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ABSTRACT adaptive diagnosis of aiV-processor system with at most

We consider adaptive fault diagnosis for array multipro- ¢ faulty processors if the system is modeled by a complete
cessor systems. We show that three testing rounds are nedraph and: < N/2. Moreover, Blecher [7] showed that
essary and sufficient for adaptive parallel diagnosis afan ~ /V +¢ — 1 is also the lower bound for the number of tests in
processor system modeled by-aimensional square mesh the worst case. The adaptive diagnosis of practical systems

[torus] if N > (d + 1)¥2 [N > (2d + 2)4]. modeled by sparse graphs has been also considered [4-6, 9,
N B 13-15,17-19].
1. INTRODUCTION The adaptive parallel diagnosis has been considered as

well [1-3,6,12,14,17,19]. In adaptive parallel diagnosis,

The system diagnosis has been extensively studied in the?ch processor may participate in at most one test, either as
literature in connection with fault-tolerant multiprocessor 2 testing or tested processor, in each testing round. Beigrl,
systems. An original graph-theoretical model for system Hurwood, and Kahale [1] showed that for adaptive paral-
diagnosis was introduced in a classic paper by Preparatal! diagnosis of anV-processor system modeled by a com-
Metze, and Chien [20]. In this model, each processor is ei- Plete graph with at mogtfaulty processors; testing rounds
ther faulty or fault-free. The fault-status of a processor does@re necessary and sufficientaf < ¢ < /N/3, 4 test-
not change during the diagnosis. The processors can tesiNd rounds are necessary and sufficien2¥f2N < ¢ <
each other only along communication links. A testing pro- 0.03N, 5 testing rounds are necessary it- 0.49N, and
cessor evaluates a tested processor as either faulty or faultl0 testing rounds are sufficientif < N/2. Since at least
free. The evaluation is accurate if the testing processor is/V +t — 1 tests are necessary for adaptive parallel diagno-
fault-free, while the evaluation is unreliable if the testing Sis of an/V-processor system with at mastaulty proces-
processor is faulty. The system diagnosis is to identify all Sors and there are at masy2 tests in each testing round,
faulty processors based on test results. [(N +t—1)/(N/2)], whichis3 if t > 2, is a general

A system ist-diagnosable if all faulty processors can lower bound for the number of testing rounds [2]. Okashita,
always be identified provided that the number of faulty pro- Araki, and Shibata [19] considers adaptive parallel diagno-
cessors does not exceed|t is well-known that a system  sis of systems modeled by butterfly networks using small
with N processors ig-diagnosable only it < N/2 and  number of testing rounds. 8jklund [6] showed that test-
each processor is connected with at leaslistinct other ing rounds are sufficient for adaptive parallel diagnosis of
processors by communication links [20]. A complete char- an N-processor system modeled by a hypercube with at
acterization ot-diagnosable system was shown by Hakimi mostlog IV faulty processors. Nomura, Yamada, and Ueno
and Amin [10]. The original model is nonadaptive in the [17] showed that for adaptive parallel diagnosis of sin
sense that all tests must be determined in advance. It can b@rocessor system modeled by a hypercaitesting rounds
shown that each processor must be tested by at fedist are necessary and sufficient if the number of faulty proces-
tinct other processors in nonadaptive diagnosis if as many assors is at mosiog N — [log(log N — [loglog N +4)] +2.
t processors may be faulty. It follows that at leadttests ~ They also showed tha testing rounds are necessary and
are necessary for nonadaptive diagnosis oNaprocessor  sufficient for adaptive parallel diagnosis of a system mod-
system with at most faulty processors. eled by cube-connected cycles of dimension greater than

In adaptive diagnosis introduced by Nakajima [16], tests three [17].
can be determined dynamically depending on previous test  This paper shows thattesting rounds are necessary and
results. The adaptive diagnosis has been extensively studiedufficient for adaptive parallel diagnosis of Aiprocessor
in the literature [1-7,9,11-19, 21]. Among others, Blecher system modeled by é&dimensional square mesh [torus] if
[7] and Wu [21] showed thaV +¢ — 1 tests are sufficientfor N > (d + 1)¥2 [N > (2d + 2)7].
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2. PRELIMINARIES

A multiprocessor system is modeled by a graph in which the

vertices represent processors and edges represent communi-

cation links. Each vertex is either faulty or fault-free. A pair

of adjacent vertices can test each other. A test performed by

u 0ONnw is represented by an ordered pairv). The outcome

of a test(u, v) is 1(0) if u evaluates as faulty(fault-free).
The outcome is accurate if is fault-free, while the out-
come is unreliable if; is faulty. A graph is-diagnosable if

all faulty vertices can always be identified from test results
provided that the number of faulty vertices is not more than
t. If an N-vertex graphG is t-diagnosable theh < N/2
and the minimum degree of a vertex is at leg&0].

