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LETTER

Optimal Layouts of Virtual Paths in Complete Binary

Tree Networks

Suguru AMITANI†, Toshinori YAMADA†, Nonmembers,
and Shuichi UENO†a), Regular Member

SUMMARY It is a fundamental problem to construct a vir-
tual path layout minimizing the hop number as a function of the
congestion for a communication network. It is known that we can
construct a virtual path layout with asymptotically optimal hop
number for a mesh of trees network, butterfly network, cube-
connected-cycles network, de Bruijn network, shuffle-exchange
network, and complete binary tree network. The paper shows a
virtual path layout with minimum hop number for a complete
binary tree network. A generalization to complete k-ary tree
networks is also mentioned.
key words: communication network, complete binary tree net-

work, congestion, hop number

1. Introduction

We consider communication networks in which pairs
of nodes exchange messages along pre-defined paths,
called virtual paths. Each connection between two
nodes must consist of a concatenation of such virtual
paths. The layout is a collection of virtual paths that
guarantees the connection for every pair of nodes. The
hop number of a layout is the maximum, taken over all
pairs of nodes, of the smallest number of virtual paths
used to connect a pair of nodes. The congestion of a
layout is the maximum number of virtual paths that
pass through a link. The hop number corresponds to
the time to set up a connection between a pair of nodes,
and the congestion measures the load of the routing ta-
bles at the nodes.

It is a fundamental problem to construct a lay-
out minimizing the hop number as a function of the
congestion. For a network G, HG(c) is the minimum
hop number over all layouts with congestion at most
c. Kranakis, Krizanc, and Pelc [2] showed a general
lower bound for HG(c). They proved that for any N -
node network G with maximum node degree ∆, and
for any positive integer c, HG(c) ≥ logN/ log(c∆)− 1.
On the other hand, Stacho and Vrťo [3] showed a gen-
eral layout with hop number O(diam(G) log∆/ log c),
where diam(G) is the diameter of G. It follows that
if ∆ = O(1) and diam(G) = O(logN) then HG(c) =
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Θ(logN/ log c) for any c. In particular, we have asymp-
totically optimal bounds for HG(c) if G is a mesh
of trees network, butterfly network, cube-connected-
cycles network, de Bruijn network, shuffle-exchange
network, and complete binary tree network. However,
there is a considerable gap between the upper and lower
bounds above. In fact, the constant factor hidden in the
upper bound for complete binary tree networks is larger
than 8.

The purpose of the paper is to close the gap for
complete binary tree networks. We show the exact
value of minimum hop number for complete binary tree
networks. Our result is presented in the following the-
orem.

Theorem 1 For an N -node complete binary tree net-
work BN with height h and a positive integer c,

HBN
(c)

=




1 if 1 ≤ h ≤
⌊
log

(
1 +

√
1 + 4c

)⌋
− 1,

2 if
⌊
log

(
1 +

√
1 + 4c

)⌋
≤ h ≤ �log(c + 1)�,

3 +
⌈
2h−2�log(c+1)�−�log c�−1

�log c�+1

⌉
otherwise,

where h = log(N + 1)− 1. ✷

2. Proof of Theorem 1

2.1 Upper Bounds

Case 1. 1 ≤ h ≤ �log(1 +
√
1 + 4c)� − 1:

Let L1 be a set of virtual paths connecting every pair
of distinct vertices. L1 is a layout by definition.

Lemma 1: The congestion of layout L1 is at most c.

Proof: It is easy to see that the congestion is equal
to the number of virtual paths in L1 that pass through
an edge incident with the root. Hence, the congestion
is bounded by

2h(2h − 1) ≤ 2�log (1+
√
1+4c)�−1

×(2�log (1+
√
1+4c)�−1 − 1)

≤
√
1 + 4c + 1

2

√
1 + 4c − 1

2
= c.

✷
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Lemma 2: The hop number of layout L1 is 1.

