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ABSTRACT

The de Bruijn networks are well-known as suitable structures for
parallel computations such as FFT. This paper shows an efficient
3D VLSI layout of the de Bruijn network with optimal volume
and near optimal wire-length. Our layout consists of a number
of copies of a single 2D VLSI layout for a subnetwork of the de
Bruijn network.

1. INTRODUCTION

There has been a great interest in embedding graphs into 3D(three-
dimensional) grids motivated by 3D VLSI circuits and 3D draw-
ings. This paper is concerned with 3D layouts of de Bruijn net-
works, which are well-known as suitable structures for parallel
computations such as FFT[8, 11].

The notion of 3D layout of a VLSI circuit follows the classic
2D framework. The circuit is represented by a graph and the media
in which the circuit is to be realized is a 3D rectangular grid. A
circuit layout is a vertex-disjoint embedding of the circuit-graph
in the grid. The cost of a layout is measured by the volume and
wire-length of the layout. It follows from general lower bounds
derived by Rosenberg[10] that the volume and wire-length of a 3D
layout for an N-vertex de Bruijn network are Q(N%/2/log®/2 N)
and Q(N'/2/10g®? N), respectively. On the other hand, it is
implicit in [5] by Kock, Leighton, Maggs, Rao, Rosenberg, and
Schwabe that an N-vertex de Bruijn network can be laid out in
O(N®/%/1og®* N') volume. However, the layout is indirect and
complicated in the sense that the layout is based on a 3D layout of
a butterfly network by Wise[13] via a shuffle-exchange network.

This paper shows direct and simple 3D layouts of de Bruijn
networks. The volume of our layout is optimal, and the wire-length
is close to the optimal. More precisely, the volume and wire-length
of our layout for an N-vertex de Bruijn network are O(N*/?/
log® 2 N) and O(N'/?/1og'/? N), respectively. Our layout is
based on the VLSI decomposition of de Bruijn networks exten-
sively studied in the literature in connection with the construction
of large Viterbi decoders[1, 2, 3, 6, 12, 14]. A VLSI decomposi-
tion of a de Bruijn network is a collection of isomorphic vertex-
disjoint subnetworks (called building blocks) which together span
the de Bruijn network. That is, a de Bruijn network can be built
by wiring together the same building blocks. The efficiency of
such a building block is defined as the fraction of the edges of a
de Bruijn network which are present in the copies of the building
block. We use an (asymptotically) optimal building block pro-
posed by Schwabe[12]. We lay out the optimal building block in
a 2-layer rectangular grid, which represents a printed circuit board
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or a VLSI chip. Such 2-layer rectangular grids are put one atop
another, and wired together to lay out a de Bruijn network in a 3D
rectangular grid. (See Fig. 3.)

The proofs are omitted in the extended abstract due to space
limitation.

2. PRELIMINARIES

2.1. DeBruijn Networks  Let G be a graph, and let V(G)
and E(G) denote the vertex set and the edge set of G, respectively.
We denote by d¢ (v) the degree of a vertex v € V(G) and define
A(G) = max{dc(v) : v e V(G)}.

Let [m] = {0,1, ..., m — 1} for any positive integer m. [2]"
is the set of binary strings of length n, and z is the binary com-
plement of « € [2]. We define two bijections on [2]" as follows:
o(viva---vn) =v2- VU1 Y(VIV2 - VUp) = V2 - - VR T

The n-dimensional de Bruijn graph, denoted by dB(n), is the
graph defined as follows: V' (dB(n)) = [2]"; E(dB(n)) = {(u,v) :
v=oc(u)oru =oc(w)}U{(y,v) : v =r(u)oru = ~v(v)}
dB(n) consists of N = 2™ vertices and 21V edges.

22. Layouts Anembedding (¢, p) of a graph G into a graph
H consists of a one-to-one mapping ¢ : V(G) — V(H), together
with a mapping p that maps each edge (u,v) € E(G) onto a
path p(u,v) in H that connects ¢(u) and ¢(v). The congestion of
(¢, p) is defined as max.c p(sr) |[{e' € E(G) : p(e’) contains e}|.

