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ABSTRACT
This paper proves that for every positive integers n and k,
we can explicitly construct a graph G with n+O(k) vertices
and maximum degree 3, such that even after removing any k
vertices from G, the remaining graph still contains a path of
length n−1. This settles a problem raised by Zhang [11,12]
in connection with the design of fault-tolerant linear arrays.

Categories and Subject Descriptors
C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—parallel architectures; C.2.1 [Computer Sys-
tems Organization]: Computer Communication Networks—
network architecture and design; F.1.2 [Theory of Compu-
tation]: Modes of Computation—parallelism and concur-
rency ; G.1.0 [Mathematics of Computing]: Numerical
Analysis—General ; G.2.2 [Mathematics of Computing]:
Discrete Mathematics—Graph Theory

General Terms
Algorithms, Design, Measurement, Performance, Reliability,
Theory, Verification

Keywords
Fault-Tolerant Graph, Linear Array, Magnifier, Expander

1. INTRODUCTION
We consider the following problem motivated by the de-

sign of fault-tolerant linear array multiprocessor systems.
Let G be a graph, and let V (G) and E(G) denote the vertex
set and edge set of G, respectively. ∆(G) is the maximum
degree of a vertex in G. For any S ⊆ V (G), G − S is the
graph obtained from G by deleting the vertices of S to-
gether with the edges incident with the vertices in S. Let k
be a positive integer. A graph G is called a k-FT (k-fault-
tolerant) graph for a graph H if G − F contains H as a
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subgraph for every F ⊆ V (G) with |F | ≤ k. Our problem is
to construct a k-FT graph G for an n-vertex path Pn such
that both |V (G)| and ∆(G) are as small as possible.

A large amount of research has been devoted to construct-
ing k-FT graphs for Pn [1–3, 6–8, 10–12]. Among others,
Bruck, Cypher, and Ho [2] show a k-FT graph for Pn with
n + k2 vertices and maximum degree of 4. Zhang [11, 12]
shows a k-FT graph for Pn with n + O(k log k) vertices
and O(log k) maximum degree, and a k-FT graph for Pn

with n + O(k log2 k) vertices and O(1) maximum degree.
Zhang [11, 12] also raised the following open question: Is
it possible to construct an explicit k-FT graph for Pn with
n + O(k) vertices and O(1) maximum degree? It should be
noted that such a k-FT graph is optimal in the sense that
every k-FT graph for Pn has n + Ω(k) vertices and Ω(1)
maximum degree.

In this paper, we settle the question by showing the fol-
lowing.

Theorem 1. For any positive integers n and k, we can
explicitly construct a k-FT graph G for Pn such that |V (G)|
= n + O(k) and ∆(G) = 3.

We note that Alon and Chung [1] proved that for any
positive integers n and k = Ω(n), we can explicitly construct
a k-FT graph G for Pn such that |V (G)| = n + O(k) and
∆(G) = O(1).

2. PROOF OF THEOREM 1
Let ΓG(v) denote the set of vertices adjacent to v in a

graph G, ΓG(X) =
S

v∈X ΓG(v), and ∂X = ΓG(X) −X for
any X ⊆ V (G). We define that degG(v) = |ΓG(v)|, and
∆(G) = maxv∈V (G) degG(v).

In order to prove Theorem 1, we first need a few results
on expanders and magnifiers.

2.1 Expanders
Let c ≤ 1. A bipartite graph B with bipartition (I,O)

is an (n, d, c)-expander if the following three conditions are
satisfied:

1. |I | = |O| = n;

2. ∆(B) ≤ d;

3. |ΓB(X)| ≥
�

1 + c

�
1 − |X|

n

��
· |X| for every X ⊆ I .
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For any positive integer m, let [m] = {0, 1, . . . , m − 1}.
GG(m) is the bipartite graph with bipartition (I,O) de-
fined as follows: I = [m]2 × {0} and O = [m]2 × {1};
Each vertex [i, j, 0] ∈ I is connected with seven vertices
[i, j, 1], [i + 2j, j, 1], [i + 2j + 1, j, 1], [i + 2j + 2, j, 1], [i, j +
2i, 1], [i, j + 2i + 1, 1], [i, j + 2i + 2, 1] ∈ O, each by an edge,
where additions are performed modulo m. Gabber and Galil
proved in [5] the following theorem.

