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ABSTRACT

The pyramid networks are well-known as suitable struc-
tures for parallel computations such as image process-
ing. This paper shows a practical 3D VLSI layout
of the N -vertex pyramid network with volume O(N)
and wire-length O( 3

√
N). Since the known best lower

bounds for the volume and wire-length of a 3D lay-
out for an N -vertex pyramid network are Ω(N) and
Ω( 3
√

N/ log N), respectively, the volume of our layout
is optimal, and the wire-length of our layout is close to
the optimal.

1. INTRODUCTION

There has been a great interest in embedding graphs
into 3D(three-dimensional) grids motivated by 3D VLSI
circuits and 3D drawings. This paper is concerned with
3D layouts of pyramid networks which are well-known
as suitable structures for parallel computations such as
image processing and image understanding [5, 7].

The notion of 3D layout of a VLSI circuit follows
the classic 2D framework. The circuit is represented
by a graph and the media in which the circuit is to be
realized is a 3D rectangular grid. A circuit layout is
a vertex-disjoint embedding of the circuit-graph in the
grid. The cost of a layout is measured by the volume
and wire-length of the layout. It follows from general
lower bounds derived by Rosenberg[8] that the volume
and wire-length of a 3D layout for an N -vertex pyramid
network are Ω(N) and Ω( 3

√
N/ log N), respectively. On

the other hand, it is implicit in [6] by Ng, Pun, Ip,
Hamdi, and Ahmad that an N -vertex pyramid network
can be laid out in O(N) volume with wire-length at
most O(

√
N).

This paper shows direct and simple layouts of pyra-
mid networks. The volume of our layout is optimal,
and the wire-length is close to the optimal. More pre-
cisely, the volume and wire-length of our layout for an
N -vertex pyramid network are O(N) and O( 3

√
N), re-

spectively.

Since an N -vertex multigrid network is a spanning
subgraph of an N -vertex pyramid network, it follows
that an N -vertex multigrid network can be laid out in
O(N) volume with wire-length at most O( 3

√
N), which

is an improvement on a previous result by Calamoneri
and Massini [1].

2. PRELIMINARIES

2.1. Grids

Let G be a graph, and let V (G) and E(G) denote
the vertex set and edge set of G, respectively. We de-
note by δG(v) the degree of a vertex v ∈ V (G) and
define ∆(G) = max{δG(v) : v ∈ V (G)}.

Let [m] = {0, 1, . . . , m− 1} for any positive integer
m. The d-dimensional m1×m2×· · ·×md grid, denoted
by R(m1,m2, . . . ,md), is the graph defined as follows:

V (R(m1,m2, . . . , md)) = [m1]× [m2]× · · · × [md];

E(R(m1,m2, . . . , md)) = {(u, v) :
d∑

i=1

|vi − ui| = 1},

where u = [u1, u2, . . . , ud] and v = [v1, v2, . . . , vd]. (u, v)
is called an i-dimensional edge if |vi − ui| = 1 for some
i and uj = vj for every j 6= i.

A path P on a d-dimensional grid R is called a
segment if P consists of i-dimensional edges for some
positive integer i. A segment connecting u and v is
called (u, v)-segment. Notice that any path on R can
be represented as the concatenation of segments. If a
path P connecting v0 and vk on R is represented as the
concatenation of (v0, v1)-segment, (v1, v2)-segment,. . . ,
and (vk−1, vk)-segment, then we represent P as (v0, v1,
v2, . . . , vk−1, vk).

Let R be a d-dimensional grid. For any S ⊂ V (R)
and v ∈ V (R), we define that

S + v = {s + v : s ∈ S}.



For any path P = (v0, v1, . . . , vk) on R and v ∈ V (R),

P + v = (v0 + v, v1 + v, . . . , vk + v).

2.2. Pyramid Networks

For any natural number n, the pyramid of height
n, denoted by P (n), is the graph defined as follows:
V (P (n)) = {[x, y, z] : x, y ∈ [2n−z], z ∈ [n + 1]}; Any
two vertices [x, y, z] and [x′, y′, z′] are connected by an
edge if

• |x− x′|+ |y − y′| = 1 and z = z′, or

• x′ = bx/2c, y′ = by/2c, and z′ = z + 1.

