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ABSTRACT

The de Bruijn networks are well-known as suitable structures for
parallel computations such as FFT. This paper shows an efficient
�D VLSI layout of the de Bruijn network with optimal volume
and near optimal wire-length. Our layout consists of a number
of copies of a single 2D VLSI layout for a subnetwork of the de
Bruijn network.

1. INTRODUCTION

There has been a great interest in embedding graphs into �D(three-
dimensional) grids motivated by �D VLSI circuits and �D draw-
ings. This paper is concerned with �D layouts of de Bruijn net-
works, which are well-known as suitable structures for parallel
computations such as FFT[8, 11].

The notion of �D layout of a VLSI circuit follows the classic
�D framework. The circuit is represented by a graph and the media
in which the circuit is to be realized is a �D rectangular grid. A
circuit layout is a vertex-disjoint embedding of the circuit-graph
in the grid. The cost of a layout is measured by the volume and
wire-length of the layout. It follows from general lower bounds
derived by Rosenberg[10] that the volume and wire-length of a �D
layout for an � -vertex de Bruijn network are ������� ��������

and ������� ��������, respectively. On the other hand, it is
implicit in [5] by Kock, Leighton, Maggs, Rao, Rosenberg, and
Schwabe that an � -vertex de Bruijn network can be laid out in
������� �������� volume. However, the layout is indirect and
complicated in the sense that the layout is based on a �D layout of
a butterfly network by Wise[13] via a shuffle-exchange network.

This paper shows direct and simple �D layouts of de Bruijn
networks. The volume of our layout is optimal, and the wire-length
is close to the optimal. More precisely, the volume and wire-length
of our layout for an � -vertex de Bruijn network are �������

�������� and ������� ��������, respectively. Our layout is
based on the VLSI decomposition of de Bruijn networks exten-
sively studied in the literature in connection with the construction
of large Viterbi decoders[1, 2, 3, 6, 12, 14]. A VLSI decomposi-
tion of a de Bruijn network is a collection of isomorphic vertex-
disjoint subnetworks (called building blocks) which together span
the de Bruijn network. That is, a de Bruijn network can be built
by wiring together the same building blocks. The efficiency of
such a building block is defined as the fraction of the edges of a
de Bruijn network which are present in the copies of the building
block. We use an (asymptotically) optimal building block pro-
posed by Schwabe[12]. We lay out the optimal building block in
a �-layer rectangular grid, which represents a printed circuit board

or a VLSI chip. Such �-layer rectangular grids are put one atop
another, and wired together to lay out a de Bruijn network in a �D
rectangular grid. (See Fig. 3.)

The proofs are omitted in the extended abstract due to space
limitation.

2. PRELIMINARIES

2.1. De Bruijn Networks Let � be a graph, and let � ���
and ���� denote the vertex set and the edge set of �, respectively.
We denote by Æ���� the degree of a vertex � � � ��� and define
	��� 
 ���Æ���� � � � � ����.

Let ��� 
 ��	 �	 
 
 
 	�� �� for any positive integer �. ����

is the set of binary strings of length �, and �� is the binary com-
plement of � � ���. We define two bijections on ���� as follows:
����� � � � ��� 
 �� � � � ����; ������ � � � ��� 
 �� � � � ����.

The �-dimensional de Bruijn graph, denoted by dB���, is the
graph defined as follows: � �dB���� 
 ����;��dB���� 
 ���	 �� �
� 
 ��� or � 
 ���� � ���	 �� � � 
 ���� or � 
 �����.
dB��� consists of � 
 �� vertices and �� edges.

2.2. Layouts An embedding ��	 �� of a graph � into a graph
� consists of a one-to-one mapping � � � ��� 	 � ���, together
with a mapping � that maps each edge ��	 �� � ���� onto a
path ���	 �� in � that connects ���� and ����. The congestion of
��	 �� is defined as �������� 
��

� � ���� � ����� contains ��
.
The �-dimensional �� � �� � � � � � �� grid, denoted by

����	��	 
 
 
 	���, is the graph defined as follows: � �����	
��	 
 
 
 	���� 
 ���� � ���� � � � � � ����; ������	��	 
 
 
 	

���� 
 ���	 �� �
��

��� 
�� � ��
 
 ��, where � 
 ���	 ��	 
 
 
 	
��� and � 
 ���	 ��	 
 
 
 	 ���.

