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LETTER

On-Line Multicasting in All-Optical Networks

Kenta HASHIMOTO†, Toshinori YAMADA†, Nonmembers,
and Shuichi UENO†a), Regular Member

SUMMARY We consider the routing for a multicast in a
WDM all-optical network. We prove a min-max theorem on the
number of wavelengths necessary for routing a multicast. Based
on the min-max theorem, we propose an efficient on-line algo-
rithm for routing a multicast.
key words: all-optical network, wavelength division multiplex-
ing, multicast, on-line algorithm

1. Introduction

A WDM (Wavalength Division Multiplexing) all-
optical network consists of routing nodes intercon-
nected by point-to-point unidirectional fiber-optic
links, which support a certain number of wavelengths.
The same wavelength on two input ports cannot be
routed to the same output port due to the interference.
An optical routing assigns a path and a wavelength
for each communication request in such a way that no
two paths traversing a common link are assigned the
same wavelength. A fundamental problem for WDM
all-optical networks is to minimize the number of wave-
lengths necessary for the optical routing. This paper
considers the on-line optical routing for a special col-
lection of communication requests called a multicast.

A WDM all-optical network is modeled as a sym-
metric digraph (directed graph) G with vertex set V (G)
and arc (directed edge) set A(G) such that if (u, v) ∈
A(G) then (v, u) ∈ A(G), where the vertices represent
the routing nodes and each arc represents a point-to-
point unidirectional fiber-optic link connecting a pair
of routing nodes.

Let P (x, y) denote a dipath (directed path) in G
from the vertex x to y which consistis of consecutive
arcs beginning at x and ending at y. A request is an or-
dered pair of vertices (x, y) inG corresponding to a mes-
sage to be sent from x to y, and an instance I is a col-
lection (multiset) of requests. A routing for an instance
I is a collection of dipaths R = {P (x, y)|(x, y) ∈ I}.

Given a symmetric digraph G, an instance I, and
a routing R for I, ω(G, I,R) is the minimum number
of wavelengths that can be assigned to the dipaths in
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R, so that no two dipaths sharing an arc have the same
wavelength. Let ω(G, I) denote the smallest ω(G, I,R)
over all routings R for I. The load of an arc α ∈ A(G) in
R, denoted by π(G, I,R, α), is the number of dipaths
in R containing α. Let π(G, I,R) denote the largest
π(G, I,R, α) over all arcs α ∈ A(G), and π(G, I) denote
the smallest π(G, I,R) over all routings R for I. It is
known that computing ω(G, I) and π(G, I) is NP-hard
in general [2]. It is not difficult to see that ω(G, I) >=
π(G, I) for an instance I in a symmetric digraph G and
that the inequality can be strict in general [2].

Beauquier, Hell, and Perennes [3] proved that for
a multicast I in a symmetric digraph G, ω(G, I) =
π(G, I) and both ω(G, I) and π(G, I) can be computed
in polynominal time. An instance I is called a multicast
if I is of the form {(x, y)|y ∈ Y } for a fixed vertex x ∈
V (G), called the source, and a collection Y of vertices
in V (G), called the destinations.

This paper shows a min-max equality on ω(G, I)
for a multicast I in a symmetric digraph G by means of
the cut in G. For a digraph G and a nonempty proper
subset S ⊂ V (G), a cut (S, S) is the set of arcs begin-
ning in S and ending in S, where S = V (G)−S. For a
multicast I = {(x, y)|y ∈ Y } and a cut (X,X) with x ∈
X ⊂ V (G), let µ(G, I,X) denote �|Y ∩ X|/|(X,X)|	,
and µ(G, I) denote the largest µ(G, I,X) over all cuts
(X,X) with x ∈ X ⊂ V (G). Notice that µ(G, I,X) is a
lower bound on the average load of an arc in (X,X) for
any routing for I. We prove a min-max equality that
ω(G, I) = µ(G, I), which is used as a basis for on-line
multicasting. Let δ(x) denote the outdegree of x and
λ(x) denote min{|(X,X)||x ∈ X ⊂ V (G)}. Notice that
δ(x) >= λ(x). If I is a broadcast, that is I = {(x, y)|y ∈
V (G) − x} and δ(x) = λ(x) then our min-max equal-
ity implies that ω(G, I) = �(|V (G)| − 1)/δ(x)	, which
is essentially Theorem 3.1 in [4] proved by Bermond,
Gargano, Perennes, Rescigno, and Vaccaro.