([x, y, z], [x′, y′, z′]) is called a 1-dimensional edge if |x−
x′| = 1, y = y′, and z = z′, a 2-dimensional edge if x =
x′, |y−y′| = 1, and z = z′, and a slope-edge otherwise.
It is easy to see that P (n) consists of N = (4n+1−1)/3
vertices, and ∆(P (n)) = 7 if n = 2 and ∆(P (n)) = 9 if
n ≥ 3.

For any natural numbers n and k ≤ n, Fk(n) is
defined as the subgraph of P (n) induced by {[x, y, z] ∈
V (P (n)) : z ≤ k}.

For any positive integer m and natural number l,
let [m]l = {lm, lm + 1, . . . , (l + 1)m − 1}. For any
natural numbers i, j, n, let Vi,j(n) = {[x, y, z] : x ∈
[2n−z]i, y ∈ [2n−z]j , z ∈ [n + 1]}, and define Pi,j(n)
as the following graph: V (Pi,j(n)) = Vi,j(n); Any two
vertices [x, y, z] and [x′, y′, z′] are connected by an edge
if

• |x− x′|+ |y − y′| = 1 and z = z′, or

• x′ = bx/2c, y′ = by/2c, and z′ = z + 1.

For any two graphs G and H, let G ∪ H denote the
disjoint union of G and H. For any natural numbers
n and k ≤ n, Gk(n) =

⋃
i,j∈[2n−k] Pi,j(k). It is easy to

see the following.

Theorem 1 Fk(n) is the graph obtained from Gk(n)
by connecting [(i+1)2k−z−1, y, z] and [(i+1)2k−z, y, z]
by an edge for each i ∈ [2n−k − 1], y ∈ [2n−z], and
z ∈ [k + 1], and connecting [x, (j + 1)2k−z − 1, z] and
[x, (j + 1)2k−z, z] by an edge for each j ∈ [2n−k − 1],
x ∈ [2n−z], and z ∈ [k + 1].

For any natural numbers k and n, let Uk(n) =
{[x, y, z + k] : x, y ∈ [2n−z], z ∈ [n + 1]}, and de-
fine P k(n) as the following graph: V (P k(n)) = Uk(n);
Any two vertices [x, y, z] and [x′, y′, z′] are connected
by an edge if

• |x− x′|+ |y − y′| = 1 and z = z′, or

• x′ = bx/2c, y′ = by/2c, and z′ = z + 1.

2.3. Multigrid Networks

For any natural number n, the multigrid of height
n, denoted by M(n), is the graph defined as follows:
V (M(n)) = {[x, y, z] : x, y ∈ [2n−z], z ∈ [n + 1]}; Any
two vertices [x, y, z] and [x′, y′, z′] are connected by an
edge if

• |x− x′|+ |y − y′| = 1 and z = z′, or

• x′ = x/2, y′ = y/2, and z′ = z + 1.

It is easy to see that M(n) is a spanning subgraph of
P (n) for any n.

2.4. Layouts

An embedding 〈φ, ρ〉 of a graph G into a graph H
is defined by a one-to-one mapping φ : V (G) → V (H),
together with a mapping ρ that maps each edge (u, v) ∈
E(G) onto a path ρ(u, v) in H that connects φ(u) and
φ(v). The dilation of an embedding 〈φ, ρ〉 is the maxi-
mum length of ρ(e) over all the edges e ∈ E(G).

A layout of a graph G into a 3-dimensional grid R
is an embedding 〈φ, ρ〉 of G into R such that ρ(e1) and
ρ(e2) are internally disjoint for any distinct e1, e2 ∈
E(G). 〈φ, ρ〉 is called a 3-D layout of G if 〈φ, ρ〉 is
a layout of G into a 3-dimensional grid R, and the
dilation of 〈φ, ρ〉 is called the wire-length of 〈φ, ρ〉. The
volume of a 3-D layout 〈φ, ρ〉 is the number of vertices
in R.

For any integer n ≥ 2, there exists no 3-D layout
of P (n) because ∆(P (n)) ≥ 7 and ∆(R) ≤ 6 for any
3-dimensional grid R. Thus, we extend the notion of a
3-D layout as follows: φ maps v ∈ V (G) onto a set of
two adjacent vertices in R such that φ(u)∩φ(v) = ∅ for
any distinct vertices v, v′ ∈ V (G); For any e = (u, v) ∈
E(G), ρ(e) is a path in R connecting a vertex in φ(u)
and one in φ(v) such that ρ(e) and ρ(e′) are internally
disjoint for any distinct edges e, e′ ∈ E(G).