A layout of a graph � into a �-dimensional grid � is an em-
bedding ��	 �� of � into � with congestion � and no knock-knee
paths. A layout of a graph � into a �-dimensional grid� is an em-
bedding ��	 �� of� into� such that ����� and ����� are internally
disjoint for any distinct ��	 �� � ����. ��	 �� is called a �-D[�-
D] layout of � if ��	 �� is a layout of � into a �-dimensional[�-
dimensional] grid �. The volume[area] of a �-D[�-D] layout
��	 �� is the number of vertices in �. The wire-length of ��	 ��
is the maximum length of a path ����.

2.3. VLSI Decompositions of de Bruijn Networks For any
graph � and positive integer �, let �� denote a disjoint union of
� copies of �. If �� is a spanning subgraph of a graph � , ��
and � are called a VLSI decomposition and a building block for
� , respectively. A spanning subgraph ���� of dB��� is called a
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universal de Bruijn building block of order� if���� is a building
block of dB�� � �� for any natural number �. The following is
due to Schwabe.

Theorem I [12] For any positive integers �, we can construct a
universal de Bruijn building block ����� of order � such that
���dB����� � ���������� � �������� ��.

Since it is known that ���dB����� � ��������� is �������
for any universal de Bruijn building block ���� [12], �����
is optimal in the sense that ����� has an asymptotically max-
imal number of edges. Since ������� is a spanning subgraph
of dB�� � ��, � �dB�� � ��� can be partitioned into �� sub-
sets ���	 ��	 
 
 
 	 ������ of size �� in such a way that there exists
a bijection �� � � ������� � �� such that ������	 ����� �
��dB�� � ��� if ��	 � � �������� (� � ���	). ���	 ��	 
 
 
 	
������ is called an S-partition of � �dB��� ���, and �� is called
an S-mapping.

3. 1-D EMBEDDINGS

Raspaud, Sýkora, and Vrt’o showed the existence of an embedding
of dB��� into ����� with congestion ������� [9]. In this section,
we show such an embedding explicitly.

We recursively define an embedding �����	 ����� of dB���
into ����� as follows: (i) ������ 
  for any  � ��	. (ii) If
���	 ��� is an S-partition of � �dB���� and �� is an S-mapping
(� � ��	), ������ 
 ����� � ��������

��
� ��� if  � ��. �������

is defined as the unique path in ����� connecting ������� and
������ for any edge � 
 ��	 � � ��dB���� (� � �).

We can prove the following.

Theorem 1 �����	 ����� is an embedding of dB��� into �����

with congestion ���� � �� � ���� � ��� 	 ������� � ��.

4. 2-D LAYOUTS

Samatham and Pradhan proved that dB��� can be laid out in a �-
dimensional grid with area ��������� [11]. However, the layout
is indirect and complicated in the sense that the layout is based on
a �-D layout of a shuffle-exchange graph by Leighton[7]. In this
section, we present a direct and simple �-D layout of dB��� with
area ���������. For simplicity, we show a �-D layout of dB���
for even �.

Let 
 be the set of natural numbers. A scheduling of
��dB���� is a mapping � � ��dB���� � 
 such that ���� �

����� if ������� and ������

�� share a vertex. A scheduling � of
��dB���� is called a �-scheduling if ����dB����� � ��	.

For � 
 ��	 � � ��dB����, we define that ����� 

���������	 �������. Suppose that ��dB���� 
 �� � � �
�����	� and � � � if ������ � ������. We define a mapping
�� � ��dB���� � 
 as follows: ������ 
 �; ������ is the
smallest � � 
 such that ������ �
 � if � � �, and �������� and
�������� share a vertex. We can prove that �� is a ����� � ��-
scheduling of ��dB����. Let � 
 �� 	 	 	��	  
 � 	 	 	 � �
��	� , and let �� 
 �� 	 	 	����, �	 
 �������� 	 	 	 ��, � 

� 	 	 	 ���, and 	 
 ������� 	 	 	 �. It is easy to see that ��� 	
��	 ��		 	� � ��dB������ if ��	 � � ��dB����.