Proof: Since every pair of distinct vertices is con-
nected by a virtual path in L1, we have the lemma. ✷

Case 2. �log(1 +
√
1 + 4c)� ≤ h ≤ �log(c + 1)�:

Let L2 be a set of virtual paths connecting the root of
the tree and all the other vertices. It is easy to see that
L2 is a layout.

Lemma 3: The congestion of layout L2 is at most c.

Proof: It is easy to see that the congestion is equal
to the number of virtual paths in L2 that pass through
an edge incident with the root. Thus, the congestion is
bounded by

2h − 1 ≤ 2�log(c+1)� − 1
≤ 2log(c+1) − 1
≤ c + 1− 1
= c.

✷

Lemma 4: The hop number of layout L2 is 2.

Proof: Any pair of distinct vertices is connected by a
concatenation of at most two virtual paths in L2. Since
a pair of distinct leaves is connected by a concatenation
of two virtual paths in L2, we have the lemma. ✷

Case 3. h ≥ �log(c + 1)�+ 1:
Recall that the level of vertices is recursively defined
as follows: the level of the root is 0; if the level of
a vertex is k then the level of a child of the vertex is
k+1. Let m be the integer satisfying h = �log(c+1)�+
m(�log c�+1)+x, where 1 ≤ x ≤ �log c�+1. Let P be
a set of virtual paths connecting each vertex v on level
h−�log(c+1)� and the descendants of v. For any integer
i(0 ≤ i ≤ m), let Qi be a set of virtual paths connecting
each vertex v on level h−�log(c+1)�−i(�log c�+1) and
the ancestors of v on levels l for h− �log(c + 1)� − (i+
1)(�log c�+1) ≤ l ≤ h−�log(c+1)�− i(�log c�+1)−1.

Subcase 3-1. 1 ≤ x ≤ (�log c + 1)/2: Let R be
a set of two virtual paths connecting the root r and
two children s, t of r, A be a set of virtual paths con-
necting each vertex v on level x and the ancestors of
v except r, and B be a set of virtual paths connect-
ing all pairs of distinct vertices on level x. Define that
L3−1 =

⋃
0≤i≤m−1Qi ∪R∪A∪B∪P. It is easy to see

that L3−1 is a layout.

Subcase 3-2. (�log c+1)/2 < x ≤ �log c�+1: Define
that L3−2 =

⋃
0≤i≤m Qi∪P. It is easy to see that L3−2

is a layout.

Lemma 5: The congestion of layouts L3−1 and L3−2

is at most c.

Proof: We prove the lemma by a series of claims.

Claim 1: There are not more than c virtual paths in
P that share an edge.

Proof: The claim follows from Lemma 3, since P is
just L2 for h = �log (c + 1)�. ✷

Claim 2: There are not more than c virtual paths in
Qi that share an edge (0 ≤ i ≤ m).

Proof: It is easy to see that the number of virtual
paths in Qi that pass through an edge incident with a
vertex on the lowest level is maximal. Thus, the number
of virtual paths in Qi that share an edge is at most
2�log c� ≤ 2log c ≤ c. ✷

Claim 3: There are not more than c virtual paths in
R∪A ∪ B that share an edge.

Proof: The number of virtual paths in R∪A∪B that
pass through an edge incident with the root is at most

2x−12x−1 + 1 = 22x−2 + 1
≤ 2�log c�−1 + 1
≤ 2log(c−1) + 1
= c.

The numbers of virtual paths in R ∪ A ∪ B that pass
through any other edge is at most

2x−12x−2 + 2x−22x−2 + 2x−2

= 3× 22x−4 + 22x−2

≤ 3× 2�log c�−3 + 2(�log c�−3)/2

≤ 3× 2log(c−1)

4
+

√
2(log(c−1))

2

=
3(c − 1)

4
+

√
c − 1
2

≤ 3
4
(c − 1) +

c

4
< c.