The d-dimensional m; x m2 X --- x mg grid, denoted by
R(mi, ma,...,mq), is the graph defined as follows: V (R(m;,
ma,...,mq)) = [mi] X [m2] X -+ X [mq]; E(R(m1,ma,...,
ma)) = {(u,v) : 0, |vi — ui| = 1}, where u = [u1, ua, .. .,
ug)and v = [v1, va, . . ., v4].

A layout of a graph G into a 2-dimensional grid R is an em-
bedding (¢, p) of G into R with congestion 1 and no knock-knee
paths. A layout of a graph G into a 3-dimensional grid R is an em-
bedding (¢, p) of G into R such that p(e1) and p(ez) are internally
disjoint for any distinct e1,e2 € E(G). (¢, p) is called a 3-D[2-
D] layout of G if (¢, p) is a layout of G into a 3-dimensional[2-
dimensional] grid R. The volume[area] of a 3-D[2-D] layout
(¢, p) is the number of vertices in R. The wire-length of (¢, p)
is the maximum length of a path p(e).

2.3. VLSl Decompositions of de Bruijn Networks  For any
graph G and positive integer k, let kG denote a disjoint union of
k copies of G. If kG is a spanning subgraph of a graph H, kG
and G are called a VLS| decomposition and a building block for
H, respectively. A spanning subgraph G(m) of dB(m) is called a
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universal de Bruijn building block of order m if G(m) is a building
block of dB(m + r) for any natural number r. The following is
due to Schwabe.

Theorem | [12] For any positive integers m, we can construct a
universal de Bruijn building block BS(m) of order m such that

|E(dB(m))| — [E(BS(m))| < 2"*/(m + 4). i

Since it is known that |E(dB(m))| — |E(G(m))| is Q(2™ /m)
for any universal de Bruijn building block G(m) [12], BS(m)
is optimal in the sense that BS(m) has an asymptotically max-
imal number of edges. Since 2"BS(m) is a spanning subgraph
of dB(m + r), V(dB(m + r)) can be partitioned into 2" sub-
sets (Vo, Vi, ..., Var_1) of size 2™ in such a way that there exists
a bijection p; : V(BS(m)) — Vi such that (p;(u), pi(v)) €
E(dB(m + r)) if (u,v) € E(BS(m)) (i € [27]). (Vo,VA,. .-,
Var_1) is called an S-partition of V (dB(m + r)), and p; is called
an S-mapping.

3. 1-D EMBEDDINGS

Raspaud, Sykora, and Vrt’o showed the existence of an embedding
of dB(n) into R(2™) with congestion O(2" /n) [9]. In this section,
we show such an embedding explicitly.

We recursively define an embedding {(¢1,,, p1,») of dB(n)
into R(2™) as follows: (i) ¢1,1(v) = v forany v € [2]. (ii) If
(Vo, V1) is an S-partition of V(dB(n)) and u; is an S-mapping
(i €2, ¢rn(v) = 2" 4 bru—1(p; H(v) if v € Vi proule)
is defined as the unique path in R(2™) connecting ¢1,, () and
¢1,»(v) for any edge e = (u,v) € E(dB(n)) (n > 1).

We can prove the following.

Theorem 1 (¢1,n, p1,n) iS an embedding of dB(n) into R(2")
with congestion ¢(n) < (1+3/(n +3)) - 2""%/(n + 3). |

4. 2-D LAYOUTS

Samatham and Pradhan proved that dB(n) can be laid out in a 2-
dimensional grid with area O(2%" /n?) [11]. However, the layout
is indirect and complicated in the sense that the layout is based on
a 2-D layout of a shuffle-exchange graph by Leighton[7]. In this
section, we present a direct and simple 2-D layout of dB(n) with
area O(2%" /n?). For simplicity, we show a 2-D layout of dB(n)
for even n.

Let A be the set of natural numbers. A scheduling of
E(dB(n)) is a mapping f : E(dB(n)) — A such that f(e) #
f(e") if p1,n(e) and p1,,(e’) share a vertex. A scheduling f of
E(dB(n)) is called a k-scheduling if f(E(dB(n))) C [k].

