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Abstract. We consider the routing for a special type of communication
requests, called a multicast, consisting of a fixed source and a multiset
of destinations in a wavelength division multiplexing all optical network.
We prove a min-max equality that the minimum number of wavelengths
necessary for routing a multicast is equal to the maximum of the average
number of paths that share a link in a cut of the network. Based on the
min-max equality above, we propose an on-line algorithm for routing a
multicast, and show that the competitive ratio of our algorithm is equal
to the ratio of the degree of the source to the link connectivity of the
network. We also show that 4/3 is a lower bound for the competitive
ratio of an on-line algorithm for routing a multicast.

1 Introduction

A WDM (Wavalength Division Multiplexing) all-optical network consists of rout-
ing nodes interconnected by point-to-point unidirectional fiber-optic links, which
support a certain number of wavelengths. The same wavelength on two input
ports cannot be routed to a same output port due to the interference. A fun-
damental problem for WDM all-optical networks is the optical routing, which
assigns a path and a wavelength for each communication request in such a way
that no two paths that traverse a common link are assigned the same wavelength
by using as few wavelengths as possible. This paper considers the on-line optical
routing for a special collection of communication requests called a multicast.

A WDM all-optical network is modeled as a symmetric digraph (directed
graph) G with vertex set V (G) and arc (directed edge) set A(G) such that if
(u, v) ∈ A(G) then (v, u) ∈ A(G), where the vertices represent the routing nodes
and each arc represents a point-to-point unidirectional fiber-optic link connecting
a pair of routing nodes.

Let P (x, y) denote a dipath (directed path) in G from the vertex x to y
which consistis of consecutive arcs beginning at x and ending at y. A request
is an ordered pair of vertices (x, y) in G corresponding to a message to be sent
from x to y, and an instance I is a collection (multiset) of requests. A routing
for an instance I is a collection of dipaths R = {P (x, y)|(x, y) ∈ I}.

Given a symmetric digraph G, an instance I, and a routing R for I, ω(G, I,R)
is the minimum number of wavelengths that can be assigned to the dipaths in R,
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so that no two dipaths sharing an arc have the same wavelength. Let ω(G, I)
denote the smallest ω(G, I,R) over all routings R for I. The load of an arc
α ∈ A(G) in R, denoted by π(G, I,R, α), is the number of dipaths in R containing
α. Let π(G, I,R) denote the largest π(G, I,R, α) over all arcs α ∈ A(G), and
π(G, I) denote the smallest π(G, I,R) over all routings R for I. It is known that
computing ω(G, I) and π(G, I) is NP-hard in general [2]. It is not difficult to see
that ω(G, I) ≥ π(G, I) for an instance I in a symmetric digraph G and that the
inequality can be strict in general [2].

Beauquier, Hell, and Perennes [3] proved that for a multicast I in a symmetric
digraph G, ω(G, I) = π(G, I) and both ω(G, I) and π(G, I) can be computed
in polynominal time. An instance I is called a multicast if I is of the form
{(x, y)|y ∈ Y } for a fixed vertex x ∈ V (G), called the source, and a collection Y
of vertices in V (G), called the destinations.

This paper shows a min-max equality on ω(G, I) for a multicast I in a sym-
metric digraph G by means of the cut in G. For a digraph G and a nonempty
proper subset S ⊂ V (G), a cut (S, S) is the set of arcs beginning in S and
ending in S, where S = V (G) − S. For a multicast I = {(x, y)|y ∈ Y } and a
cut (X,X) with x ∈ X ⊂ V (G), let µ(G, I,X) denote �|Y ∩X|/|(X,X)|
, and
µ(G, I) denote the largest µ(G, I,X) over all cuts (X,X) with x ∈ X ⊂ V (G).
Notice that µ(G, I,X) is a lower bound on the average load of an arc in (X,X)
for any routing for I. We prove a min-max equality that ω(G, I) = µ(G, I),
which is used as a basis for on-line multicasting. Let δ(x) denote the outdegree
of x and λ(x) denote min{|(X,X)||x ∈ X ⊂ V (G)}. Notice that δ(x) ≥ λ(x).
If I is a broadcast, that is I = {(x, y)|y ∈ V (G) − x} and δ(x) = λ(x) then
our min-max equality implies that ω(G, I) = �|V (G) − 1|/δ(x)
, which is essen-
tially Theorem 3.1 in [4] proved by Bermond, Gargano, Perennes, Rescigno, and
Vaccaro.