3. MAIN RESULTS

The purpose of the paper is to prove the following
theorem.

Theorem A P (n) can be laid out in O(N) volume
with wire-length at most O( 3

√
N), where N = |V (P (n))|.

The following is immediate.

Corollary A M(n) can be laid out in O(N) volume
with wire-length at most O( 3

√
N), where N = |V (M(n))|.

4. PROOF OF THEOREM A



4.1. 3-Layer Layouts

For any natural numbers i, j, and n, we define a
mapping ψi,j,n from V (Pi,j(n)) to V (P (n)) as follows:
For any [x, y, z] ∈ V (Pi,j(n)),

ψi,j,n([x, y, z]) = [x− i2n−z, y − j2n−z, z].

It is easy to see the following.

Lemma 1 For any natural numbers i, j, and n, ψi,j,n

is an isomorphism from Pi,j(n) to P (n).

For any natural number n, we define an embedding
〈φn, ρn〉 of P (n) into R(2n+2−3, 2n+2−3, 3) as follows.

If n = 0 then we define that φ0([0, 0, 0]) = {[0, 0, 0],
[0, 0, 1]} and ρ0 : ∅ → E(R(1, 1, 3));

Let n be a positive integer. For any v ∈ V (P (n)),
we define φn(v) as follows: If v ∈ V (Pi,j(n − 1)) for
some i, j ∈ [2] then

φn(v) = φn−1(ψi,j,n−1(v)) + [i2n+1, j2n+1, 0],

and otherwise, that is if v = [0, 0, n],

φn(v) = {[2n+1 − 2, 2n+1 − 2, k] : k ∈ [2]}.
We define ρn(e) for any e ∈ E(P (n)). If e = (u, v) ∈

E(Pi,j(n− 1)) for some i, j ∈ [2] then

ρn(e) = ρn−1((ψi,j,n−1(u), ψi,j,n−1(v)))
+ [i2n+1, j2n+1, 0].

Otherwise:
If e is a 1-dimensional edge then e = ([2n−z−1 −

1, y, z], [2n−z−1, y, z]) for some y ∈ [2n−z] and z ∈ [n],
and ρn(e) is defined as ([2n+1−2z+1−2, (2y+1)2z+1−
2, 0], [2n+1 + 2z+1 − 2, (2y + 1)2z+1 − 2, 0])-segment;

If e is a 2-dimensional edge then e = ([x, 2n−z−1 −
1, z], [x, 2n−z−1, z]) for some x ∈ [2n−z] and z ∈ [n] and
ρn(e) is defined as ([(2x + 1)2z+1 − 2, 2n+1 − 2z+1 −
2, 1], [(2x + 1)2z+1 − 2, 2n+1 + 2z+1 − 2, 1])-segment;

If e = ([0, 0, n − 1], [0, 0, n]) then ρn(e) is defined
as a path ([2n − 2, 2n − 2, 1], [2n − 2, 2n − 2, 2], [2n −
2, 2n+1 − 3, 2], [2n+1 − 3, 2n+1 − 3, 2], [2n+1 − 3, 2n+1 −
3, 1], [2n+1 − 3, 2n+1 − 2, 1], [2n+1 − 2, 2n+1 − 2, 1]);

If e = ([0, 1, n− 1], [0, 0, n]) then ρn(e) is defined as
a path ([2n−2, 3 ·2n−2, 1], [2n−2, 3 ·2n−2, 2], [2n+1−
3, 3 · 2n − 2, 2], [2n+1 − 3, 2n+1 − 1, 2], [2n+1 − 3, 2n+1 −
1, 0], [2n+1 − 2, 2n+1 − 1, 0], [2n+1 − 2, 2n+1 − 2, 0]);

If e = ([1, 0, n− 1], [0, 0, n]) then ρn(e) is defined as
a path ([3 ·2n−2, 2n−2, 1], [3 ·2n−2, 2n−2, 2], [2n+1−
1, 2n − 2, 2], [2n+1 − 1, 2n+1 − 3, 2], [2n+1 − 1, 2n+1 −
3, 0], [2n+1 − 2, 2n+1 − 3, 0], [2n+1 − 2, 2n+1 − 2, 0]);