For e = (u,v) € E(dB(n)), we define that min(e) =
min{¢1,»(u), ¢1,»(v)}. Suppose that E(dB(n)) = {e; :
[2"*']} and i < j if min(e;) < min(e;). We define a mapping
vn + E(dB(n)) — N as follows: 1, (e0) = 0; v, (e;) is the
smallest I € N such that v, (e;) # 1 if j < i, and p1,,(e;) and
p1,n(e;) share a vertex. We can prove that ¢, is a (c(n) + 2)-
scheduling of E(dB(n)). Letu = u1---up, v = v1- v, €
[2]”, and let ug = u; - - “Up/2, UL = U(n/2)41 """ Un, VH =
VL Uy, AN UL = V(p/2)41 - - Un. IS €asy to see that (um,
vi), (ur,vr) € E(dB(n/2)) if (u,v) € E(dB(n)).

Now, we are ready to define a layout {¢2,n, p2,n) Of dB(n)
into R(c,2"?, ¢, 2™ ?), Where ¢, is an integer at least c(n/2) +4.
We define that ¢2. (v) = cn - [$1,n/2(VH), P1,n/2(vL)] + [1, 1].
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Fig. 1. 2-D layout (2,2, p2,2) of dB(4) into R(28, 28).

It remains to define p2,,. Forany e = (u,v) € E(dB(n)) with
v = o(u), define that: w1 = dan(u) = cn - [P1n/2(un),
Grny2(ur)] + [L1]; we = cn - [b1ny2(um), d1n/2(ur)]
[Wny2(ur,vr) + 2,1]; ws = cn - [P1,n/2(um), P1,n/2(vL)]
[d)n/Z(’U‘LavL) + 27¢n/2(uH7UH) + 2]1 W4 = Cn * [¢1,TL/2( H
G1,n/2(00)] + [1, Y2 (um, vm) + 2] ws = cn - [$1,0/2(vm),
G1n/2(vr)] + [1,1] = §2.0(v). Forany e = (u,v) € E(dB(n))
with v = y(u), define that: wy = ¢on(u) = cn - [P1,n/2(ur),
1,2 (ur)] + [1,1]; w) = cp - [1,n/2(wm), 1,n/2(ur)] +
[1,0]; wa = ¢n - [P1,n/2(wm), d1,ny2(ur)] + [ny2(ur, vr) +
270]v wé’) = Cn - [¢1,n/2(uH)7¢l,n/2(UL)] + [¢n/2(uL7 L) +
2:¢n/2(UH:UH) + 2]1 wﬁ; = Cn - [¢1 n/Z(UH) ¢1 n/Z(UL)] +
[0, %nyo(um,vi) + 2] ws = cn - [P1,n/2(VE), P1,n/2(vL)] +
[0,1]; wg = cn - [P1,n/2(v8)s $1,n/2(vn)] + [L, 1] = d2n(v).
Let P; [P;] denote the shortest path in R(c.2"/?,c.2"/?) con-
necting w; and w; 41 [w} and w} ] fori € {1,2,3,4} [j € [6]].
Fore = (u,v) € E(dB(n)), p2,(e) is defined as a concatenation
of paths Pi, P», Ps, and P, if v = o(u), and as a concatenation
of paths P§, P{, P3, P, Py, and P; if v = ~(u). Fig.1 shows
(92,2, p2,2).

Similarly, we can define the layout (¢, , p2,.) for odd n, and
prove the following for every natural number n.

Theorem 2 (g2, p2,) is a layout of dB(n) into R(c,2"/?,
¢, 2"/?) with wire-length at most 2¢,, (2"/2 + 1).

It is easy to see that the area and wire-length of (¢2.,, p2,n)
are O(2°" /n®) and O(2" /n) if ¢, = c(n/2) + 4.