Given a symmetric digraph G and a sequence of
requests (xi, yi), an on-line algorithm assigns a dipath
P (xi, yi) and a wavelength to P (xi, yi), so that no two
dipaths sharing an arc are assigned the same wave-
length. The performance measure for an on-line algo-
rithm is the competitive ratio defined as the worst-case
ratio over all request sequences between the number
of wavelengths used by the on-line algorithm and the
optimal number of wavelengths necessary on the same
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sequence. Bartal and Leonardi [1] showed on-line al-
gorithms with competitive ratio of O(logN) for any
instances in N -vertex digraphs associated with meshs,
trees, and trees of rings, where the digraph associated
with a graphH is the symmetric digraph obtained when
each edge e of H is replaced by two oppositely oriented
arcs with the same ends as e. They also proved a match-
ing lower bound of Ω(logN) for digraphs associated
with meshes, and a lower bound of Ω(logN/ log logN)
for digraphs associated with trees and trees of rings [1].

We show here an on-line algorithm for a multicast
I = {(x, y)|y ∈ Y } in a symmetric digraph G. We
prove that the competitive ratio of our algorithm is
�δ(x)/λ(x)	. It follows that if δ(x) = O(1) then the
competitive ratio of our algorithm is O(1). Moreover,
if δ(x) = λ(x) then our algorithm is optimal. We also
show a complementary result that if δ(x) > λ(x) then
there is no optimal on-line algorithm. Moreover, we
show that the competitive ratio of any on-line algo-
rithm is at least 4/3. We also consider the dynamic
multicasting.

2. Off-Line Multicasting

We prove in this section the following min-max equality,
which will be used in the subsequent sections.

Theorem 1: ω(G, I) = µ(G, I) for a multicast I in a
symmetric digraph G.

2.1 Proof of Theorem 1

Let G be a symmetric digraph and I = {(x, y)|y ∈ Y }
be a multicast in G.

2.1.1 Proof of ω(G, I) >= µ(G, I)

It is well-known and easily verified that

ω(G, I) >= π(G, I). (1)

Since µ(G, I,X) is a lower bound on the average load
of an arc in a cut (X,X) with x ∈ X ⊂ V (G) for any
routing R for I, we have

π(G, I,R) >= µ(G, I,X)

for any routing R for I and any cut (X,X) with x ∈
X ⊂ V (G). Thus, it follows that

π(G, I) >= µ(G, I). (2)

Combining (1) and (2), we have

ω(G, I) >= µ(G, I).

2.1.2 Proof of ω(G, I) <= µ(G, I)

It is proved in [3] that for a multicast I = {(x, y)|y ∈ Y }
in a symmetric digraph G we have

ω(G, I) = π(G, I), (3)
by using flow networks derived from G.

In a flow network, we denote by c(u, v) the capacity
of an arc (u, v), and by c(T, T ) the capacity of a cut
(T, T ). Although Y is a collection (multiset) in general,
we assume without loss of generality that Y is just a
set, as mentioned in [3].

In order to compute π(G, I) the following flow net-
work Fp is introduced in [3]. Let s and t be two new
vertices which will be the source and sink in Fp, respec-
tively. The flow network Fp is defined as follows:

V (Fp) = {s, t} ∪ V (G)

A(Fp) = {(s, x)} ∪A(G) ∪
( ⋃

y∈Y

{(y, t)}
)

c(s, x) =∞
c(u, v) = p for all (u, v) ∈ A(G)
c(y, t) = 1 for all y ∈ Y .

The theorem below directly follows from the defi-
nition.

Theorem I: [3] π(G, I) <= p if and only if Fp has a
flow of value |Y |.

By (3) and Theorem I above, it suffices to show
that Fµ(G,I) has a flow of value |Y |. We prove this by
showing that any cut in Fµ(G,I) separating s and t has
capacity at least |Y |. Any cut in Fµ(G,I) separating
s and t can be represented as (S ∪ {s}, S ∪ {t}) for a
subset S of V (G) and S = V (G)− S. It is easy to see
that

c(S ∪ {s}, S ∪ {t})
=

{ |Y ∩ S|+ µ(G, I) · |(S, S)| if x ∈ S
∞ if x ∈ S

where (S, S) is a cut in G. It follows that we may
assume that x ∈ S. Then we have

c(S ∪ {s}, S ∪ {t})
= |Y ∩ S|+ µ(G, I) · |(S, S)|
= |Y ∩ S|

+max

{⌈ |Y ∩X |
|(X,X)|

⌉∣∣∣∣∣x∈X⊂V (G)

}
· |(S, S)|

>= |Y ∩ S|+
⌈ |Y ∩ S|
|(S, S)|

⌉
· |(S, S)|

>= |Y ∩ S|+ |Y ∩ S|
|(S, S)| · |(S, S)|

= |Y ∩ S|+ |Y ∩ S| = |Y |,
as desired.