Theorem I. [5] For any positive integer m, GG(m) is
an (m2, 7, (2 −√

3)/2)-expander.

2.2 Magnifiers
Let c ≤ 1. A graph G is an (n, d, c)-magnifier if the fol-

lowing three conditions are satisfied:

1. |V (G)| = n;

2. ∆(G) ≤ d;

3. |∂X| ≥ c|X| for every X ⊂ V (G) with |X| ≤ n/2.

Note that an (n, d, c)-magnifier is connected if c > 0.
For any positive integer m, M(m) is the graph obtained

from GG(m) by merging [i, j, 0] and [i, j, 1] for every i, j ∈
[m] and removing all self-loops, that is the graph defined as
follows: V (M(m)) = [m]2; Each vertex [i, j] ∈ V (M(m)) is
connected with 12 vertices [i±2j, j], [i±(2j+1), j], [i±(2j+
2), j], [i, j ± 2i], [i, j ± (2i + 1)], [i, j ± (2j + 2)], each by an
edge, where additions are performed modulo m.

Lemma 1. For any positive integer m, M(m) is an (m2,
12, (2 −√

3)/4)-magnifier.

Proof. Fix any X ⊆ V (M(m)) with |X| ≤ m2/2, and let
X ′ = {[i, j, 0] : [i, j] ∈ X}. Since GG(m) is an (m2, 7, (2 −√

3)/2)-expander by Theorem I and |X ′| = |X| ≤ m2/2, we
have

|∂X| ≥ |ΓGG(m)(X
′)| − |X ′|

≥
�

1 +
2 −√

3

2

�
1 − |X ′|

m2

��
· |X ′| − |X ′|

≥ 2 −√
3

4
· |X ′|

≥ 2 −√
3

4
· |X|.

Hence, M(m) is an (m2, 12, (2 −√
3)/4)-magnifier.

Lemma 2. If G is an (n, d, c)-magnifier and k ≤ cn/4 is a
positive integer then G−F contains a connected component
of size at least n−(1+1/c)k for any F ⊂ V (G) with |F | ≤ k.

Proof. Fix any set F ⊂ V (G) with |F | ≤ k ≤ cn/4. Let
G0, G1, . . . , Gt−1 be the connected components of G − F ,
and Xi = V (Gi) for any i ∈ [t].

Claim 1. For any S ⊆ [t],X
i∈S

|Xi| ≤ k

c
or

X
i∈S

|Xi| > n

2
.

Proof of Claim 1: Assume contrary that there exists
a set S ⊆ [t] such that

k

c
<
X
i∈S

|Xi| ≤ n

2
,

and let X =
S

i∈S Xi. Then, we have

k

c
< |X| =

�����
[
i∈S

Xi

����� =
X
i∈S

|Xi| ≤ n

2
,

and so |∂X| ≥ c|X| > k. On the other hand, since ∂X ⊆ F ,
we have |∂X| ≤ |F | ≤ k, which is a contradiction.

The following is immediate from Claim 1.

Claim 2. |Xi| ≤ k/c or |Xi| > n/2 for any i ∈ [t].

Claim 3. If S = {i ∈ [t] : |Xi| ≤ k/c} then�����
[
i∈S

Xi

����� ≤ k

c
.

Proof of Claim 3: Assume for contradiction that�����
[
i∈S

Xi

����� > k

c
,

and let S = {i1, i2, . . . , is}, where s = |S|. By the assump-
tion, there exists a smallest integer l ≤ s such that�����

l[
j=1

Xij

����� > k

c
.

By the definition of l, we have�����
l−1[
j=1

Xij

����� ≤ k

c
.

By the definition of S, we have

|Xil | ≤
k

c
.

Since k ≤ cn/4 by the assumption of Lemma 2, we conclude
that

k

c
<

�����
l[

j=1

Xij

����� ≤ 2k

c
≤ n

2
,

which is contradicting to Claim 1.

By Claims 2 and 3, there exists a unique integer i such
that |Xi| > n/2 since k + (k/c) ≤ 2k/c ≤ n/2. Thus, we
have

|Xi| = |V (G)| − |F | −
������
[
j �=i

Xj

������ ≥ n−
�

1 +
1

c

�
k,

and we conclude that Gi is a connected component of size
at least n− (1 + 1/c)k. This completes the proof of Lemma
2.