Given a symmetric digraph G and a sequence of requests (xi, yi), an on-line
algorithm assigns a dipath P (xi, yi) and a wavelength to P (xi, yi), so that no
two dipaths sharing an arc are assigned the same wavelength. The performance
measure for an on-line algorithm is the competitive ratio defined as the worst-
case ratio over all request sequences between the number of wavelengths used by
the on-line algorithm and the optimal number of wavelengths necessary on the
same sequence. Bartal and Leonardi [1] showed on-line algorithms with compet-
itive ratio of O(logN) for any instances in N -vertex digraphs associated with
meshs, trees, and trees of rings, where the digraph associated with a graph H
is the symmetric digraph obtained when each edge e of H is replaced by two
oppositely oriented arcs with the same ends as e. They also proved a matching
lower bound of Ω(logN) for digraphs associated with meshes, and a lower bound
of Ω(logN/ log logN) for digraphs associated with trees and trees of rings [1].

We show here an on-line algorithm for a multicast I = {(x, y)|y ∈ Y } in
a symmetric digraph G. We prove that the competitive ratio of our algorithm
is �δ(x)/λ(x)
. It follows that if δ(x) = O(1) then the competitive ratio of our
algorithm is O(1). Moreover, if δ(x) = λ(x) then our algorithm is optimal. We
also show a complementary result that if δ(x) > λ(x) then there is no optimal
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on-line algorithm. Moreover, we show that the competitive ratio of any on-line
algorithm is at least 4/3. We also consider the dynamic multicasting.

2 Off-Line Multicasting

We prove in this section the following min-max equality, which will be used in
the subsequent sections.

Theorem 1. ω(G, I) = µ(G, I) for a multicast I in a symmetric digraph G.

2.1 Proof of Theorem 1

Let G be a symmetric digraph and I = {(x, y)|y ∈ Y } be a multicast in G.

Proof of ω(G, I) ≥ µ(G, I). It is well-known and easily verified that

ω(G, I) ≥ π(G, I). (1)

Since µ(G, I,X) is a lower bound on the average load of an arc in a cut (X,X)
with x ∈ X ⊂ V (G) for any routing R for I, we have

π(G, I,R) ≥ µ(G, I,X)

for any routing R for I and any cut (X,X) with x ∈ X ⊂ V (G). Thus, it follows
that

π(G, I) ≥ µ(G, I). (2)

Combining (1) and (2), we have

ω(G, I) ≥ µ(G, I).

Proof of ω(G, I) ≤ µ(G, I). It is proved in [3] that for a multicast I =
{(x, y)|y ∈ Y } in a symmetric digraph G we have

ω(G, I) = π(G, I), (3)

by using flow networks derived from G.
In a flow network, we denote by c(u, v) the capacity of an arc (u, v), and

by c(T, T ) the capacity of a cut (T, T ). Although Y is a collection (multiset) in
general, we assume without loss of generality that Y is just a set, as mentioned
in [3].

In order to compute π(G, I) the following flow network Fp is introduced
in [3]. Let s and t be two new vertices which will be the source and sink in Fp,
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respectively. The flow network Fp is defined as follows:

V (Fp) = {s, t} ∪ V (G)

A(Fp) = {(s, x)} ∪A(G) ∪ (
⋃

y∈Y

{(y, t)})

c(s, x) = ∞
c(u, v) = p for all (u, v) ∈ A(G)
c(y, t) = 1 for all y ∈ Y .

The following theorem is immediate from the definitions.