If e = ([1, 1, n−1], [0, 0, n]) then ρn(e) is defined as a
path ([3·2n−2, 3·2n−2, 1], [3·2n−2, 3·2n−2, 2], [3·2n−

2, 2n+1 − 1, 2], [2n+1 − 1, 2n+1 − 1, 2], [2n+1 − 1, 2n+1 −
1, 1], [2n+1 − 1, 2n+1 − 2, 1], [2n+1 − 2, 2n+1 − 2, 1]).

Notice that 〈φn, ρn〉 is an embedding of Pi,j(n− 1),
which is isomorphic to P (n− 1) by Lemma 1, into the
subgrid of R(2n+2 − 3, 2n+2 − 3, 3) induced by

{[x, y, z] : x, y ∈ [2n+1 − 3], z ∈ [3]}+ [i2n+1, j2n+1, 0]

by using 〈φn−1, ρn−1〉 for each i, j ∈ [2].

Lemma 2 For any [x, y, z] ∈ V (P (n)),

φn([x, y, z])
= {[(2x + 1)2z+1 − 2, (2y + 1)2z+1 − 2, k] : k ∈ [2]}.

Proof : The lemma is proved by induction on n.
The lemma holds for n = 0 since φ0([0, 0, 0]) = {[0, 0, 0],
[0, 0, 1]}.

Let n be a positive integer. Assume for inductive
step that for any [x′, y′, z′] ∈ V (P (n− 1)),

φn−1([x′, y′, z′])

= {[(2x′ + 1)2z′+1 − 2, (2y′ + 1)2z′+1 − 2, k] : k ∈ [2]}.
Notice that for any integers x, y, z, i, j,

{2(x− i2n−z−1) + 1}2z+1 − 2 + i2n+1

= (2x + 1)2z+1 − 2 and
{2(y − j2n−z−1) + 1}2z+1 − 2 + j2n+1

= (2y + 1)2z+1 − 2.

If [x, y, z] ∈ V (Pi,j(n− 1)) for some i, j ∈ [2] then

ψi,j,n−1([x, y, z]) = [x− i2n−z−1, y − j2n−z−1, z],

and therefore, we obtain by the induction hypothesis

φn([x, y, z])
= φn−1(ψi,j,n−1([x, y, z])) + [i2z+1, j2z+1, 0]
= {[(2x + 1)2z+1 − 2, (2y + 1)2z+1 − 2, k] : k ∈ [2]}.

Since

φn([0, 0, n]) = {[2n+1 − 2, 2n+1 − 2, k] : k ∈ [2]},
we conclude that

φn([x, y, z])
= {[(2x + 1)2z+1 − 2, (2y + 1)2z+1 − 2, k] : k ∈ [2]}

for any [x, y, z] ∈ V (P (n)).

It is easy to see the following.

Lemma 3 For any four natural numbers x, z, x′, and
z′, (2x + 1)2z+1 = (2x′ + 1)2z′+1 if and only if [x, z] =
[x′, z′].



Theorem 2 (φn, ρn) is a layout of P (n) into R(2n+2−
3, 2n+2 − 3, 3) with wire-length at most 2n+1 + 3.

Proof : The theorem is proved by induction on n.
Trivially, 〈φ0, ρ0〉 is a layout of P (0) into R(1, 1, 3) with
wire-length 0 ≤ 21 + 3 = 5.

Assume that 〈φn−1, ρn−1〉 is a layout of P (n−1) into
R(2n+1−3, 2n+1−3, 3) with wire-length at most 2n+3.
By Lemmas 2 and 3, φn(v)∩φn(v′) = ∅ for any distinct
v, v′ ∈ V (P (n)). By the definition of 〈φn, ρn〉, it is easy
to see that ρn(e) is a path connecting a vertex in φn(u)
and that in φn(v) for any e = (u, v) ∈ E(P (n)). Let

E0 = E(Gn−1(n)) =
⋃

i,j∈[2]

E(Pi,j(n− 1))

E1 = {([2n−z−1 − 1, y, z], [2n−z−1, y, z]) :
y ∈ [2n−z], z ∈ [n]}

E2 = {([x, 2n−z−1 − 1, z], [x, 2n−z−1, z]) :
x ∈ [2n−z], z ∈ [n]}

E3 = {([x, y, n− 1], [0, 0, n]) : x, y ∈ [2]}.

