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ABSTRACT

We consider adaptive fault diagnosis for array multipro-
cessor systems. We show that three testing rounds are nec-
essary and sufficient for adaptive parallel diagnosis of anN -
processor system modeled by ad-dimensional square mesh
[torus] if N ≥ (d + 1)d/2 [N ≥ (2d + 2)d].

1. INTRODUCTION

The system diagnosis has been extensively studied in the
literature in connection with fault-tolerant multiprocessor
systems. An original graph-theoretical model for system
diagnosis was introduced in a classic paper by Preparata,
Metze, and Chien [20]. In this model, each processor is ei-
ther faulty or fault-free. The fault-status of a processor does
not change during the diagnosis. The processors can test
each other only along communication links. A testing pro-
cessor evaluates a tested processor as either faulty or fault-
free. The evaluation is accurate if the testing processor is
fault-free, while the evaluation is unreliable if the testing
processor is faulty. The system diagnosis is to identify all
faulty processors based on test results.

A system ist-diagnosable if all faulty processors can
always be identified provided that the number of faulty pro-
cessors does not exceedt. It is well-known that a system
with N processors ist-diagnosable only ift < N/2 and
each processor is connected with at leastt distinct other
processors by communication links [20]. A complete char-
acterization oft-diagnosable system was shown by Hakimi
and Amin [10]. The original model is nonadaptive in the
sense that all tests must be determined in advance. It can be
shown that each processor must be tested by at leastt dis-
tinct other processors in nonadaptive diagnosis if as many as
t processors may be faulty. It follows that at leasttN tests
are necessary for nonadaptive diagnosis of anN -processor
system with at mostt faulty processors.

In adaptive diagnosis introduced by Nakajima [16], tests
can be determined dynamically depending on previous test
results. The adaptive diagnosis has been extensively studied
in the literature [1–7, 9, 11–19, 21]. Among others, Blecher
[7] and Wu [21] showed thatN +t−1 tests are sufficient for

adaptive diagnosis of anN -processor system with at most
t faulty processors if the system is modeled by a complete
graph andt < N/2. Moreover, Blecher [7] showed that
N + t− 1 is also the lower bound for the number of tests in
the worst case. The adaptive diagnosis of practical systems
modeled by sparse graphs has been also considered [4–6,9,
13–15,17–19].

The adaptive parallel diagnosis has been considered as
well [1–3, 6, 12, 14, 17, 19]. In adaptive parallel diagnosis,
each processor may participate in at most one test, either as
a testing or tested processor, in each testing round. Beigrl,
Hurwood, and Kahale [1] showed that for adaptive paral-
lel diagnosis of anN -processor system modeled by a com-
plete graph with at mostt faulty processors,3 testing rounds
are necessary and sufficient if2 ≤ t ≤

√
N/3, 4 test-

ing rounds are necessary and sufficient if2
√

2N ≤ t ≤
0.03N , 5 testing rounds are necessary ift ≥ 0.49N , and
10 testing rounds are sufficient ift < N/2. Since at least
N + t − 1 tests are necessary for adaptive parallel diagno-
sis of anN -processor system with at mostt faulty proces-
sors and there are at mostN/2 tests in each testing round,
d(N + t − 1)/(N/2)e, which is 3 if t ≥ 2, is a general
lower bound for the number of testing rounds [2]. Okashita,
Araki, and Shibata [19] considers adaptive parallel diagno-
sis of systems modeled by butterfly networks using small
number of testing rounds. Björklund [6] showed that4 test-
ing rounds are sufficient for adaptive parallel diagnosis of
an N -processor system modeled by a hypercube with at
mostlog N faulty processors. Nomura, Yamada, and Ueno
[17] showed that for adaptive parallel diagnosis of anN -
processor system modeled by a hypercube,3 testing rounds
are necessary and sufficient if the number of faulty proces-
sors is at mostlog N −dlog(log N −dlog log Ne+4)e+2.
They also showed that3 testing rounds are necessary and
sufficient for adaptive parallel diagnosis of a system mod-
eled by cube-connected cycles of dimension greater than
three [17].

This paper shows that3 testing rounds are necessary and
sufficient for adaptive parallel diagnosis of anN -processor
system modeled by ad-dimensional square mesh [torus] if
N ≥ (d + 1)d/2 [N ≥ (2d + 2)d].
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2. PRELIMINARIES

A multiprocessor system is modeled by a graph in which the
vertices represent processors and edges represent communi-
cation links. Each vertex is either faulty or fault-free. A pair
of adjacent vertices can test each other. A test performed by
u onv is represented by an ordered pair〈u, v〉. The outcome
of a test〈u, v〉 is 1(0) if u evaluatesv as faulty(fault-free).
The outcome is accurate ifu is fault-free, while the out-
come is unreliable ifu is faulty. A graph ist-diagnosable if
all faulty vertices can always be identified from test results
provided that the number of faulty vertices is not more than
t. If an N -vertex graphG is t-diagnosable thent < N/2
and the minimum degree of a vertex is at leastt [20].