2.3 Products of Magnifiers and Paths
For any two graphs G and H , the product of G and H ,

denoted by G× H , is the graph defined as follows: V (G ×
H) = V (G) × V (H); Any two vertices [u, x] and [v, y] in
G×H are joined by an edge if one of the following conditions
is satisfied:

1. (u, v) ∈ E(G) and x = y, or

2. u = v and (x, y) ∈ E(H).
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Lemma 3. Let n1 and n2 be two positive integers, and k
be a positive integer with k ≤ min{n1/4, n2 − 1}. If G is an
(n1, d, c)-magnifier for some positive integer d and positive
number c then G×Pn2 −F contains a connected component
of size at least n − (1 + 1/c)k for any F ⊆ V (G × Pn2)
with |F | = k, where n = n1n2 is the number of vertices in
G× Pn2 .

Proof. Let S = {v ∈ V (G) : ({v} × V (Pn2)) ∩ F = ∅},
Fx = {v ∈ V (G) : [v, x] ∈ F}, and kx = |Fx| for any
x ∈ V (Pn2). Then, |S| ≥ n1 − k ≥ (3 − c)n1/4 > n1/2
and k =

P
v∈V (Pn2 ) kx. By Lemma 2, G − Fx contains a

connected component of size at least n1 − (1 + 1/c)kx if
kx ≤ cn1/4. We denote the connected component by Gx.
For any x ∈ V (Pn2), Vx is defined as the set of vertices in
Gx if kx ≤ cn1/4, and ∅ otherwise. Let

U =
[

x∈V (Pn2 )

(S ∪ Vx) × {x}

and Q denote the subgraph of G × Pn2 induced by U . We
are going to show that the connected component containing
Q is a desired one by proving that Q is connected and |U | ≥
n + (1 + 1/c)k.

We need a few claims in order to prove that Q is con-
nected.

Claim 4. Vz = V (G) for some z ∈ V (Pn2).

Proof of Claim 4: For otherwise, kx ≥ 1 for all x ∈
V (Pn2), and hence k =

P
x∈V (Pn2 ) kx ≥ n2 ≥ k + 1, which

is a contradiction.

Claim 5. S∩Vx �= ∅ for any x ∈ V (Pn) with kx ≤ cn1/4.

Proof of Claim 5: The claim follows from the facts
that |S| > n1/2 and

|Vx| ≥ n1 −
�

1 +
1

c

�
kx ≥ 3 − c

4
· n1 >

n1

2
.

Now we are ready to prove that Q is connected. We show
that for any two vertices [u, x], [v, y] ∈ U , there exists a path
in Q connecting them.

Consider the case when x �= y, kx ≤ cn1/4, ky ≤ cn1/4,
u ∈ Vx − S, and v ∈ Vy − S. Since u′ ∈ S ∩ Vx and v′ ∈
S ∩ Vy by Claim 5, we conclude that [u, x] and [u, y] are
connected by the concatenation of the following five paths:
(i) a path connecting [u, x] and [u′, x] on Gx × {x}; (ii)
the path connecting [u′, x] and [u′, z] on {u′} × Pn2 ; (iii) a
path connecting [u′, z] and [v′, z] on G× {z}; (iv) the path
connecting [v′, z] and [v′, y] on {v′} × Pn2 ; and (v) a path
connecting [v′, y] and [v, y] on Gy ×{y}, where z is a vertex
satisfying the condition in Claim 4. (See Figure 1.)

For the remaining cases, it is easy to show that there exists
a path connecting the vertices [u, x] and [v, y] by similar
arguments. Thus, we conclude that Q is connected.

It remains to show that |U | ≥ n−(1+1/c)k. If kx ≤ cn1/4
then we have

|Vx| ≥ n1 − (1 + 1/c)kx,

and if kx > cn1/4 then we have

|S| ≥ n1 − k ≥ n1 − (n1/4)

> n1 − (kx/c) ≥ n1 − (1 + 1/c)kx.

u

u’

v’

v

x y z

S

[u,x]

[v,y]

[u’,x] [u’,z]

[v’,z][v’,y]

Figure 1: Path connecting [u, x] and [v, y]

Since

U =
[

x∈V (Pn2 )

(S ∪ Vx) × {x},

we have

|U | ≥
X

x∈V (Pn2 )

�
n1 −

�
1 +

1

c

�
kx

�

= n−
�

1 +
1

c

�
k.