It is easy to see that (E0, E1, E2, E3) is a partition of
E(P (n)). Since 〈φn−1, ρn−1〉 is a layout of P (n−1) into
R(2n+1 − 3, 2n+1 − 3, 3) by the induction hypothesis,
ρn(e) and ρn(e′) are internally disjoint for any distinct
e, e′ ∈ E0. It is not difficult to prove that for any e ∈ E0

and e′ ∈ E(P (n))−E0, ρn(e) and ρn(e′) are internally
disjoint. For any distinct e, e′ ∈ Ei (i = 1 or 2), ρn(e)
and ρn(e′) are internally disjoint by Lemma 3. For
any distinct e, e′ ∈ E3, ρn(e) and ρn(e′) are internally
disjoint by definition. It is easy to see that for any
e ∈ Ei and e′ ∈ Ej with i 6= j (i, j ∈ {1, 2, 3}), ρn(e)
and ρn(e′) are internally disjoint. Thus, we conclude
that ρn(e) and ρn(e′) are internally disjoint for any
distinct edges e, e′ ∈ E(P (n)). Hence, 〈φn, ρn〉 is a
layout of P (n) into R(2n+2−3, 2n+2−3, 3). It is easy to
see that the wire-length of 〈φn, ρn〉 is at most 2n+1 +3.

4.2. 3-D Layouts

We denote by Qk(n) the graph obtained from Fk(n)∪
P k+1(n− k) by connecting [x, y, k] and [x, y, k + 1] by
an edge for each x, y ∈ [2n−k].

Lemma 4 For any natural numbers n and k ≤ n,
there exists an embedding 〈φ′, ρ′〉 of P (n) into Qk(n)
with dilation 2 such that ρ′(e) and ρ′(e′) are internally
disjoint for any distinct edges e, e′ ∈ E(P (n)).

Proof : For any v = [x, y, z] ∈ V (P (n)), we define
that

φ′(v) =
{

[x, y, z] if z ≤ k,
[x, y, z + 1] otherwise.

For any e = ([x, y, z], [x′, y′, z′]) ∈ E(P (n)), we define
ρ′(e) as an edge ([x, y, z], [x′, y′, z′]) if z, z′ ≤ k, an edge
([x, y, z + 1], [x′, y′, z′ + 1]) if z, z′ ≥ k + 1, and the
path consisting of two edges ([x, y, k], [x, y, k + 1]) and
([x, y, k + 1], [x′, y′, k + 2]) if x′ = dx/2e, y′ = dy/2e,
z = k, and z′ = k + 1. It is easy to see that 〈φ′, ρ′〉 is
a desired embedding.

In this subsection, we show a layout 〈ϕn, %n〉 of
Qm(n) into R(2m+2 +2l+1− 3, 2m+2 +4, 3 · 22l), where
m = d2n/3e and l = n−m. 〈ϕn, %n〉 naturally induces
a layout of P (n) into R(2m+2+2l+1−3, 2m+2+4, 3·22l)
together with 〈φ′, ρ′〉 in Lemma 4.

4.2.1. 3-D Layouts of Fm(n)

For any natural numbers i and n, we define a map-
ping σi,n from [2n]i to [2n] as follows: For any x ∈ [2n]i,

σi,n(x) =
{

x− i2n if i is even,
(i + 1)2n − 1− x otherwise.

Notice that σi,n is a bijection, and

σ−1
i,n(x′) =

{
x′ + i2n if i is even,
(i + 1)2n − 1− x′ otherwise.

Lemma 5 Let n be a natural number. If σ−1
i,n(x′) =

σ−1
j,n(y′) for some natural numbers i, j, and x′, y′ ∈ [2n]

then [i, x′] = [j, y′].

Proof : The lemma follows from the fact that i =
bσ−1

i,n(x′)/2nc.
We define a mapping ηi,j,n from V (Pi,j(n)) to V (P (n))

as follows:

µi,j,n([x, y, z]) = [σi,n−z(x), σj,n−z(y), z].