We denote the vertex set and edge set of a graphG by
V (G) andE(G), respectively. ForS ⊆ V (G), G−S is the
graph obtained fromG by deleting the vertices inS. For
a positive integerk, a graphG is said to bek-connected if
G−S is connected for anyS ⊆ V (G) with |S| ≤ k− 1. A
graph is said to bek′-connected for any integerk′ ≤ 0 for
convenience. We denote a cycle and path withN vertices
by CN andPN , respectively.CN is called an even cycle if
N is even, and odd cycle otherwise. The product of graphs
G1, G2, . . . , Gk is a graphG = G1 ×G2 × · · · ×Gk with
vertex setV (G) = V (G1)×V (G2)× · · ·V (Gk), in which
(u1, u2, . . . , uk) is adjacent to(v1, v2, . . . , vk) if and only
if there exists an integerj such that(uj , vj) ∈ E(Gj) and
ui = vi for everyi 6= j.

Thed-dimensionalm1×m2× · · ·×md mesh, denoted
by M(m1,m2, . . . , md), is the graph deifned as

M(m1,m2, . . . , md) = Pm1 × Pm2 × · · · × Pmd
.

It follows that

M(m1,m2 . . . ,md) = M(m1, . . . ,mp)×M(mp+1, . . . , md)

for any positive integerp < d. M(m1,m2, . . . ,md) has
m1m2 · · ·md vertices, and the minimum degree of a vertex
is d. M(m1,m2, . . . ,md) is called thed-dimensionalm-
sided mesh and denoted byMd(m) if m1 = m2 = · · · =
md = m.

The n-dimensional cubeQ(n) is defined as then-di-
mensional2-sided meshMn(2). Q(n) has2n vertices, and
the degree of a vertex isn. Q(n) can be represented as
Q(p)×Q(q) for any positive integersp andq with p+q = n.

Thed-dimensionalm1×m2× · · · ×md torus, denoted
by D(m1,m2, . . . ,md), is the graph deifned as

D(m1,m2, . . . , md) = Cm1 × Cm2 × · · · × Cmd
.

It follows that

D(m1,m2, . . . ,md) = D(m1, . . . , mp)×D(mp+1, . . . , md)

for any positive integerp < d. D(m1,m2, . . . ,md) has
m1m2 · · ·md vertices, and the degree of a vertex is2d.

Algorithm 1
Step 1

Perform in2 testing rounds all tests along all edges
of CN in the clockwise direction.

Step 2

If there is a sequencea
1→ b

1→ c
1→ d

0→ e in test
outcomes of Step 1
then perform one additional test(e, d);
If there is a sequencea

1→ b
1→ c

0→ d and there
are only two1’s in test outcomes of Step 1
then perform one additional test(d, c);
If there is a sequencea

1→ b
0→ c

1→ d
0→ e and

there are only two1’s in test outcomes of Step 1
then perform one additional test(e, d);
If there is a sequencea

1→ b
0→ c

0→ d and there is
only one1 in test outcomes of Step 1
then perform one additional test(d, c).

Figure 1: Algorithm 1

D(m1, m2, . . . , md) is called thed-dimensionalm-sided
torus and denoted byDd(m) if m1 = m2 = · · · = md =
m.

3. DIAGNOSIS FOR GRAPH PRODUCTS

In this section, we show an optimal adaptive parallel diag-
nosis algorithm for products oft-connected graphs and even
cycles.

We need a couple of known results. The following the-
orem is an easy corollary of a classic theorem by Dirac [8].

Theorem I Let t be a positive integer. IfG is a t-connected
graph with at least2t vertices andS is a set of vertices of
G with |S| ≤ t then every vertexv of S has a distinct vertex
in V (G)− S adjacent tov. 2

The following theorem is proved in [17].

Theorem II [17] Algorithm 1 shown in Figure 1 adap-
tively diagnoses an even cycleCN in 3 testing rounds if the
number of faults is not more than2 andN ≥ 6. 2

Now, we are ready to prove our main theorem.

Theorem 1 Let t be a positive integer, and letG be a t-
connected graph with at least2t vertices. For any even
numbern ≥ max{t + 3, 6}, Algorithm 2 shown in Fig-
ure 2 adaptively diagnosesG×Cn in 3 testing rounds if the
number of faults is not more thant + 2.

Proof : Algorithm 2 works in two steps. In the first step,
we perform in two testing rounds all tests along all copies
of Cn in the clockwise direction. A copy ofCn is said to
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Algorithm 2
Step 1

Perform in2 testing rounds all tests along all edges
in all copies ofCn in the clockwise direction. Let
F be the set of all faulty copies ofCn.

Step 2
If t + 1 ≤ |F| ≤ t + 2 then

perform tests in one more testing round accord-
ing to Step 2 of Algorithm 1, and identify the
faults;

If 1 ≤ |F| ≤ t then
diagnose all vertices in all faulty copies ofCn

by corresponding vertices in distinct fault-free
copies ofCn in one more testing round;

If |F| = 0 then
identify the faults as empty.