2.4 Proof of Theorem 1
We first prove the following lemma.

Lemma 4. For any positive integers n and k, we can con-
struct a graph Hn,k satisfying the following three conditions:

(c1) Hn,k − F contains a connected component of size at
least n for any F ⊆ V (Hn,k) with |F | ≤ k,

(c2) |V (Hn,k)| ≤ n + γk + δ for some constants γ and δ,
and

(c3) ∆(Hn,k) ≤ 14.

Proof. First, assume that 1 ≤ k ≤ p
n/8. Set m as

an integer satisfying that (m − 1)2 < 4k ≤ m2, and c =
(2 −√

3)/4. Then, we have

4k ≤ m2 < 4k + 4
√
k + 1 ≤ 8k + 1.

Let n1 = m2 and n2 = �(n + (1 + 1/c)k)/m2�. Then, we
have

k ≤ n1

4
, (1)

and

n1n2 ≥ n +

�
1 +

1

c

�
k. (2)

Since

n2 =

�
n + (1 + 1/c)k

m2

�
≥
�

8k2 + (1 + 1/c)k

8k + 1

�

=

�
k +

k

c(8k + 1)

�
≥ k + 1,
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we have

k ≤ n2 − 1. (3)

We show that M(m) × Pn2 is a desired graph Hn,k. Recall
that M(m) is a (n1, 12, c)-magnifier by Lemma 1. It follows
that ∆(M(m)×Pn2) = 14. Thus, M(m)×Pn2 satisfies (c3).
Since

|V (M(m) × Pn2) = n1n2

≤
�
n + (1 + 1/c)k

n1
+ 1

�
n1

= n +

�
1 +

1

c

�
k + n1

≤ n +

�
9 +

1

c

�
k + 1,

M(m)×Pn2 satisfies (c2). From inequalities (1), (2), and (3)
together with Lemma 3, M(m) × Pn2 satisfies (c1). Hence,
M(m) × Pn2 is a desired graph Hn,k.

Next, assume that
p

n/8 < k ≤ cn/(3 − c), where c =

(2 −√
3)/4. Set m as an integer satisfying that

(m− 1)2 < n +

�
1 +

1

c

�
k ≤ m2.

We show that M(m) is a desired graph Hn,k. Since M(m) is
a (n1, 12, c)-magnifier and ∆(M(m)) = 12, M(m) satisfies
(c3). Since

|V (M(m))| = m2

< n +

�
1 +

1

c

�
k + 2

s
n +

�
1 +

1

c

�
k + 1

< n +

�
1 +

1

c

�
k + 2

s
8k2 +

�
1 +

1

c

�
k + 1

≤ n +

 
1 +

1

c
+ 2

r
9 +

1

c

!
k + 1,

M(m) satisfies (c2). Since

c

4

�
n +

�
1 +

1

c

�
k

�
− k =

cn

4
− 3 − c

4
k ≥ 0,

we have

k ≤ c

4

�
n +

�
1 +

1

c

�
k

�
≤ cm2

4
.

Thus, by Lemma 2, M(m) satisfies (c1). Hence, we conclude
that M(m) is a desired graph Hn,k.

Finally, assume that k > cn/(3−c), where c = (2−√
3)/4.

Set n′ = �(3−c)k/c�. Since k ≤ cn′/(3−c), we can construct
Hn′,k as shown above. We show that Hn′,k is a desired
graph. Since Hn′,k − F contains a connected component of
size at least n′ ≥ n for any F ⊆ V (Hn′,k) with |F | ≤ k,
Hn′,k satisfies (c1). Since |V (Hn′,k)| ≤ n′ + γ′k + δ′ ≤
n + {γ′ + (3 − c)/c}k + (δ′ + 1) for some γ′ and δ′, Hn′,k
satisfies (c2). Since ∆(Hn′,k) ≤ 14, Hn′,k satisfies (c3).
Thus, Hn′,k is a desired graph.