Now, we are ready to define a layout �����	 ����� of dB���
into��������	 �������, where �� is an integer at least ��������.
We define that ������ 
 �� 	 ����������	 �������	�	 � ��	 �	.
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Fig. 1. �-D layout �����	 ����� of dB��� into ����	 ���.

It remains to define ����. For any � 
 ��	 � � ��dB���� with
 
 ����, define that: �� 
 ������� 
 �� 	 �����������	
��������	�	 � ��	 �	; �� 
 �� 	 �����������	 ��������	�	 �
�������		 	� � �	 �	; �	 
 �� 	 �����������	 �������	�	 �
�������		 	� � �	 ������� 	 �� � �	; �� 
 �� 	 ����������	
�������	�	 � ��	 ������� 	 �� � �	; �� 
 �� 	 ����������	
�������	�	 � ��	 �	 
 ������. For any � 
 ��	 � � ��dB����
with  
 ����, define that: ��

� 
 ������� 
 �� 	 �����������	
��������	�	 � ��	 �	; ��

� 
 �� 	 �����������	 ��������	�	 �
��	 �	; ��

� 
 �� 	 �����������	 ��������	�	 � �������		 	� �
�	 �	; ��

	 
 �� 	 �����������	 �������	�	 � �������		 	� �
�	 ������� 	 �� � �	; ��

� 
 �� 	 ����������	 �������	�	 �
��	 ������� 	 �� � �	; ��

� 
 �� 	 ����������	 �������	�	 �
��	 �	; ��


 
 �� 	 ����������	 �������	�	 � ��	 �	 
 ������.
Let �� [� �

� ] denote the shortest path in �����
���	 ���

���� con-
necting �� and ���� [��

� and ��

���] for � � �	 �	 �	 �� [� � ��	].
For � 
 ��	 � � ��dB����, ������� is defined as a concatenation
of paths ��, ��, �	, and �� if  
 ����, and as a concatenation
of paths � �

�, � �

�, � �

�, � �

	, � �

�, and � �

� if  
 ����. Fig.1 shows
�����	 �����.

Similarly, we can define the layout �����	 ����� for odd �, and
prove the following for every natural number �.

Theorem 2 �����	 ����� is a layout of dB��� into �����
���	

���
���� with wire-length at most �������� � ��.

It is easy to see that the area and wire-length of �����	 �����
are ��������� and ������� if �� 
 ������ � �.

5. 3-D LAYOUTS

5.1. �-Layer Layouts Let �� be a ������ � ���
��� subgrid

of ��������	 ������	 �� induced by � 	 !	 �	 �  	 ! � ����
���	�

for � � ��	, and let � �	 !�	 
 �� and � ��	 !
�

�	 
 ��

� for � �
�	 �	 �	 ��. A layout �"���	 #���� of dB��� into �����

���	

���
���	 �� is defined as follows: "����� 
 �� 	 ����������	

�������	�	 �	���	 �	 �	; #������ is the path obtained from �������
by combining two paths on�� corresponding to �� and ��[� �

� and
� �

�] in ��������	 �������, paths on �� corresponding to the rest
of ������� in ��������	 �������, and four edges �� �	 !�	 �		 � �	
!�	 �	�[�� ��	 !

�

�	 �		 � 
�

�	 !
�

�	 �	�] (� � �	 �	 �	 ��) if � 
 ��	 � with
 
 ����[ 
 ����].

The following is direct from Theorem 2.
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Theorem 3 ������ ����� is a layout of dB��� into ���������
���

���� �� with wire-length at most �������� � �� � �.

5.2. �-Layer Layout of ���	� Let 	 � ��� � �	
 ��
��
and � � � �	. Since ���	� is a spanning subgraph of dB�	�,
the following is direct from Theorem 3.