We denote the vertex set and edge set of a giG@ ity
V(G) andE(G), respectively. Fof C V(G), G — Sisthe
graph obtained frontZ by deleting the vertices ity. For
a positive integek, a graphG is said to bek-connected if
G — Sis connected for ang C V(G) with |S| <k —1. A
graph is said to bé’-connected for any integér < 0 for
convenience. We denote a cycle and path wittvertices
by Cn and Py, respectively.Cy is called an even cycle if

N is even, and odd cycle otherwise. The product of graphs

G1,Ga,...,GisagraphG = G1 x Gy X -+ x Gy, with
vertex sel/’ (G) = V(G1) x V(G2) x - -- V(G), in which
(u1,us,...,ux) is adjacent tqvy, ve, ..., vg) if and only
if there exists an integer such that(u;,v;) € E(G;) and
u; = v; for everyi # j.

Thed-dimensionaln; x msy X - - - x mq mesh, denoted
by M (mq, ma,...,ma), is the graph deifned as

M(my,ma,...,mq) = Py, X Py X ooo X P,

It follows that

M(mi,mo...,mq) = M(ma,...,mp)XM(mpt1,...,mq)

for any positive integep < d. M(mq,ma,...,mgq) has
myms - - - mg Vertices, and the minimum degree of a vertex
isd. M(my,ms,...,my) is called thed-dimensionahn-
sided mesh and denoted BY;(m) if m; = mg = ---
mg = m.

The n-dimensional cub&)(n) is defined as the:-di-
mensionaR-sided mesh\/,,(2). Q(n) has2™ vertices, and
the degree of a vertex is. Q(n) can be represented as
Q(p) xQ(q) for any positive integers andg with p+¢q = n.

Thed-dimensionaln; x mq X - -+ X mg torus, denoted
by D(my,ma, ..., mg), is the graph deifned as

D(my,ma,...,mq) = Cpy X Cppy X -+ X Cpy,.

It follows that

D(mq,ma,...,mq) = D(mq,...,mp)XD(Mpt1,...,Mq)

for any positive integep < d. D(my,ma,...,mg) has
myims - --mgq Vertices, and the degree of a vertex2ié

Algorithm 1
Step 1
Perform in2 testing rounds all tests along all edges
of Cy in the clockwise direction.
Step 2
If thereis a sequen@ei b5ebdleintest
outcomes of Step 1
then perform one additional test, d);
If there is a sequenq;e# b5 ¢ dand there
are only twol’s in test outcomes of Step 1
then perform one additional tegtl, c);
If there is a sequenaﬁi b % el aleand
there are only twd'’s in test outcomes of Step 1
then perform one additional test, d);
If thereisa sequemzei b2 ¢ dandthere is

only onel in test outcomes of Step 1
then perform one additional tegtl, c).

Figure 1: Algorithm 1

(my, ma,...,my) is called thed-dimensionalm-sided
torus and denoted b;(m) if m1 = mg = -+ = my =
m.

3. DIAGNOSIS FOR GRAPH PRODUCTS

In this section, we show an optimal adaptive parallel diag-
nosis algorithm for products efconnected graphs and even
cycles.

We need a couple of known results. The following the-
orem is an easy corollary of a classic theorem by Dirac [8].

Theorem | Lett be a positive integer. K7 is at-connected
graph with at leas®t vertices andS is a set of vertices of
G with |S| < t then every vertex of S has a distinct vertex
in V(G) — S adjacent tov. O

The following theorem is proved in [17].

Theorem Il [17] Algorithm 1 shown in Figure 1 adap-
tively diagnoses an even cyalgy in 3 testing rounds if the
number of faults is not more thanand N > 6. a

Now, we are ready to prove our main theorem.

Theorem 1 Let ¢ be a positive integer, and le¥ be at-
connected graph with at leagt vertices. For any even
numbern > max{t + 3,6}, Algorithm 2 shown in Fig-
ure 2 adaptively diagnoses x C, in 3 testing rounds if the
number of faults is not more thant 2.

Proof: Algorithm 2 works in two steps. In the first step,
we perform in two testing rounds all tests along all copies
of C,, in the clockwise direction. A copy of’, is said to
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Algorithm 2
Step 1
Perform in2 testing rounds all tests along all edges
in all copies ofC,, in the clockwise direction. Let
F be the set of all faulty copies df,,.
Step 2
If t+1<|F| <t+2then
perform tests in one more testing round accord-
ing to Step 2 of Algorithm 1, and identify th
faults;
If 1 <|F| <tthen
diagnose all vertices in all faulty copies 6f,
by corresponding vertices in distinct fault-free
copies ofC,, in one more testing round;
If || = 0then
identify the faults as empty.