Theorem I [3] π(G, I) ≤ p if and only if Fp has a flow of value |Y |.
By (3) and Theorem I above, it suffices to show that Fµ(G,I) has a flow of

value |Y |. We prove this by showing that any cut in Fµ(G,I) separating s and t has
capacity at least |Y |. Any cut in Fµ(G,I) separating s and t can be represented
as (S ∪ {s}, S ∪ {t}) for a subset S of V (G) and S = V (G)− S. It is easy to see
that

c(S ∪ {s}, S ∪ {t}) =
{ |Y ∩ S| + µ(G, I) · |(S, S)| if x ∈ S

∞ if x ∈ S

where (S, S) is a cut in G. It follows that we may assume that x ∈ S. Then we
have

c(S ∪ {s}, S ∪ {t}) = |Y ∩ S| + µ(G, I) · |(S, S)|

= |Y ∩ S| + max

{⌈ |Y ∩X|
|(X,X)|

⌉ ∣∣∣∣∣ x ∈ X ⊂ V (G)

}
· |(S, S)|

≥ |Y ∩ S| +
⌈ |Y ∩ S|
|(S, S)|

⌉
· |(S, S)|

≥ |Y ∩ S| + |Y ∩ S|
|(S, S)| · |(S, S)|

= |Y ∩ S| + |Y ∩ S| = |Y |,
as desired.

3 On-Line Multicasting

3.1 Upper Bounds

Let G be a symmetric digraph, and (x, y1), (x, y2), · · · , (x, yj), · · · be a sequence of
multicast requests in G. Let Ij denote the collection {(x, y1), (x, y2), · · · , (x, yj)},
and Yj denote the collection {y1, y2, · · · , yj}. We assume without loss of gener-
ality that x is not a cut-vertex in G. We also assume that the wavelengths are
labeled with positive integers. Our on-line algorithm is based on the following
classic theorem due to Edmonds [5]. For a vertex u of a digraph G, u-arborescence
H(u) in G is an acyclic spanning subdigraph of G such that for every vertex
v ∈ V (G) there is exactly one dipath in H(u) from u to v.
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Theorem II [5] For a digraph G and a vertex u ∈ V (G), the maximum number
of arc-disjoint u-arborescences in G is equal to λ(u).

Let H = {H1(x), H2(x), · · · , Hλ(x)(x)} be a set of arc-disjoint x-arborescences
in G. For each request, our on-line algorithm, called ARB, assigns a dipath in
an x-arborescence in H. Given a request (x, yj), ARB finds an x-arborescence
Hk(x) such that the number of dipaths in Hk(x) assigned to the existing requests
is minimal, assigns the unique dipath P (x, yj) in Hk(x), and assigns the lowest
available wavelength to P (x, yj).

Theorem 2. The competitive ratio of ARB is �δ(x)/λ(x)
.
Proof. From Theorem 1, we have that for any j,

ω(G, Ij) = µ(G, Ij)

= max

{⌈ |Yj ∩X|
|(X,X)|

⌉ ∣∣∣∣∣ x ∈ X ⊂ V (G)

}

≥
⌈ |Yj ∩ (V (G) − {x})|
|({x}, V (G) − {x})|

⌉

=
⌈ |Yj |
δ(x)

⌉

≥ |Yj |
δ(x)

.

Let ω(G, Ij ,ALG) denote the number of wavelengths used by an on-line
algorithm ALG for Ij . We have that

ω(G, Ij ,ARB) =
⌈ |Yj |
λ(x)

⌉

≤
⌈
ω(G, Ij) · δ(x)

λ(x)

⌉

≤
⌈
δ(x)
λ(x)

⌉
· ω(G, Ij),

as desired. ��
The following corollaries are immediate. An on-line algorithm ALG is said

to be optimal for G if ω(G, Ij ,ALG) = ω(G, Ij) for any j.

Corollary 1. If δ(x) is O(1) then the competitive ratio of ARB is O(1).

Corollary 2. If δ(x) = λ(x) then ARB is optimal for G.

Corollary 3. ARB is optimal for digraphs associated with trees, cycles, tori,
hypercubes, and cube-connected cycles.
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3.2 Lower Bounds

The following is a complementary result to Corollary 2.

Theorem 3. If δ(x) > λ(x) then there is no on-line algorithm optimal for G.