Thus, we have the claim. ✷

The following claims are direct from the definition.

Claim 4: No virtual path in P shares an edge with a
virtual path in

⋃
0≤i≤m Qi ∪R ∪A ∪ B.

Claim 5: No virtual path in Qj shares an edge with
a virtual path in

⋃
0≤i≤m Qi ∪R ∪A ∪ B −Qj .

From the claims above, we conclude that the con-
gestion of L3−1 and L3−2 is at most c. This completes
the proof of Lemma 5. ✷

Lemma 6: The hop number of layouts L3−k (k =
1, 2) is at most

3 +
⌈
2h − 2�log(c + 1)� − �log c − 1

�log c�+ 1

⌉
.

Proof: It is easy to see the following.



916
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.4 APRIL 2002

Claim 6: Let u and v be any vertices on levels x +
i(�log c�+1) and x+ j(�log c�+1), respectively. Then,
u and v are connected by a concatenation of at most
i + j + k virtual paths in L3−k (k = 1, 2).

For any v ∈ V (BN )−{r}, there exists a vertex w ∈
V (BN ) on level x+ i(�log c�+1) for some integer i such
that v and w are connected by a virtual path in L3−k

(k = 1, 2). Hence, any two vertices u, v ∈ V (BN )−{r}
are connected by a concatenation of at most 2m+2+k
virtual paths in L3−k (k = 1, 2) by Claim 6. Since any
vertex on level x and r are connected by a concatenation
of at most two virtual paths, any v ∈ V (BN ) and r are
connected by a concatenation of at most m + 3 virtual
paths in L3−k (k = 1, 2). Thus, the hop number of
L3−k (k = 1, 2) is at most

2 + 2m + k = 2 +
2h − 2�log(c + 1)� − 2x

�log c�+ 1
+ k.

Case 1. k = 1: Since x ≥ 1, we have

2 +
2h − 2�log(c + 1)� − 2x

�log c�+ 1
+ k

≤ 2 +
⌊
2h − 2�log(c + 1)� − 2

�log c�+ 1

⌋
+ 1

≤ 3 +
⌈
2h − 2�log(c + 1)� − 2

�log c�+ 1
− �log c − 1

�log c�+ 1

⌉

= 3 +
⌈
2h − 2�log(c + 1)� − �log c − 1

�log c�+ 1

⌉
.

Case 2. k = 2: Since x ≥ (�log c+ 2)/2, we have

2 +
2h − 2�log(c + 1)� − 2x

�log c�+ 1
+ k

≤ 2 +
⌊
2h − 2�log(c + 1)� − �log c − 2

�log c�+ 1

⌋
+ 2

= 4 +
⌊
2h − 2�log�(c + 1)�logc − 1

�log�c + 1

− 1
�log c�+ 1

⌋

≤ 3 +
⌈
2h − 2�log(c + 1)� − �log c − 1

�log c�+ 1

⌉
.

This completes the proof of Lemma 6. ✷

2.2 Lower Bounds

Case 1. 1 ≤ h ≤ �log(1 +
√
1 + 4c)� − 1:

L1 defined in Sect. 2.1.1 has hop number of 1 which is
certainly optimal, and we have nothing to prove for this
case.

Case 2. �log(1 +
√
1 + 4c)� ≤ h ≤ �log(c + 1)�:

Lemma 7: The hop number of any layout with con-
gestion c is at least 2.

Proof: The hop number is 1 only when the layout is
a set of virtual paths connecting every pair of distinct
verices. It is easy to see that the number of virtual
paths in such a layout that pass through an edge inci-
dent with the root is at least

2h(2h − 1) ≥ 2�log (1+
√
1+4c)�(2�log (1+

√
1+4c)� − 1)

>

√
1 + 4c + 1

2

√
1 + 4c − 1

2
= c.