It is easy to see the following.

Lemma 6 µi,j,n is an isomorphism from Pi,j(n) to
P (n).

We define an embedding 〈ϕ′n, %′n〉 of Fm(n) into
R(2m+2 + 2l+1 − 3, 2m+2 − 1, 3 · 22l) as follows.

If v ∈ V (Pi,j(m)) for some i, j ∈ [2l] then

ϕ′n(v) = φm(µi,j,m(v)) + [2l, 1, 3σ−1
i,l (j)].

If e = (u, v) ∈ E(Pi,j(m)) for some i, j ∈ [2l] then

%′n(e) = ρm((µi,j,m(u), µi,j,m(v)))
+ [2l, 1, 3σ−1

i,l (j)].

For any e ∈ E(Fm(n))−E(Gm(n)), we define %′n(e)
as follows.



(Case 1) e is a 1-dimensional edge: e = ([(i +
1)2m−z−1, j2m−z+β, z], [(i+1)2m−z, j2m−z+β, z]) for
some i ∈ [2l − 1], j ∈ [2l], z ∈ [m + 1], and β ∈ [2m−z].
There are four subcases.

(Case 1.1) i and j are even: %′n(e) is defined as a
path ([2m+2 + 2l − 2z+1 − 2, (2β + 1)2z+1 − 1, 3(i2l +
j)], [2m+2+2l+1−4−j, (2β+1)2z+1−1, 3(i2l+j)], [2m+2+
2l+1−4−j, (2β+1)2z+1−1, 3((i+1)2l−j−1)], [2m+2+
2l + 2z+1 − 2, (2β + 1)2z+1 − 1, 3((i + 1)2l − j − 1)]).

(Case 1.2) i is even and j is odd: %′n(e) is defined
as a path ([2m+2 +2l−2z+1−2, 2m+2− (2β +1)2z+1−
1, 3(i2l +j)], [2m+2 +2l+1−4−j, 2m+2−(2β+1)2z+1−
1, 3(i2l +j)], [2m+2 +2l+1−4−j, 2m+2−(2β+1)2z+1−
1, 3((i + 1)2l − j − 1)], [2m+2 + 2l − 2z+1 − 2, 2m+2 −
(2β + 1)2z+1 − 1, 3((i + 1)2l − j − 1)]).

(Case 1.3) i is odd and j is even: %′n(e) is defined
as a path ([2l +2z+1− 2, (2β +1)2z+1− 1, 3((i+1)2l−
j − 1)], [2l − j − 1, (2β + 1)2z+1 − 1, 3((i + 1)2l − j −
1)], [2l − j − 1, (2β + 1)2z+1 − 1, 3((i + 1)2l + j)], [2l +
2z+1 − 2, (2β + 1)2z+1 − 1, 3((i + 1)2l + j)]).

(Case 1.4) i and j are odd: %′n(e) is defined as a
path ([2l+2z+1−2, 2m+2−(2β+1)2z+1−1, 3((i+1)2l−
j−1)], [2l− j−1, 2m+2− (2β +1)2z+1−1, 3((i+1)2l−
j−1)], [2l− j−1, 2m+2− (2β +1)2z+1−1, 3((i+1)2l +
j)], [2l+2z+1−2, 2m+2−(2β+1)2z+1−1, 3((i+1)2l+j)]).

(Case 2) e is a 2-dimensional edge: e = ([i2m−z +
α, (j + 1)2m−z − 1, z], [i2m−z + α, (j + 1)2m−z, z]) for
some i ∈ [2l], j ∈ [2l − 1], z ∈ [m + 1], and α ∈ [2m−z].
There are five subcases.

(Case 2.1) i and j are even, and z 6= m: %′n(e) is
defined as a path ([2l +(2α+1)2z+1−2, 2m+2−2z+1−
1, 3(i2l +j)+1], [2l +(2α+1)2z+1−2, 2m+2−2, 3(i2l +
j)+1], [2l +(2α+1)2z+1− 2, 2m+2− 2, 3(i2l + j +1)+
1], [2l + (2α + 1)2z+1 − 2, 2m+2 − 2z+1 − 1, 3(i2l + j +
1) + 1]).