Proof. We prove the theorem by contradiction. Let G be a symmetric digraph,
and x be a vertex in G with δ(x) > λ(x). Assume that there is an on-line
algorithm ALG optimal for G. Let (X,X) be a cut in G such that x ∈ X ⊂ V (G)
and |(X,X)| = λ(x), and v be a vertex in X. We denote the arcs with tail x by
(x, u1), (x, u2), · · · , (x, uδ(x)). We consider the following sequence of requests:

(x, u1), (x, u2), · · · , (x, uδ(x)), (x, v), (x, v), · · · , (x, v)︸ ︷︷ ︸
λ(x)+1

.

Since ALG is optimal for G, ALG assigns for the requests (x, ui) arc-disjoint
dipaths P (x, ui) and the same wavelength, say w, to the dipaths P (x, ui) (1 ≤
i ≤ δ(x)). Notice that each arc (x, ui) is contained in the dipaths assigned
wavelength w (1 ≤ i ≤ δ(x)). Since |(X,X)| = λ(x), ALG uses at least two more
wavelengths different from w for the last λ(x) + 1 requests of (x, v). Thus, ALG
uses at least 3 wavelengths for the request sequence.

On the other hand, we have the following off-line algorithm. There is a set
A of λ(x) arc-disjoint x-arborescences in G by Theorem II. For each of λ(x)
requests of (x, v), we assign a dipath in distinct x-arborescence in A, and assign
the same wavelength, say w, to the dipaths. Since δ(x) > λ(x), there exists
some ui (1 ≤ i ≤ δ(x)) such that no dipaths above pass through ui. Since x is
not a cut-vertex, there is a dipath P (ui, v) that dose not pass through x. For
the remaining request of (x, v), we assign a dipath consisting of arc (x, ui) and
P (ui, v), and assign a wavelength different from w, say w′, to the dipaths. Then
we can assign a dipath consisting of an arc (x, uj) with wavelength w′ for every
requests (x, uj) (j �= i), and arc (x, ui) with wavelength w for request (x, ui). In
total, we use only 2 wavelengths for the request sequence, a contradiction. Thus
we have the theorem. ��

By corollary 2 and Theorem 3 above, we have the following corollary.

Corollary 4. There is an on-line algorithm optimal for G if and only if δ(x) =
λ(x).

We can show a general lower bound as follows. Let M be a mesh with V (M) =
{0, 1, 2}2. The vertices ij and i′j′ are adjacent if and only if |i− i′|+ |j− j′| = 1.
Let GM be the digraph associated with M .

Theorem 4. The competitive ratio of any on-line algorithm for GM is at least
4/3.

Proof. Let u1 = 01, u2 = 10, u3 = 12, u4 = 21, v = 00, and x = 11. Let ALG
be any on-line algorithm for GM . For any positive integer l, we consider the
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following sequence of 4l requests I4l:

(x, u1), · · · , (x, u1)︸ ︷︷ ︸
l

, (x, u2), · · · , (x, u2)︸ ︷︷ ︸
l

, (x, u3), · · · , (x, u3)︸ ︷︷ ︸
l

, (x, u4), · · · , (x, u4)︸ ︷︷ ︸
l

.

(4)
If ω(GM , I4l,ALG) ≥ 4l/3 then we are done, because ω(GM , I4l) = l as easily

seen, and we have

ω(GM , I4l,ALG) ≥ 4
3
l =

4
3
ω(GM , I4l).

If ω(GM , I4l,ALG) < 4l/3 then we consider the following sequence of addi-
tional 4l requests I ′4l:

(x, v), (x, v), · · · , (x, v)︸ ︷︷ ︸
4l

. (5)

Suppose that ALG uses l+ i (0 ≤ i < l/3) wavelengths for the sequence (4), and
let W = {w1, w2, · · · , wl+i} be the set of wavelengths used for the sequence (4).
Since the outdegree of x is 4, the maximum number of requests for which we can
assign wavelengths in W is 4(l+ i). Since the number of requests in the sequence
(4) is 4l, ALG can use the wavelengths in W for at most 4(l + i) − 4l = 4i
requests in the sequence (5). Since the indegree of v is 2, ALG needs at least
(4l−4i)/2 = 2l−2i additional wavelengths not in W for the sequence (5). Thus,
ALG uses at least (l + i) + (2l − 2i) = 3l − i wavelengths for the concatenation
of the sequences (4) and (5). Since i < l/3, we have

ω(GM , I4l ∪ I ′4l,ALG) ≥ 3l − i > 3l− 1
3
l =

8
3
l.