4%

Figure 2: Algorithm 2

be fault-free if it has no faulty vertex, and faulty otherwise.
Sincen > t + 3, a copy ofC,, is faulty if and only if it has
a test outcome of.

Let F be the set of all faulty copies @f,,. The second

step of our algorithm is distinguished in four cases depend-

ing on|F|.
If t +1 < |F|] < ¢+ 2 then each faulty copy of,

tices andn is an even number at leastix{2d + 2,6}, the
theorem holds fod > 2 by Theorem 1. |

4.2. Meshes

Theorem 3 Let d be an integer at leas?, and m be an
even number at leashax{+/d + 1,4}. Then,M,(m) can
be adaptively diagnosed Bitesting rounds if the number of
faults is not more thad.

Proof : The proof is similar to that of Theorem 2. Since
m IS an even number at lea$t M>(m) has a Hamilton
cycle, andmn? is an even number at leasd. Therefore, the
theorem holds fod = 2 by Theorem II.

If d > 3thenMy(m) = My_o(m) x My(m). Since
Mgy_o(m) is a(d —2)-connected graph witl?—2 > 2(d —
2) vertices, M»(m) has a Hamilton cycle, anl@/ (Mz(m))| =
m? is an even number at leasiix{d + 1, 16}, the theorem
holds ford > 3 by Theorem 1. O

4.3. Hypercubes

The following theorem proved in [17] can be derived from
Theorem 1.

Theorem Il  [17] Q(n) can be adaptively diagnosed in
3 testing rounds if the number of faults is not more than

has at most tv_vo faulty vertices, which can be identified_in n — [log(n — [logn] +4)] + 2 andn > 4.
one more testing round as can be seen by Theorem Il since

n > 6.

If 1 < |F] < tthen every faulty copy, of C,, has a
distinct fault-free copyH,, of C,, in which each vertex
of H,, is adjacent to the corresponding verigx of F,, by
Theorem | sincé is t-connected. By performing the tests
(vy,vp) for all faulty copies ofC,, in one testing round, we
can identify all the faults.

If || = 0 then we know from the test results in the first
step that there is no fault. O

4. COROLLARIES

We show in this section some corollaries of Theorem 1 for
tori, meshes, and hypercubes.

4.1. Tori

Theorem 2 Let d be a positive integer, anth be an even
number at leastmax{2d+2,6}. Then,D;(m) can be adap-
tively diagnosed ir8 testing rounds if the number of faults
is not more thar2d.

Proof: If d = 1thenDy(m) = C,,, and so the theorem
holds by Theorem Il since: > 6.
If d > 2thenDy(m) = D4—1(m)xC,,. SinceDy_1(m)
is a2(d — 1)-connected graph witm?~! > 4(d — 1) ver-

Proof : Lett = n — [log(n — [logn] +4)]. Q(n) is
represented aQ(n — t) x Q(t). Notice thatt > 1 since
n > 4. Since

V(Q(n —1))| 2!
o[log(n—[log n]+4)]
n— [logn] +4
max{t + 3,6},

AVANIY)

Q(n —t) has a Hamilton cycle, an@(t) is t-connected, we
have the theorem by Theorem 1. O

5. CONCLUDING REMARKS

1. Q(3) can be adaptively diagnosed3drtesting rounds
if the number of faults is at most, as mentioned
in [14]. Notice thatQ(2) is justCy. We can prove
that Q(n) can be adaptively diagnosed intesting
rounds if the number of faults is not more than-
[log(n — [logn] + 3)] + 2 andn > 3. The proof is
similar to that of Theorem Il but more complicated.
It is still open whetheB testing rounds are sufficient
to adaptively diagnos@(n) with at mostt faulty ver-
tices even ifn — [log(n — [logn] +3)] +3 < ¢t < n.

2. We can prove the following more general results.
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Theorem 4 Let d be an integer at leas?, and let
mi, ..., mq be integers at least such that[ [, _, m;
is an even number at leasiax{2(d — |I|) + 3,6}
and] (1, ay—ym; # 3 forsomel C {1,...,d}.
Then,D(my,...,mg) can be adaptively diagnosed
in 3 testing rounds if the number of faults is not more
than2(d — |I| + 1). O

Theorem 5 Let d be an integer at leass, and let
my, ..., mg be integers at least such thatHieI m;
is an even number at leastax{d — |I|+3,6}. Then,
M(ma,...,mq) can be adaptively diagnosed B
testing rounds if the number of faults is not more than
d— 1|+ 2. O

The proofs are similar to those of Theorems 2 and
3, but more complicated. Theorems 4 and 5 assume
that one ofmy,...,my is even. It is open whether

3 testing rounds are sufficient to adaptively diagnose
these graphs even if all @f4, . .., my are odd.
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