5. 3-D LAYOUTS

5.1. 2-Layer Layouts Let R; beac,2"/? x ¢,2"/? subgrid
of R(cn2™/?, ¢, 2™/, 2) induced by {[z,y, j] : z,y € [en2"/?]}
for j € [2], and let [z;,yi] = w; and [z}, y;] = w; fori €
{2,3,4,5}. A layout (p2.n,02.,) Of dB(n) into R(c,2"/2,
cn2™?,2) is defined as follows: ¢s.,,(v) = cn - [B1,n/2(ve),
®1,n/2(vL), 0]14+[1, 1, 0]; g2, (e) is the path obtained from ps  (e)
by combining two paths on R; corresponding to P» and P4[P5 and
Pj]lin R(¢.2"/?, ¢, 2"/?), paths on R, corresponding to the rest
of pa.n(e) in R(c,2"?,c,2™?), and four edges ([z:, yi, 0], [z:,
yi, (=7, yi, 0], [27, yi, 1] G € {1,2,3,4}) if e = (u,v) with
v =o(u)[v="(u)l
The following is direct from Theorem 2.
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Theorem 3 (2,1, 02,,) is a layout of dB(n) into R(c.2"/?,
¢, 2% 2) with wire-length at most 2¢,, (2/2 + 1) + 4. |

5.2. 2-Layer Layout of BS(m) Letm = [(n + logn)/2]
and r = n — m. Since BS(m) is a spanning subgraph of dB(m),
the following is direct from Theorem 3.

Theorem 4 (p2,m, 82,m) isalayout of BS(m) into R(c,,2™/?,
em2™'2,2) with wire-length at most 2¢,, (2/2 + 1) + 4. where
@2, istherestriction of g»,,, to E(BS(m)). |

Let (Vo, Vi,...,Var_1) be an S-partition of V(dB(n)) and
let u; : V(BS(m)) — V; be an S-mapping (: € [27]). We
define that E,, = E(dB(n)) — U7 g {(1s (w), 1 (v)) : (u,v) €
E(BS(m))}. BS'(m) is the graph obtained from B.S(m) by
adding 4 — ds(m)(v) vertices adjacent to each v € V(BS(m)).
BS" (m) is the graph obtained from BS'(m) by adding a vertex
adjacent to each v € V/(BS'(m)) of degree 1. dB”(n) is the
graph obtained from dB(n) by replacing each edge of E, with a
path of length 5. If M is the set of middle edges of paths of length
5 corresponding to the edges of E,,, dB” (n) — M is isomorphic to
2"BS" (m).

5.3. 4-Layer Layout of BS'(m) A layout {¢h 1, 0% m)
of BS'(m) into R(cm2™/?,cm2™?,4) is defined as follows:
Phm (V) = p2.m(v) +[0,0,1] if v € V(BS(m)); gb,m(e) is
a path obtained from g, (e) by replacing each edge ([z,y, 2],
o'y, 2']) in 32,m(e) With an edge ([z,y,2 + 1], [,y , 2’ +
1)) ife e E(BS(m)). In order to complete the definition of
(©%,m, 02.m ), We need to define o5 ,, (v) for v € V(BS'(m)) —

(BS( )) and o5 ,(e) for e € E(BS'(m)) — E(BS(m)).
If u is a vertex with dpg(m)(u) < 4 then there exists d ver-
tices vo,...,va—1 € V(BS'(m)) — V(BS(m)) adjacent to u
in BS'(m), where d = 4 — dps(m)(u). Lete; = (u,v;) for

€ [d]. If 5 . (u) = [z,y, 1] then d of the following 4 paths are
internally vertex-disjoint to g5 ,,,(e) for every e € E(BS(m)):
([ﬁ, Y, 1]7 [1'7 Y, 0])1 ([xa Y, 1]7 [z - 17 Y, 1]7 [z - 17 Y, 0])1 ([xa Y, 1]7
[x+1,y,1],[z+1,y,0]), and ([z,y, 1], [z, v, 2], [z, y, 3]). By us-
ing d of these paths, we define gh ., (e;) for i € [d]. 5 . (vi) is
defined as the other endvertex of ¢5 ,,, (e;) than [z, y, 1](=

We can prove the following.