On the other hand, it is easy to see that ω(GM , I4l ∪ I ′4l) = 2l. Thus we have

ω(GM , I4l ∪ I ′4l,ALG) >
4
3
ω(GM , I4l ∪ I ′4l),

as desired. ��
Notice that ω(GM , I,ARB) ≤ 2ω(GM , I) for any multicast I.
Our general upper bound for the competitive ratio is �δ(x)/λ(x)
, and general

lower bound is 4/3. It is an interesting open problem to close the gap between
upper and lower bounds above.

4 Dynamic Multicasting

Given a symmetric digraph G and a sequence of request arrivals and termi-
nations for a multicast I = {(x, y)|y ∈ Y }, a dynamic algorithm assigns a
dipath P (x, yi) and a wavelength to P (x, yi), so that no two dipaths sharing
an arc are assigned the same wavelength if a request (x, yi) arrives, and deletes
P (x, yi) together with the wavelength assigned if a request (x, yi) terminates.
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Let Ij denote a collection of the existing requests just after jth request arrival
or termination in the sequence. We denote by ω(G, x, L,ALG, Ij) the number of
wavelengths used by a dynamic algorithm ALG for Ij provided that µ(G, Ij) ≤ L
for any j. Let ω(G, x, L,ALG) denote maxj ω(G, x, L,ALG, Ij) and ω(G, x, L)
denote the smallest ω(G, x, L,ALG) over all dynamic algorithms ALG. Notice
that ω(G, x, L) ≥ L.

Our dynamic algorithm ARB′ is obtained from ARB by just adding an opera-
tion that when an existing request terminates, ARB′ deletes the dipath assigned
for the request together with wavelength assigned. The following results are im-
mediate from the corresponding results in the previous section.

Theorem 5.

ω(G, x, L,ARB′) ≤
⌈
L · δ(x)
λ(x)

⌉
.

Corollary 5. If δ(x) = O(1) then ω(G, x, L,ARB′) = O(L).

Theorem 6. ω(G, x, L) = L if and only if δ(x) = λ(x).

Theorem 7.

ω(GM , x, L) ≥ 4
3
L.

It should be noted that the performance of dynamic optical routing is con-
siderably less than that of on-line optical routing in general, as mentioned in [6].
Our results indicate that the performance of dynamic multicasting is comparable
to that of on-line multicasting.

References

1. Y. Bartal and S. Leonardi. On-line routing in all-optical networks. Theoretical
Computer Science, 221:19–39, 1999. 100

2. B. Beauquier, J-C. Bermond, L. Gargano, P. Hell, S. Perennes, and U. Vaccaro.
Graph problems arising from wavelength-routing in all-optical networks. 2nd work-
shop on Optics and Computer Science, April 1997. 100

3. B. Beauquier, P. Hell, and S. Perennes. Optimal wavelength-routed multicasting.
Discrete Applied Mathematics, 84:15–20, 1998. 100, 101, 102

4. J-C. Bermond, L. Gargano, S. Perennes, A.A. Rescigno, and U. Vaccar. Efficient col-
lective communication in optical networks. Theoretical Computer Science, 233:165–
189, 2000. 100

5. J. Edmonds. Edge-disjoint branchings. In Combinatorical Algorithms, pages 91–96.
Algorithmics Press, 1972. 102, 103

6. G. Sasaki. WDM networks with limited or no wavelength conversion for worst case
traffic. In Optical WDM Networks -Principles and Practice-, pages 127–145. Kluwer
Academic Publishers, 2000. 106


	On-Line Multicasting in All-Optical Networks
	Introduction
	Off-Line Multicasting
	Proof of Theorem 1
	Proof of (G,I) (G,I).
	Proof of (G,I) (G,I).


	On-Line Multicasting
	Upper Bounds
	Lower Bounds

	Dynamic Multicasting