(Case 2.2) i is even and j is odd, and z 6= m:
%′n(e) is defined as a path ([2l +(2α+1)2z+1−2, 2z+1−
1, 3(i2l + j) + 1], [2l + (2α + 1)2z+1 − 2, 0, 3(i2l + j) +
1], [2l +(2α+1)2z+1−2, 0, 3(i2l +j +1)+1], [2l +(2α+
1)2z+1 − 2, 2z+1 − 1, 3(i2l + j + 1) + 1]).

(Case 2.3) i is odd and j is even, and z 6= m: %′n(e)
is defined as a path ([2m+2+2l−(2α+1)2z+1−2, 2m+2−
2z+1−1, 3((i+1)2l−j−1)+1], [2m+2+2l−(2α+1)2z+1−
2, 2m+2− 2, 3((i + 1)2l− j− 1) + 1], [2m+2 + 2l− (2α +
1)2z+1−2, 2m+2−2, 3((i+1)2l−j−2)+1], [2m+2+2l−
(2α+1)2z+1−2, 2m+2−2z+1−1, 3((i+1)2l−j−2)+1]).

(Case 2.4) i and j are odd, and z 6= m: %′n(e) is
defined as a path ([2m+2 +2l− (2α+1)2z+1−2, 2z+1−
1, 3((i + 1)2l − j − 1) + 1], [2m+2 + 2l − (2α + 1)2z+1 −
2, 0, 3((i+1)2l− j−1)+1], [2m+2 +2l− (2α+1)2z+1−
2, 0, 3((i+1)2l− j−2)+1], [2m+2 +2l− (2α+1)2z+1−
2, 2z+1 − 1, 3((i + 1)2l − j − 2) + 1]).

(Case 2.5) z = m, that is u = [i, j, m] and v =

[i, j+1, m]: If i is even then %′n(e) is defined as ([2m+1+
2l − 2, 2m+1 − 1, 3(i2l + j) + 1], [2m+1 + 2l − 2, 2m+1 −
1, 3(i2l + j + 1)])-segment. If i is odd then %′n(e) is
defined as ([2m+1 + 2l − 2, 2m+1 − 1, 3((i + 1)2l − j −
1)], [2m+1 + 2l − 2, 2m+1 − 1, 3((i + 1)2l − j − 2) + 1])-
segment.

It should be noted that 〈ϕ′n, %′n〉 is an embedding of
Pi,j(m) into the subgrid of R(2m+2 + 2l+1 − 3, 2m+2 −
1, 3 ·22l) induced by {[x+2l, y+1, z+3σ−1

i,l (j)] : x, y ∈
[2m+2 − 3], z ∈ [3]} by using µi,j,m and 〈φm, ρm〉 for
each i, j ∈ [2l].

Theorem 3 〈ϕ′n, %′n〉 is a layout of Fm(n) into R(2m+2+
2l+1−3, 2m+2−1, 3·22l) with wire-length at most 2m+2+
2l+3 − 7, where m = d2n/3e and l = n−m.

Proof : By Theorem 2 and Lemmas 5 and 6, ϕ′n(v)∩
ϕ′n(v′) = ∅ for any distinct v, v′ ∈ V (Fm(n)). It is easy
to see that ρn(e) is a path connecting a vertex in ϕ′n(u)
and one in ϕ′n(v) for any e = (u, v) ∈ E(Fm(n)). It is
not difficult to prove that %′n(e) and %′n(e′) are inter-
nally disjoint for any distinct edges e, e′ ∈ E(Fm(n)),
and the wire-length of 〈ϕ′n, %′n〉 is at most 2m+2+2l+3−
7.

4.2.2. 3-D Layouts of Qm(n)

For any natural numbers k and n, we define a map-
ping τk,n from V (P k(n)) to V (P (n)) as follows: For
any [x, y, z] ∈ V (P k(n)),

τk,n([x, y, z]) = [x, y, z − k].

It is easy to see the following.

Lemma 7 For any natural numbers k and n, τk,n is
an isomorphism of P k(n) into P (n).

We define an embedding 〈ϕn, %n〉 of Qm(n) into R =
R(2m+2 + 2l+1 − 3, 2m+2 + 4, 3 · 22l) as follows. (See
Figure 1.)

