lambda(C_N(S), \mathcal{U}_N) \\ \subseteq \left\{ \left. \begin{pmatrix} (i,j) \\ j \in [k_N], \ s \in [S], \ r \in [3], \\ j = (i \pm \lfloor s/c_N \rfloor + r) \mod k_N \end{cases} \right\}$$

and we have

$$\lambda(C_N(S), \mathcal{U}_N) \le 3|S|k_N \le \frac{3|S|N}{\log N} + 3|S| = O(\frac{|S|N}{\log N}).$$

4. RFT Graphs for Hypercubic Graphs

For any
$$v = [v_n, v_{n-1}, \dots, v_1] \in [2]^n$$
, let

$$\begin{aligned} \sigma(v) &= [v_{n-1}, \dots, v_1, v_n], \\ \chi_i(v) &= [v_n, \dots, v_{i+1}, \overline{v_i}, v_{i-1}, \dots, v_1], \text{ and } \\ \rho_i(v) &= [v_i, \dots, v_1], \end{aligned}$$

where $\overline{v_i}$ denotes the complement of v_i , that is $\overline{v_i} = 1$ if $v_i = 0$, and $\overline{v_i} = 0$ otherwise.

 Let

$$V_x = \{ v \in [2]^n | \rho_{n - \lceil \log n \rceil}(v) = x \}$$

for any $x \in [2]^{n - \lceil \log n \rceil}$ and let

$$\mathcal{V}_n = \{ V_x \mid x \in [2]^{n - \lceil \log n \rceil} \}.$$

Then \mathcal{V}_n is a partition of $[2]^n$ such that $|V_x| \leq 2 \log N$ for any $x \in [2]^{n - \lceil \log n \rceil}$ and $|\mathcal{V}_n| \leq N/\log N$, where $N = |[2]^n| = 2^n$.

4.1. RFT Graphs for Hypercubes

The *n*-cube (*n*-dimensional cube) Q(n) is the graph defined as follows:

$$\begin{array}{lll} V(Q(n)) & = & [2]^n; \\ E(Q(n)) & = & \{(u,v) | \ v = \chi_i(u), \ 1 \le i \le n\}. \end{array}$$

It is easy to see that |V(Q(n))| = N and $|E(Q(n))| = (N \log N)/2$, where $N = 2^n$. An edge (u, v) is called an *i*-edge if $v = \chi_i(u)$. A graph G is called a hypercube if G is isomorphic to Q(n) for some n.

Theorem 3 $Q^*(n)[\mathcal{V}_n]$ is an RFT graph for Q(n) with $O(N \log^2 N)$ edges.

Proof: By Theorem 1, it suffices to prove that $\lambda(Q(n), \mathcal{V}_n) = O(N).$

Consider any *i*-edge $(u,v) \in E(Q(n))$. Let $x = \rho_{n-\lceil \log n \rceil}(u)$ and $y = \rho_{n-\lceil \log n \rceil}(v)$. It is easy to see that $y = \chi_i(x)$ if $1 \le i \le n - \lceil \log n \rceil$, and x = y otherwise. Thus,

$$\Lambda(Q(n), \mathcal{V}_n) \subseteq \{(x, y) | y = \chi_i(x) \text{ or } x = y\},\$$

and we have

$$\begin{split} \lambda(Q(n),\mathcal{V}_n) &\leq \{\frac{1}{2}(n-\lceil \log n\rceil)+1\} \cdot 2^{n-\lceil \log n\rceil} \\ &\leq \{\frac{1}{2}(\log N - \log \log N)+1\} \cdot \frac{N}{\log N} \\ &= O(N). \end{split}$$

4.2. RFT Graphs for de Bruijn Graphs

The *n*-dimensional de Bruijn graph dB(n) is the graph defined as follows:

$$V(dB(n)) = [2]^n;$$

$$E(dB(n)) = \{(u,v) | v = \sigma(u) \text{ or } u = \sigma(v)\}$$

$$\cup \left\{ \begin{array}{c} (u,v) \\ or \\ u = \chi_1(\sigma(v)) \end{array} \right\}.$$

It is easy to see that |V(dB(n))| = N and |E(dB(n))| = 2N, where $N = 2^n$.

Theorem 4 $dB^*(n)[\mathcal{V}_n]$ is an RFT graph for dB(n) with $O(N \log N)$ edges.

Proof: By Theorem 1, it suffices to prove that $\lambda(dB(n), \mathcal{V}_n) = O(N/\log N).$

Consider any edge $(u, v) \in E(dB(n))$. Assume without loss of generality that $v = \sigma(u)$ or $v = \chi_1(\sigma(u))$. Let $x = \rho_{n-\lceil \log n \rceil}(u)$ and $y = \rho_{n-\lceil \log n \rceil}(v)$. It is easy to see that $y = \sigma(x)$ or $y = \chi_1(\sigma(x))$. Thus,

$$\begin{array}{rcl} \Lambda(dB(n),\mathcal{V}_n) &\subseteq & \{(x,y) \mid y = \sigma(x) \text{ or } x = \sigma(y)\} \\ & \cup \left\{ \begin{array}{c} (x,y) \mid & y = \chi_1(\sigma(x)) \\ & \text{ or } \\ & x = \chi_1(\sigma(y)) \end{array} \right\}, \end{array}$$

and we have

$$\lambda(dB(n), \mathcal{V}_n) \le 2^{n - \lceil \log n \rceil + 1} \le \frac{2N}{\log N} = O(\frac{N}{\log N}).$$

4.3. RFT Graphs for Shuffle-Exchange Graphs

The *n*-dimensional shuffle-exchange graph SE(n) is the graph defined as follows:

$$V(SE(n)) = [2]^{n};$$

$$E(SE(n)) = \{(u,v) | v = \sigma(u) \text{ or } u = \sigma(v)\}$$

$$\cup \{(u,v) | v = \chi_{1}(u)\}.$$

It is easy to see that |V(SE(n))| = N and |E(SE(n))| = 3N/2, where $N = 2^n$.