Theorem 5 (b, 05.n) isalayout of BS'(m) into R(c,n2™/?,
em2™?, 4) with wire-length at most 2¢,, (272 + 1) + 4. |

Notice that every vertex with degree 1 is placed at a vertex [z,
emj + 1, z] for some z, j € [2™/?] and z € {0, 3}, and each of
the other vertices is placed at a vertex [z, ¢ j + 1,1] for some z
and j € [2™/2].

54. 4-Layer Layout of BS"(m) A layout (¢% .., 05 ) Of
BS" (m) is defined as follows. Let ¢, = c(m/2) +4 if ¢(m/2) is
even, and ¢, = ¢(m/2)+ 5 otherwise. It should be noted that ¢,
iseven. Fori € [2™/2], letU; = {v € V(BS'(m)) : @h.m(v) =
[z,emi+ 1,01}, Vi = {v € V(BS' (m)): ¢h,(v) =[x, cmi+
1,3]}, Wi = {v € V(BS'(m)) : @h(v) = [v,cmi + 1, 2]},
ki = |Ui|, and I; = |V;|, and define that a; = max{2k; —
¢m,2li — ¢m,0} and A; = 31”0 a;. Notice that a; is even,
and so A; is also even for any i since ¢, is even. We define
¥ . (v) and gy . (e) for v € V(BS'(m)) and e € E(BS'(m))
as follows. ¢4 ., (v) = 5 (v) + [0, A;, 0] if v € W; for some

Ph,m (w))-

BS”(m)

Y
BS'(m)
Ui 30 ‘ Uis

C}Uiﬂ.l
Ui2 Ui2
Ui1 D Ui1
\

-0

\
0» Uir11

O

Ui+1,0 C Ui+1,0
) ¢
Ui,0{|>

?oooo

Cm i+Ai+l{ { { {Cm(i+l)+Ai+l+1
a Inserted Tracks

Cm i+l cm(i+1)+1

Fig. 2. Placement of vertices with degree 1 in BS" (n).

i. We define o4 ,,,(e) as the path obtained from g5 ,,,(e) by re-
placing each edge ([z,y, 2], [z',¥', 2']) in 05, (e) with an edge
([w,y+As, 2], [z, ¥ + Ai, 2']) ifemi <,y < em(i4+1)—1for
some 7, and with a shortest path between [z, y+A;, z] and [z', y' +
Air1, Z]ify =cm(i+1) —1and y' = ¢ (i + 1) for some .
LetU; = {ui,o, - ,Ui,kl-—l} and V; = {Ui,O, N Ui,lifl} in de-
creasing order of the 1st coordinates of 5 ,,, (v) and ¢4 ,,, (u), re-
spectively. Let u} ; and v; ; denote the vertices adjacent to u;,; and
v;,; in BS"(m )such that u} ;,vi ; & V(BS'(m)), respectively.
We define that 5, (u} ;) = [cm2™/?, emi+ A; +2j+1,1] and
502,m (Uz,]) - [0”12 /2 ’ Cmi + Al + 2] + 17 3] Q{Zl,m (ui,j7 u;,j) is
defined as the concatenation of the shortest path between [z, ¢, i+
A; +1,0] and [z, cmt + A; + 25 + 1, 0], the shortest path be-
tween [z, cmi + A; + 25 +1,0] and [cm2™/2, cmi + A; + 25 +
1,0], and an edge ([cm2™/2, cmi + A; + 2§ + 1,0], [cm2™/?,
emi+Ai+ 25 +1,1]), and 05 ,,, (vi,5, v; ;) is defined as the con-
catenation of the shortest path between [z, ¢ @ + A; + 1, 3] and
[z, cmi + A; + 27 + 1, 3] and the shortest path between [z, ¢ i +
Ai +25+1,3]and [cn2™/2, cmi + A; 4 25 + 1, 3]. (See Figure
2)
We can prove the following.

Theorem 6 (¢4 .., 05 ,,,) isalayout of BS” (m) into R(cm 2™/ +
1, em 2™ 2 4 Ay 2, 4) With wire-length at most 2¢.,, (2™/% 4+1) +
max; a; + 4.