(Case 1) Subgraph Fm(n): Embeds Fm(n) into
the subgrid of R induced by {[x, y, z] ∈ V (R) : y ∈
[2m+2 − 1]} by using 〈ϕ′n, %′n〉;

(Case 2) Subgraph Pm+1(l): Embeds Pm+1(l) into
the subgrid of R induced by {[x, y, z] ∈ V (R) : y ≥
2m+2 + 1} as follows: Layout Pm+1(l) into R(2l+2 −
3, 2l+2−3, 3) by using τm+1,l and 〈φl, ρl〉; Layout R(2l+2−
3, 2l+2 − 3, 3) into R(2l+2 − 3, 3, 2l+2 − 3) by mapping
[x, y, z] into [y, z, x]; Layout R(2l+2−3, 3, 2l+2−3) into
R(2l+2− 3, 3, 3 · 2l(2l− 1)+1) by mapping [x, y, z] into
[x, y, 3 · 2l−2z]; Layout R(2l+2 − 3, 3, 3 · 2l(2l − 1) + 1)
into R by mapping [x, y, z] to [x, y+2m+2+1, z]. Then,

ϕn([i, j, m + 1])
= {[4j, 2m+2 + 1 + k, (3i)2l] : k ∈ [2]}
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Figure 1: Layout of the Pyramid P (n)

for each i, j ∈ [2l].
(Case 3) Edge e = ([i, j, m], [i, j, m + 1]) for each

i, j ∈ [2l]: we define %n(e) as ([2m+1 + 2l − 2, 2m+1 −
1, 3σ−1

i,l (j)+1], [2m+1+2l−2, 2m+2−1, 3σ−1
i,l (j)+1], [4j,

2m+2−1, 3σ−1
i,l (j)+1], [4j, 2m+2, 3σ−1

i,l (j)+1], [4j, 2m+2,

(3i)2l], [4j, 2m+2 + 1, (3i)2l]).

Theorem 4 〈ϕn, %n〉 is a layout of Qm(n) into R(2m+2+
2l+1−3, 2m+2+4, 3·22l) with wire-length at most 2m+2+
2l+3 − 7.

Proof : First, we prove that ϕn(v)∩ ϕn(v′) = ∅ for
any distinct vertices v, v′ ∈ V (Qm(n)). By Theorem 3,
ϕn(v) ∩ ϕn(v′) = ∅ for any distinct vertices v, v′ ∈
V (Fm(n)). By Theorem 2 and Lemma 7, ϕn(v) ∩
ϕn(v′) = ∅ for any distinct vertices v, v′ ∈ V (Pm+1(l)).
Since

max{y : [x, y, z] ∈ ϕn(v), v ∈ V (Fm(n))}
≤ 2m+2 − 3 and

min{y : [x, y, z] ∈ ϕn(v), v ∈ V (Pm+1(l))}
≥ 2m+2,

ϕn(v) ∩ ϕn(v′) = ∅ for any v ∈ V (Fm(n)) and v′ ∈
V (Pm+1(l)). Hence, ϕn(v)∩ϕn(v′) = ∅ for any distinct
vertices v, v′ ∈ V (Qm(n)).

Next, we prove that %n(e) and %n(e′) are internally
disjoint for any distinct edges e, e′ ∈ E(Qm(n)). By
Theorem 3, %n(e) and %n(e′) are internally disjoint for
any distinct edges e, e′ ∈ E(Fm(n)). By Theorem 2,
%n(e) and %n(e′) are internally disjoint for any dis-
tinct edges e, e′ ∈ E(Pm+1(l)). It is easy to see that
%n(e) and %n(e′) are internally disjoint for any e ∈
E(Pm+1(l)) and e′ ∈ E(Qm(n))−E(Pm+1(l)). It is not
difficult to see that %n(e) and %n(e′) are internally dis-
joint for any e ∈ E(Fm(n)) and e′ = ([i, j, m], [i, j, m +
1]) (i, j ∈ [2m]). Hence, %n(e) and %n(e′) are internally
disjoint for any distinct edges e, e′ ∈ E(Qm(n)).

It is easy to see that the wire-length of 〈ϕn, %n〉 is
at most 2m+2 + 2l+3 − 7 by Theorem 3.

Theorem 4 and Lemma 4 complete the proof of The-
orem A.
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