3. On-Line Multicasting

3.1 Upper Bounds

Let G be a symmetric digraph, and (x, y1), (x, y2), · · · ,
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(x, yj), · · · be a sequence of multicast requests in G. Let
Ij denote the collection {(x, y1), (x, y2), · · · , (x, yj)},
and Yj denote the collection {y1, y2, · · · , yj}. We as-
sume without loss of generality that x is not a cut-
vertex in G. We also assume that the wavelengths are
labeled with positive integers. Our on-line algorithm is
based on a classic theorem of Edmonds [5]. For a ver-
tex u of a digraph G, u-arborescence H(u) in G is an
acyclic spanning subdigraph of G such that for every
vertex v ∈ V (G) there is exactly one dipath in H(u)
from u to v.

Theorem II: [5] For a digraph G and a vertex
u ∈ V (G), the maximum number of arc-disjoint u-
arborescences in G is equal to λ(u).

Let H = {H1(x),H2(x), · · · , Hλ(x)(x)} be a set of
arc-disjoint x-arborescences in G. For each request,
our on-line algorithm, called ARB, assigns a dipath in
an x-arborescence in H. Given a request (x, yj), ARB
finds an x-arborescence Hk(x) such that the number
of dipaths in Hk(x) assigned to the existing requests is
minimal, assigns the unique dipath P (x, yj) in Hk(x),
and assigns the lowest available wavelength to P (x, yj).

Theorem 2: The competitive ratio of ARB is
�δ(x)/λ(x)	.
Proof: From Theorem 1, we have that for any j,

ω(G, Ij) = µ(G, Ij)

= max

{⌈ |Yj ∩X|
|(X,X)|

⌉ ∣∣∣∣∣ x ∈ X ⊂ V (G)

}

>=

⌈ |Yj ∩ (V (G)− {x})|
|({x}, V (G)− {x})|

⌉

=
⌈ |Yj |
δ(x)

⌉
>=

|Yj |
δ(x)

.

Let ω(G, Ij ,ALG) denote the number of wave-
lengths used by an on-line algorithm ALG for Ij . We
have that

ω(G, Ij ,ARB) =
⌈ |Yj |
λ(x)

⌉
<=

⌈
ω(G, Ij) · δ(x)

λ(x)

⌉
<=

⌈
δ(x)
λ(x)

⌉
· ω(G, Ij),

as desired. ✷

The following corollaries are immediate. An on-
line algorithm ALG is said to be optimal for G if
ω(G, Ij ,ALG) = ω(G, Ij) for any j.

Corollary 1: If δ(x) is O(1) then the competitive ra-
tio of ARB is O(1).

Corollary 2: If δ(x) = λ(x) then ARB is optimal for
G.

Corollary 3: ARB is optimal for digraphs associated
with trees, cycles, tori, hypercubes, and cube-connected
cycles.

3.2 Lower Bounds

The following is a complementary result to Corollary 2.

Theorem 3: If δ(x) > λ(x) then there is no on-line
algorithm optimal for G.

Proof: We prove the theorem by contradiction. Let
G be a symmetric digraph, and x be a vertex in G
with δ(x) > λ(x). Assume that there is an on-line
algorithm ALG optimal for G. Let (X,X) be a cut in
G such that x ∈ X ⊂ V (G) and |(X,X)| = λ(x), and
v be a vertex in X. We denote the arcs with tail x by
(x, u1), (x, u2), · · · , (x, uδ(x)). We consider the following
sequence of requests:

(x, u1), (x, u2), · · · , (x, uδ(x)), (x, v), (x, v), · · · , (x, v)︸ ︷︷ ︸
λ(x)+1

.

Since ALG is optimal for G, ALG assigns for the re-
quests (x, ui) arc-disjoint dipaths P (x, ui) and the same
wavelength, say w, to the dipaths P (x, ui) (1 <= i <=
δ(x)). Notice that each arc (x, ui) is contained in the
dipaths assigned wavelength w (1 <= i <= δ(x)). Since
|(X,X)| = λ(x), ALG uses at least two more wave-
lengths different from w for the last λ(x) + 1 requests
of (x, v). Thus, ALG uses at least 3 wavelengths for the
request sequence. On the other hand, we have the fol-
lowing off-line algorithm. There is a set A of λ(x) arc-
disjoint x-arborescences in G by Theorem II. For each
of λ(x) requests of (x, v), we assign a dipath in distinct
x-arborescence in A, and assign the same wavelength,
say w, to the dipaths. Since δ(x) > λ(x), there exists
some ui (1 <= i <= δ(x)) such that no dipaths above
pass through ui. Since x is not a cut-vertex, there is a
dipath P (ui, v) that dose not pass through x. For the
remaining request of (x, v), we assign a dipath consist-
ing of arc (x, ui) and P (ui, v), and assign a wavelength
different from w, say w′, to the dipaths. Then we can
assign a dipath consisting of an arc (x, uj) with wave-
length w′ for every requests (x, uj) (j |= i), and arc
(x, ui) with wavelength w for request (x, ui). In total,
we use only 2 wavelengths for the request sequence, a
contradiction. Thus we have the theorem. ✷

By Corollary 2 and Theorem 3 above, we have the
following corollary.