Theorem 4 ������ ������ is a layout of ���	� into ���������

������� �� with wire-length at most �������� � �� � �. where
����� is the restriction of ���� to �����	��.

Let ��� �� � � � � ����� be an S-partition of  �dB���� and
let �� �  ����	�� � � be an S-mapping (� � ���). We
define that �� � ��dB���� �

�����
��� �������� ������ � ��� �� �

�����	��	. ����	� is the graph obtained from ���	� by
adding �� Æ�	������ vertices adjacent to each � �  ����	��.
�����	� is the graph obtained from ����	� by adding a vertex
adjacent to each � �  �����	�� of degree �. dB����� is the
graph obtained from dB��� by replacing each edge of �� with a
path of length �. If� is the set of middle edges of paths of length
� corresponding to the edges of��, dB������� is isomorphic to
�������	�.

5.3. �-Layer Layout of ����	� A layout ������� �
�

����

of ����	� into ��������� ������� �� is defined as follows:
�������� � ������� � �� �� �� if � �  ����	��; �������� is
a path obtained from �������� by replacing each edge ��� �� ���
��� ��� ���� in �������� with an edge ��� �� � � ��� ��� ��� �� �
��� if � � �����	��. In order to complete the definition of
������� �

�

����, we need to define �������� for � �  �����	���
 ����	�� and �������� for � � ������	�� � �����	��.
If � is a vertex with Æ�	������ � � then there exists � ver-
tices ��� � � � � �
�� �  �����	�� �  ����	�� adjacent to �
in ����	�, where � � � � Æ�	������. Let �� � ��� ��� for
� � ��. If �������� � �� �� �� then � of the following � paths are
internally vertex-disjoint to �������� for every � � �����	��:
��� �� ��� �� �� ���, ��� �� ��� ���� �� ��� ���� �� ���, ��� �� ���
���� �� ��� ���� �� ���, and ��� �� ��� �� �� ��� �� �� ���. By us-
ing � of these paths, we define ��������� for � � ��. ��������� is
defined as the other endvertex of ��������� than �� �� ���� ���������.

We can prove the following.

Theorem 5 ������� �
�

���� is a layout of����	� into���������

������� �� with wire-length at most �������� � �� � �.

Notice that every vertex with degree � is placed at a vertex ��

��� � �� �� for some �, � � ����� and � � ��� �	, and each of
the other vertices is placed at a vertex �� ��� � �� �� for some �
and � � �����.

5.4. �-Layer Layout of �����	� A layout �������� �
��

���� of
�����	� is defined as follows. Let �� � ��	
���� if ��	
�� is
even, and �� � ��	
���� otherwise. It should be noted that ��
is even. For � � �����, let �� � �� �  �����	�� � �������� �
�� ������ ��	, � � �� �  �����	�� � �������� � �� ����
�� ��	, �� � �� �  �����	�� � �������� � �� ��� � �� ��	,
�� � 
��
, and �� � 
�
, and define that �� � ������� �

��� ��� � ��� �	 and  � �
����

��� �� . Notice that �� is even,
and so  � is also even for any � since �� is even. We define
��������� and ��������� for � �  �����	�� and � � ������	��
as follows. ��������� � �������� � ��  �� �� if � � �� for some
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Y
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Fig. 2. Placement of vertices with degree � in �������.

�. We define ��������� as the path obtained from �������� by re-
placing each edge ��� �� ��� ��� ��� ���� in �������� with an edge
��� �� �� ��� �

�� ��� �� �
��� if ��� � �� �� � ��������� for

some �, and with a shortest path between �� �� �� �� and ��� ���
 ���� �

�� if � � ���� � �� � � and �� � ���� � �� for some �.
Let �� � ������ � � � � �������	 and � � ������ � � � � ������	 in de-
creasing order of the 1st coordinates of �������� and ��������, re-
spectively. Let ����� and ����� denote the vertices adjacent to ���� and
���� in �����	� such that ����� � �

�

��� ��  ���
��	��, respectively.