Theorem 5 $SE^*(n)[\mathcal{V}_n]$ is an RFT graph for SE(n) with $O(N \log N)$ edges.

Proof: By Theorem 1, it suffices to prove that $\lambda(SE(n), \mathcal{V}_n) = O(N/\log N).$

Consider any edge $(u, v) \in E(SE(n))$. Let $x = \rho_{n-\lceil \log n \rceil}(u)$ and $y = \rho_{n-\lceil \log n \rceil}(v)$. If $v = \sigma(u)$ then we have $y = \sigma(x)$ or $y = \chi_1(\sigma(x))$. If $v = \chi_1(u)$ then x = y. Thus,

$$\begin{split} \Lambda(SE(n),\mathcal{V}_n) &\subseteq \{(x,y) \mid y = \sigma(x) \text{ or } x = \sigma(y)\} \\ &\cup \left\{ \begin{pmatrix} x,y \end{pmatrix} \mid \begin{array}{c} y = \chi_1(\sigma(x)) \\ \text{ or } \\ x = \chi_1(\sigma(y)) \end{array} \right\} \\ &\cup \{(x,y) \mid x = y\}, \end{split}$$

and we have

$$\lambda(SE(n), \mathcal{V}_n) \le 3 \cdot 2^{n - \lceil \log n \rceil} \le \frac{3N}{\log N} = O(\frac{N}{\log N}).$$

4.4. RFT Graphs for CCC's

The *n*-dimensional cube-connected-cycles(CCC), denoted by CCC(n), is the graph defined as follows:

$$\begin{array}{lll} V(\mathit{CCC}(n)) &=& [2]^n \times [n]; \\ E(\mathit{CCC}(n)) &=& \{([v,i],[v,j])| \ j = (i \pm 1) \bmod n\} \\ & & \cup \{([u,i],[v,i])| \ v = \chi_{i+1}(u)\}, \end{array}$$

where $u, v \in [2]^n$ and $i, j \in [n]$. It is easy to see that |V(CCC(n))| = N and |E(CCC(n))| = 3N/2, where $N = n2^n$.

 Let

$$V'_{[x,i]} = \{ [u,i] \in V(CCC(n)) | \rho_{n-\lceil \log n \rceil}(u) = x \}$$

for any $x \in [2]^{n - \lceil \log n \rceil}$ and $i \in [n]$ and let

$$\mathcal{V}'_n = \{ V_{[x,i]} | x \in [2]^{n - \lfloor \log n \rfloor}, i \in [n] \}$$

It is easy to see that \mathcal{V}'_n is a partition of V(CCC(n))such that $|V_{[x,i]}| \leq 2 \log N$ for any $x \in [2]^{n - \lceil \log n \rceil}$ and $i \in [n]$, and $|\mathcal{V}'_n| \leq 2N/\log N$.

Theorem 6 $CCC^*(n)[\mathcal{V}'_n]$ is an RFT graph for CCC(n) with $O(N \log N)$ edges.

Proof: By Theorem 1, it suffices to prove that $\lambda(CCC(n), \mathcal{V}_n) = O(N/\log N).$

Consider any edge $([u, i], [v, j]) \in E(CCC(n))$. Let $x = \rho_{n-\lceil \log n \rceil}(u)$ and $y = \rho_{n-\lceil \log n \rceil}(v)$. If u = v then x = y. If $v = \chi_{i+1}(u)$ then $y = \chi_{i+1}(x)$ or x = y. Thus,

$$\begin{split} \Lambda(\mathit{CCC}(n), \mathcal{V'}_n) \\ &\subseteq \quad \{([x,i], [y,j] | \ x = y, j = (i \pm 1) \ \mathrm{mod} \ n\} \\ &\cup \{[x,i], [y,j] | \ y = \chi_{i+1}(x), i = j\} \\ &\cup \{[x,i], [y,j] | \ x = y, i = j\}, \end{split}$$

and we have

$$\begin{aligned} \lambda(\mathit{CCC}(n),\mathcal{V}'_n) &\leq & \frac{5}{2}n2^{n-\lceil \log n \rceil} \\ &\leq & \frac{5N}{\log N} \\ &= & O(\frac{N}{\log N}). \end{aligned}$$

Acknowledgements: The authors are grateful to Professor Y. Kajitani for his encouragement. The research is a part of CAD21 Project at TIT.

References

 N. Alon and F. R. K. Chung. Explicit construction of linear sized tolerant networks. *Discrete Math.*, Vol. 72, pp. 15–19, 1988.

- [2] Pierre Fraigniaud, Claire Kenyon, and Andrzej Pelc. Finding a target subnetwork in sparse networks with random faults. *Information Processing Letters*, Vol. 48, pp. 297–303, 1993.
- [3] J. Friedman and N. Pippenger. Expanding graphs contains all small trees. *Combinatorica*, Vol. 7, No. 1, pp. 71-76, 1987.
- [4] Torben Hagerup and Christine Rüb. A guided tour of Chernoff bounds. *Information Processing Let*ters, Vol. 33, pp. 305-308, 1989/1990.
- [5] Hisao Tamaki. Construction of the mesh and the torus tolerating a large number of faults. Proc. 6th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA '94), pp. 268-277, 1994.