Figure 2: Algorithm 2

be fault-free if it has no faulty vertex, and faulty otherwise.
Sincen ≥ t + 3, a copy ofCn is faulty if and only if it has
a test outcome of1.

Let F be the set of all faulty copies ofCn. The second
step of our algorithm is distinguished in four cases depend-
ing on|F|.

If t + 1 ≤ |F| ≤ t + 2 then each faulty copy ofCn

has at most two faulty vertices, which can be identified in
one more testing round as can be seen by Theorem II since
n ≥ 6.

If 1 ≤ |F| ≤ t then every faulty copyFn of Cn has a
distinct fault-free copyHn of Cn in which each vertexvH

of Hn is adjacent to the corresponding vertexvF of Fn by
Theorem I sinceG is t-connected. By performing the tests
〈vH , vF 〉 for all faulty copies ofCn in one testing round, we
can identify all the faults.

If |F| = 0 then we know from the test results in the first
step that there is no fault. 2

4. COROLLARIES

We show in this section some corollaries of Theorem 1 for
tori, meshes, and hypercubes.

4.1. Tori

Theorem 2 Let d be a positive integer, andm be an even
number at leastmax{2d+2, 6}. Then,Dd(m) can be adap-
tively diagnosed in3 testing rounds if the number of faults
is not more than2d.

Proof : If d = 1 thenDd(m) = Cm, and so the theorem
holds by Theorem II sincem ≥ 6.

If d ≥ 2 thenDd(m) = Dd−1(m)×Cm. SinceDd−1(m)
is a2(d − 1)-connected graph withmd−1 ≥ 4(d − 1) ver-

tices andm is an even number at leastmax{2d + 2, 6}, the
theorem holds ford ≥ 2 by Theorem 1. 2

4.2. Meshes

Theorem 3 Let d be an integer at least2, and m be an
even number at leastmax{√d + 1, 4}. Then,Md(m) can
be adaptively diagnosed in3 testing rounds if the number of
faults is not more thand.

Proof : The proof is similar to that of Theorem 2. Since
m is an even number at least4, M2(m) has a Hamilton
cycle, andm2 is an even number at least16. Therefore, the
theorem holds ford = 2 by Theorem II.

If d ≥ 3 thenMd(m) = Md−2(m) × M2(m). Since
Md−2(m) is a(d−2)-connected graph withmd−2 ≥ 2(d−
2) vertices,M2(m) has a Hamilton cycle, and|V (M2(m))| =
m2 is an even number at leastmax{d + 1, 16}, the theorem
holds ford ≥ 3 by Theorem 1. 2

4.3. Hypercubes

The following theorem proved in [17] can be derived from
Theorem 1.

Theorem III [17] Q(n) can be adaptively diagnosed in
3 testing rounds if the number of faults is not more than
n− dlog(n− dlog ne+ 4)e+ 2 andn ≥ 4.

Proof : Let t = n − dlog(n − dlog ne + 4)e. Q(n) is
represented asQ(n − t) × Q(t). Notice thatt ≥ 1 since
n ≥ 4. Since

|V (Q(n− t))| = 2n−t

= 2dlog(n−dlog ne+4)e

≥ n− dlog ne+ 4
≥ max{t + 3, 6},

Q(n− t) has a Hamilton cycle, andQ(t) is t-connected, we
have the theorem by Theorem 1. 2

5. CONCLUDING REMARKS

1. Q(3) can be adaptively diagnosed in3 testing rounds
if the number of faults is at most3, as mentioned
in [14]. Notice thatQ(2) is just C4. We can prove
that Q(n) can be adaptively diagnosed in3 testing
rounds if the number of faults is not more thann −
dlog(n − dlog ne + 3)e + 2 andn ≥ 3. The proof is
similar to that of Theorem III but more complicated.
It is still open whether3 testing rounds are sufficient
to adaptively diagnoseQ(n) with at mostt faulty ver-
tices even ifn−dlog(n−dlog ne+3)e+3 ≤ t ≤ n.

2. We can prove the following more general results.
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Theorem 4 Let d be an integer at least2, and let
m1, . . . , md be integers at least3 such that

∏
i∈I mi

is an even number at leastmax{2(d − |I|) + 3, 6}
and

∏
j∈{1,...,d}−I mj 6= 3 for someI ⊆ {1, . . . , d}.

Then,D(m1, . . . , md) can be adaptively diagnosed
in 3 testing rounds if the number of faults is not more
than2(d− |I|+ 1). 2

Theorem 5 Let d be an integer at least3, and let
m1, . . . , md be integers at least2 such that

∏
i∈I mi

is an even number at leastmax{d−|I|+3, 6}. Then,
M(m1, . . . , md) can be adaptively diagnosed in3
testing rounds if the number of faults is not more than
d− |I|+ 2. 2

The proofs are similar to those of Theorems 2 and
3, but more complicated. Theorems 4 and 5 assume
that one ofm1, . . . ,md is even. It is open whether
3 testing rounds are sufficient to adaptively diagnose
these graphs even if all ofm1, . . . ,md are odd.
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