Thus, the congestion of such a layout is more than c,
and we have the lemma. ✷

Case 3. h ≥ �log(c + 1) + 1�:
Lemma 8: The hop number of any layout with con-
gestion c is at least

3 +
⌈
2h − 2�log(c + 1)� − �log c − 1

�log c�+ 1

⌉
.

Proof: We prove the lemma by a series of claims.

Claim 7: Let v be a vertex on level h−�log(c+1)�−1.
Then, for any layout with congestion c, there exists a
descendant u of v such that no virtual path in the layout
starting at u contains v.

Proof: The proof is by contradiction. Suppose con-
trary that for each descendant w of v, there exists a
virtual path that starts at w and contains v. Then
the number of virtual paths that pass through an edge
connecting v and a child of v is

2�log (c+1)�+1 − 1 = 2× 2�log (c+1)� − 1

> 2× c + 1
2

− 1
= c,

contradicting to the assumption that the congestion is
c. ✷

Claim 8: Let v be a vertex on level l ≤ h−�log c�−2.
Then, for any layout with congestion c, there exists a
descendant u of v on level l + �log c� + 2 such that no
virtual path in the layout contains both u and v.

Proof: The proof is by contradiction. Notice that
the number of v’s descendants on level l + �log c� + 2
is 2�log c�+2. Suppose contrary that for each v’s descen-
dant w on level l + �log c� + 2, there exists a virtual
path that contains both w and v. Then the number of
virtual paths that pass through an edge connecting v
and a child of v is

2�log c�+1 = 2× 2�log c� > 2× c

2
= c,

contradicting to the assumption that the congestion is
c. ✷

Claim 9: For any layout with congestion c, if x >
(�log c+1)/2 then there exists a pair of vertices u and
v on level x such that no virtual path contains both u
and v.
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Proof: The proof is by contradiction. Notice that if s
and t are the children of the root, the number of pairs of
s’s descendant and t’s descendant on level x is at least
22x−2 ≥ 2�log c� ≥ c. Suppose contrary that for each
such pair of u and v, there exists a virtual path that
contains both u and v. By the definition of virtual path
layout, there exists at leaset one virtual path starting
at the root. Then the number of virtual paths that pass
through an edge incident with the root is at least c+1,
contradicting to the assumption that the congestion is
c. ✷

From the claims above, we conclude that there
exists a pair of s’s descendant s̄ on level l, h −
�log (c + 1)� < l ≤ h, and t’s descendant t̄ on level
l′, h − �log (c + 1)� < l′ ≤ h, such that at least

2+2m+
⌈

2x
�log c+1

⌉

= 2+
2h−2�log (c+1)�−2x

�log c�+1
+

⌈
2x

�log c+1

⌉

= 2+
2h−2�log (c+1)�−2x

�log c�+1

+
⌈
2x−�log c−1
�log c�+1

⌉
+1

= 3+
⌈
2h−2�log (c+1)�−�log c−1

�log c�+1

⌉

virtual paths are needed to connect s̄ and t̄. Here we
used that h = �log(c + 1)� + m(�log c� + 1) + x, and
1 ≤ x ≤ �log c�+1. This completes the proof of Lemma
8. ✷

3. Concluding Remarks

1. Theorem 1 can be generalized to complete k-ary tree
networks as follows.

Theorem 2 For an N -node complete k-ary tree net-
work Tk,N with height h and a positive integer c,

HTk,N
(c) =



1 if 1 ≤ h ≤
⌊
logk

(
1+

√
1+4c(k−1)

)
−logk 2

⌋
,

2 if h ≤ �logk((k−1)c+1)� and

h ≥
⌊
logk

(
1+

√
1+4c(k−1)

)
−logk 2

⌋
+1,

3+
⌈
2h−2�logk((k−1)c+1)�−�logk

c
k−1 �−1

�logk c�+1

⌉
otherwise,

where h = logk((k − 1)N + 1)− 1. ✷

2. The corresponding problem for directed graphs is
considered in [1].
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