Corollary 4: There is an on-line algorithm optimal
for G if and only if δ(x) = λ(x).

We can show a general lower bound as follows. Let
M be a mesh with V (M) = {0, 1, 2}2. The vertices ij
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and i′j′ are adjacent if and only if |i− i′|+ |j − j′| = 1.
Let GM be the digraph associated with M .

Theorem 4: The competitive ratio of any on-line al-
gorithm for GM is at least 4/3.

Proof: Let u1 = 01, u2 = 10, u3 = 12, u4 = 21,
v = 00, and x = 11. Let ALG be any on-line
algorithm for GM . For any positive integer l, we
consider the following sequence of 4l requests I4l:
(x, u1), · · ·, (x, u1)︸ ︷︷ ︸

l

, (x, u2), · · ·, (x, u2)︸ ︷︷ ︸
l

, (x, u3), · · ·, (x, u3)︸ ︷︷ ︸
l

,

(x, u4), · · · , (x, u4)︸ ︷︷ ︸
l

. (4)

If ω(GM , I4l,ALG) >= 4l/3 then we are done, be-
cause ω(GM , I4l) = l as easily seen, and we have

ω(GM , I4l,ALG) >=
4
3
l =

4
3
ω(GM , I4l).

If ω(GM , I4l,ALG) < 4l/3 then we consider the
following sequence of additional 4l requests I ′4l:

(x, v), (x, v), · · · , (x, v)︸ ︷︷ ︸
4l

. (5)

Suppose that ALG uses l+ i (0 <= i < l/3) wavelengths
for the sequence (4), and let W = {w1, w2, · · · , wl+i}
be the set of wavelengths used for the sequence (4).
Since the outdegree of x is 4, the maximum number of
requests for which we can assign wavelengths in W is
4(l + i). Since the number of requests in the sequence
(4) is 4l, ALG can use the wavelengths inW for at most
4(l+ i)−4l = 4i requests in the sequence (5). Since the
indegree of v is 2, ALG needs at least (4l−4i)/2 = 2l−2i
additional wavelengths not in W for the sequence (5).
Thus, ALG uses at least (l + i) + (2l − 2i) = 3l − i
wavelengths for the concatenation of the sequences (4)
and (5). Since i < l/3, we have

ω(GM , I4l ∪ I ′4l,ALG) >= 3l − i > 3l − 1
3
l =

8
3
l.

On the other hand, it is easy to see that ω(GM , I4l ∪
I ′4l) = 2l. Thus we have

ω(GM , I4l ∪ I ′4l,ALG) >
4
3
ω(GM , I4l ∪ I ′4l),

as desired. ✷

Notice that ω(GM , I,ARB) <= 2ω(GM , I) for any
multicast I.

Our general upper bound for the competitive ratio
is �δ(x)/λ(x)	, and general lower bound is 4/3. It is
an interesting open problem to close the gap between
upper and lower bounds above.

4. Dynamic Multicasting

In the dynamic multicasting, a sequence of request ar-
rivals and terminations is given for a multicast I =

{(x, y)|y ∈ Y }. A dynamic algorithm assigns a dipath
P (x, yi) and a wavelength to P (x, yi), so that no two di-
paths sharing an arc are assigned the same wavelength
if a request (x, yi) arrives, and deletes P (x, yi) together
with the wavelength assigned if a request (x, yi) ter-
minates. Let Ij denote a collection of the existing re-
quests just after jth request arrival or termination in
the sequence. We denote by ω(G,x,L,ALG, Ij) the
number of wavelengths used by a dynamic algorithm
ALG for Ij provided that µ(G, Ij) <= L for any j. Let
ω(G,x,L,ALG) denote maxj ω(G,x,L,ALG, Ij) and
ω(G,x,L) denote the smallest ω(G,x,L,ALG) over all
dynamic algorithms ALG. Notice that ω(G,x,L) >= L.

Our dynamic algorithm ARB′ is obtained from
ARB by simply adding the operation of deleting a path
for the termination of the corresponding request. The
following results are immediate from the corresponding
results in the previous section.

Theorem 5:

ω(G,x,L,ARB′) <=

⌈
L · δ(x)
λ(x)

⌉
.

Corollary 5: If δ(x) = O(1) then ω(G,x,L,ARB′)
= O(L).

Theorem 6: ω(G,x,L) = L if and only if δ(x) =
λ(x).

Theorem 7:

ω(GM , x, L) >=
4
3
L.

It should be noted that the performance of dy-
namic optical routing is considerably less than that of
on-line optical routing in general, as mentioned in [6].
Our results indicate that the performance of dynamic
multicasting is comparable to that of on-line multicas-
ting.
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