We define that ������������� � ������� ���� ������� �� and
������������� � ������� ���� ������� ��. ����������� � �

�

���� is
defined as the concatenation of the shortest path between �� ����
 � � �� �� and �� ��� �  � � �� � �� ��, the shortest path be-
tween �� ���� � � �� � �� �� and ������� ���� � � �� �

�� ��, and an edge �������� ��� �  � � �� � �� ��� �������
���� � ��� ��� ���, and ����������� � �

�

���� is defined as the con-
catenation of the shortest path between �� ��� �  � � �� �� and
�� ���� ���� ��� �� and the shortest path between �� ����

 � ��� ��� �� and ������� ���� � ��� ��� ��. (See Figure
2.)

We can prove the following.

Theorem 6 �������� �
��

���� is a layout of�����	� into���������

�� ������� ���� � �� with wire-length at most ������������

���� �� � �.

Notice that ��������� � ������� �!��� �"��� for some positive
integers ! and " if Æ�	�������� � �.

5.5. �-D Layouts Now, we are ready to define a �-D lay-
out �#���� $���� of dB�����. We denote �� copies of �����	� by
����� �	�,. . . , and ���������	�. For � � ���, we lay out ����� �	�

into ������� ��� ������� � ����� � subgrid induced by
�
�� �� ��� �� �

� � ������ � ��� � � ��

� � ������ � ���� ��

�

using �������� �
��

���� for �����	�. We complete the definition of
�#���� $���� by assigning a vertex-disjoint path to each ��� �� �
� . Let  ��� � ��� � � ��� �� � �	. Notice that every vertex
of  ��� is placed at a vertex ������� �� � �� �� � �� for some
� � ������� �  �����
�� and � � �����. Let ��� % � be a
partition of  ��� such that either � � � and � � % or � � %
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and � � � for any ��� �� �� . A bipartite (multi)graph �� with
bipartition ���� � and� ��� � is defined as follows: ���� � �

��� � 	 � ��
����� � �
����

�����; � ���� � �� � � �
�������. Any two vertices ��� � ���� � and �� � � ��� �
are joined by

������

��
���� �� �

� � �� � � �� ��� �� ��
������� � �
������ �	� � 	� ��� � 	��

������� � �
������ �	� � 	� ��� � 	�

��
�

������
parallel edges. Notice that there is a one-to-one correspondence
between the edges in� and edges in �� . Let �	 denote the edge
in �� corresponding to � �� .

For a graph�, a mapping � � ������ is an edge-coloring
of � if ����� �� ����� for any adjacent edges ��� �� � ����. An
edge-coloring of � is called a �-edge-coloring if ������� � ���.
It is well-known that there exists a 
���-edge-coloring of � for
any bipartite (multi)graph �.

Let � denote a 
��� �-edge-coloring of �� . For each � �

��� �� � � , define that: �� � �
������ �	� � 	� ��� � 	� ��

��������; �� � �
����� � ����	� � 	� �	� � 	� ��� � 	�; �� �

�
����� �����	�� 	� �	�� ����	�; �� � �
����� �����	��

	� �	�� ����; �� � �
����������	���� �	�� ����; �� � �
������

����	� � �� �	� � 	� ����; �� � �
����� � ����	� � �� �	� �

	� ��� � 	�; �	 � �
������ �	� � 	� ��� � 	� �� ��������.
Let �
 be the shortest path in ����������� connecting �
 and
�
�� for � � ���, where �� � 
����� � �
��� � � 	, �� �


����� � �
����

, and �� � ����. We define for � � � that
������� is the concatenation of these seven paths, that is ������� �
���� � � ���. (See Fig.3.)

We can prove the following.

Theorem 7 	����� ����
 is a layout of dB����� into�����������

with wire-length at most ��� ��� ��� � ��
� ���
 �
�.

Since 	����� ����
 naturally induces a layout of dB���, and

��� � �  �

�
!� ���!� and �

����
�  �

�
!� ���! � by

Theorem I, we have the following:

Theorem 8 We can construct a �-D layout of dB��� with vol-
ume  �!���� ������!� and wire length  �

�
!� ���!�, where

! � ��.
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