Now, we are ready to prove Theorem 1. Let d = 14, n′ =
�n/2d�, and fu be a one-to-one mapping from ΓHn′,k (u)

to [d]. Gn,k is the graph defined as follows: V (Gn,k) =

V (Hn′,k) × [2d]; Any two vertices [u, i], [v, j] ∈ V (Gn,k) are
connected by an edge if one of the following two conditions
is satisfied:

(i) u = v and j = (i± 1) mod (2d);

(ii) (u, v) ∈ E(Hn′,k), i = 2fu(v) + r, j = 2fv(u) + r, and
r ∈ [2].

We are going to show that Gn,k is a desired k-FT graph
for Pn. It is easy to see the following two lemmas.

Lemma 5. |V (Gn,k)| ≤ n + 2dγk + 2d.

Lemma 6. ∆(Gn,k) = 3.

It remains to show the following:

Lemma 7. Gn,k is a k-FT graph for Pn.

Proof. We show that for any F ⊆ V (Gn,k) with |F | ≤
k, Gn,k − F contains Pn as a subgraph. Let F ′ = {v ∈
V (Hn′,k) : [v, j] ∈ F, j ∈ [2d]}. Since |F ′| ≤ |F | ≤ k by
definition, Hn′,k − F ′ contains a connected component H
of size at least n′. Let T denote a spanning tree of H. A
vertex r of T is designated as a root, and T is considered as
a rooted tree. For any v ∈ V (T ), let T (v) is a subtree of T
consisting of the descendants of v. Define that

X(v) = {[v, j] : j ∈ [2d]},
Y (v) = {[u, i] : u ∈ T (v), i ∈ [2d]},

and G(v) denote the subgraph of Gn,k induced by Y (v).

Claim 6. Let v0, . . . , vm−1 be the children of u ∈ V (T ).
If G(vl) has a Hamilton cycle for every l ∈ [m] then G(u)
has a Hamilton cycle.

Proof of Claim 6: For each l ∈ [m], let Cl denote a
Hamilton cycle of G(vl), and let C(u) denote the subgraph
of Gn,k induced by X(u), which is isomorphic to C2d. De-
fine C as the graph obtained from C0, C1, . . . , Cm−1, and
C(u) by replacing two edges ([u, 2fu(vl)], [u, 2fu(vl)+1]) and
([vl, 2fvl (u)], [vl, 2fvl (u) + 1]) with ([u, 2fu(vl)], [vl, 2fvl (u)])
and ([u, 2fu(vl) + 1], [vl, 2fvl (u) + 1]) for each l ∈ [m]. It is
easy to see that C is a Hamilton cycle of G(u). (See Figure
2.)

It is easy to see that G(v) has a Hamilton cycle if v ∈ V (T )
is a leaf. Hence, we have by Claim 6 a Hamilton cycle of
G(r). Since

|V (G(r))| = 2d · |V (T )| ≥ 2dn′ ≥ 2d · n

2d
= n,

Gn,k − F contains Pn as a subgraph. Hence, we conclude
that Gn,k is a k-FT graph for Pn.

Lemmas 5, 6, and 7 complete the proof of Theorem 1.

3. CONCLUDING REMARKS
It is worth noting that there exists no k-FT graph for Pn

with n + O(k) vertices and maximum degree of 2. Let G
be a k-FT graph for Pn with maximum degree of 2, and
let N denote the number of vertices in G. Assume without
loss of generality that G has no connected components of
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C(u)

C0 Cl Cm-1

C(u)

C0 Cl Cm-1

g(v0) g(vl) g(vm-1)

g(v0) g(vl) g(vm-1)

Figure 2: Construction of C from m + 1 cycles
C0, . . . , Cm−1, and C(u).

size smaller than n. Let α be the number of connected
components in G. Then,

N ≥ αn. (4)

Since the maximum degree of G is 2, a graph H obtained
from G by removing a vertex of each connected component
in G is a disjoint union of paths, which is a subgraph of
PN−α. If G is a k-FT graph for Pn, H is a (k−α)-FT graph
for Pn, and so PN−α is also (k−α)-FT graph for Pn. Hence,

N − α ≥ (k − α + 1)n,

that is

N ≥ (k − α + 1)n + α. (5)

By inequalities (4) and (5), we have

N ≥ αn + (k − α + 1)n + α

2
≥ (k + 1)n

2
.

It follows that there exists no k-FT graph for Pn with n +
O(k) vertices and maximum degree of 2.
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