Notice that ¢4 ,, (v) = [em2™/2,2p—1, 2q — 1] for some positive
integers p and q if dpsrr (1m) (v) = 1.

5.5. 3-D Layouts  Now, we are ready to define a 3-D lay-
out {¢s,n, p3,n) of dB” (n). We denote 2" copies of BS" (m) by
BS{ (m),...,and BS5»_,(m). Fori € [2"], we lay out BS;'(m)
iNto (€m2™/2 4 1) X (m2™/? + Aymy2) x 4 subgrid induced by

T € [em2™/? +1], k € [4] }

4i+ k] : .
{[l‘yy, v+ ] E[szm/2+A2m/2],

using (¢ ., 05.,) for BS”(m). We complete the definition of
(¢3,n, p3,n) by assigning a vertex-disjoint path to each (u,v) €
M. Let V(M) = {u,v: (u,v) € M}. Notice that every vertex
of V(M) is placed at a vertex [c,, 2™/, 25 + 1, 2k + 1] for some
j € [(em2™?* 4+ Aymy2)/2] and k € [2"T']. Let (S,T) be a
partition of V(M) such that either w € Sandv € Toru € T
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and v € S forany (u,v) € M. A bipartite (multi)graph Bas with
bipartition U (Bas) and W (Bar) is defined as follows: U(Bar) =
{uj : G € [(em2™? + Agns) /201 W(Bw) = {wi : k €
(271}, Any two vertices uj, € U(By) and wx, € W(Bu)
are joined by

seS, teT, (s,t)e M
(S,t) : ¢3,n(5) = [0m2m/27 211 + 17 2k + 1]7
Pa.n(t) = [cm2™?, 22 + 1,2k + 1]

parallel edges. Notice that there is a one-to-one correspondence
between the edges in M and edges in Bas. Let ¢, denote the edge
in Bys correspondingtoe € M.

Foragraph G, amapping s : E(G) — N is an edge-coloring
of G if k(e1) # r(e2) for any adjacent edges e1, e> € E(G). An
edge-coloring of G is called a k-edge-coloring if x(E(G)) C [k].
It is well-known that there exists a A(G)-edge-coloring of G for
any bipartite (multi)graph G.

Let f denote a A(Bas)-edge-coloring of Bys. For each e =
(s,t) € M, define that: vo = [c2™/2 251 + 1,2k1 + 1] (=
b3,n(5)); v1 = [em2™/ 2 + 2f(ee) + 1,251 + 1,2k1 + 1]; 2 =
[em2™% 4+ 2f(e) + 1,241, 2k1 + 1], v3 = [em 2™/ % + 2 (ee) +

1,241, 2k2]; va = [em 2™/ 2 4+2F (ec)+2, 21, 2ks]; vs = [cm 2™/ %+

2f(ee) + 2,252 + 1,2ka]; v6 = [em2™2 + 2f(e) + 2, 2j2 +
1,2ks 4+ 1], v7 = [em2™2,252 + 1,2k2 + 1] (= ¢3.0(t)).
Let Q; be the shortest path in R(m1, m2, m3) connecting v; and
viy1 fori € [7], where m1 = ¢, 2™/% + 2A(Bumr) + 1, ma =
em2™/? + Aymy2, and my = 2772 We define for e € M that
p3,n(e) is the concatenation of these seven paths, that is ps,» (e) =
QoQ1 - Q. (See Fig.3.)
We can prove the following.

Theorem 7 {3, p3,») isalayout of dB” (n) into R(m1, m2, m3)
with wire-length at most 2m1 + ma + ms + 2(¢m + max; a;). |

Since {(¢3,n, p3,n) Naturally induces a layout of dB(n), and

A(Buy) = O(y/N/log N) and A,/ = O(y/N/log N) by

Theorem I, we have the following:

Theorem 8 We can construct a 3-D layout of dB(n) with vol-
ume O(N3/2/10g®? N') and wire length O(y/N/log N), where
N =2" i
Acknowledgments: The research is a part of CAD21 Project at
TIT.
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