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Abstract

A network G∗ is called random-fault-tolerant (RFT) network for a network G if G∗ contains a
fault-free isomorphic copy of G with high probability even if each processor fails independently
with constant probability. This paper proposes a general method to construct an RFT network
G∗ for any network G with N processors such that G∗ has O(N ) processors. Based on the
construction, we also show that if G is a Cayley, de Bruijn, shu7e-exchange, or partial k-tree
network with N processors and M communication links then we can construct an RFT network
for G with O(N ) processors and O(M logN ) communication links. Cayley networks contain
many popular networks such as circulant, hypercube, CCC, wrapped butter9y, star, and pancake
networks.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This paper considers the following problem in connection with the design of fault-
tolerant interconnection networks for multiprocessor systems: given an N -vertex graph
G, construct an O(N )-vertex graph G̃ with a minimum number of edges such that
even after deleting each vertex from G̃ independently with constant probability, the
remaining graph contains G as a subgraph, with probability converging to 1, as N →
∞. An O(N )-vertex graph G∗ is called an random-fault-tolerant (RFT) graph for an
N -vertex graph G if G∗ contains G as a subgraph with probability converging to 1,
as N → ∞, even after deleting each vertex from G∗ independently with constant
probability. Therefore, our problem is to ?nd an RFT graph with a minimum number
of edges for a given graph.
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Let V (G) and E(G) be the vertex set and edge set of a graph G, respectively.
Fraigniaud et al. showed in [5] that for any N -vertex graph G, there exists an RFT
graph for G with O(|E(G)| log2 N ) edges, and that for any N -vertex graph with O(N )
edges and maximum degree of �(N ), any RFT graph for G has !(|E(G)|) edges. It
is an interesting open problem posed in [5] to decide whether any N -vertex graph G
has an RFT graph with O(|E(G)| logN ) edges.
It is also shown in [5] that if G is an N -vertex tree then we can construct an RFT

graph with O(|E(G)| logN ) edges. Friedman and Pippenger showed in [6] that if G is
a tree with bounded vertex degree then we can construct an RFT graph with O(|E(G)|)
edges. It is further shown in [5] that if G is a path or cycle then we can construct an
RFT graph with O(|E(G)|) edges. The result for paths was also shown by Alon and
Chung in [3]. Tamaki showed in [8] that if G is an N -vertex mesh or torus then we
can construct an RFT graph with O(|E(G)| log logN ) edges.
In this paper, we propose a general method to construct an RFT graph for any graph.

Based on the construction, we show that if G is an N -vertex Cayley graph, de Bruijn
graph, shu7e-exchange graph, or partial k-tree, we can construct an RFT graph for
G with O(|E(G)| logN ) edges. Cayley graphs contain many popular networks such as
circulant, hypercube, CCC, wrapped butter9y, star, and pancake graphs. Our result for
partial k-trees is a natural generalization of a result for trees in [5].

2. General construction

For any positive integer l, let [l] = {0; 1; : : : ; l − 1}. For any set of S, a collection
S= {S0; S1; : : : ; Sl−1} of subsets of S is a partition of S if

⋃
i∈[l] Si = S and Si ∩ Sj = ∅

for any i 	= j.
Let G be any N -vertex graph. For any partition V = {V0; V1; : : : ; Vl−1} of V (G),

de?ne

�(G;V) = {(i; j): ∃(u; v)∈E(G)(u∈Vi; v∈Vj)}; and

�(G;V) = |�(G;V)|:
Let 0¡p¡ 1 be the probability for each vertex to be deleted. The deleted and un-
deleted vertices are said to be faulty and fault-free, respectively.
Let V= {V0; V1; : : : ; Vl−1} be any partition of V (G) such that |Vi|6 � lnN for any

i∈ [l] and l6 �N=lnN for some ?xed positive numbers � and �. Let V ∗
0 ; V

∗
1 ; : : : ; V

∗
l−1

be l sets such that |V ∗
i |= �� lnN for any i∈ [l] and V ∗

i ∩V ∗
j =∅ for any i 	= j, where

�=
(
√
2�+ 1 + 1)2

2(1− p)
:

Note that � is ?xed since � and p are ?xed. Then, G∗[V] is the graph de?ned as
follows:

V (G∗[V]) = V ∗
0 ∪ V ∗

1 ∪ · · · ∪ V ∗
l−1;

E(G∗[V]) = {(u∗; v∗): u∗ ∈V ∗
i ; v∗ ∈V ∗

j ; (i; j)∈�(G;V)}:
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Theorem 1. Let G be any N-vertex graph, and let V = {V0; V1; : : : ; Vl−1} be any
partition of V (G) such that |Vi| = O(lnN ) and l = O(N=lnN ). Then G∗[V] is an
RFT graph for G with O(�(G;V) log2 N ) edges.

Proof. We prove the theorem by a series of lemmas. It is easy to see the following
two lemmas.

Lemma 1. |V (G∗[V])|6 �N=lnN · �� lnN.

Lemma 2. |E(G∗[V])|6 �(G;V) · �� lnN2.

Now we prove that G∗[V] is an RFT graph for G. We need a few probabilistic
notations and lemmas.
For any event E, let Prob[E] denote the probability of E. For any random variable

X and real number r, let {X 6 r} denote the event that X 6 r. The probability of
{X 6 r} is denoted by Prob[X 6 r] instead of Prob[{X 6 r}]. The following inequality
is well-known as ChernoN Bound.

Lemma 3 (Hagerup and RPub [7]). Let X be the binomial variable with parameters m
and q, that is, the number of successes in m Bernoulli trials with probabilities q for
success and 1− q for failure. Then, for any constant 0¡�¡ 1,

Prob[X 6 (1− �)qm]6 exp(− 1
2 �

2qm):

Lemma 4. Let Yi be the number of fault-free vertices of V ∗
i . Then, for any i∈ [l],

Prob[Yi6 � lnN ]6
1
N

:

Moreover,

Prob

[
l−1⋃
i=0

{Yi6 � lnN}
]
6

�
lnN

:

Proof. Set �= 2=(
√
2�+ 1 + 1); q= 1− p, and m= �� lnN. Since 0¡�¡ 1,

(1− �)qm¿

√
2�+ 1− 1√
2�+ 1 + 1

(1− p)
(
√
2�+ 1 + 1)2

2(1− p)
lnN

=
2�

(
√
2�+ 1 + 1)2

(
√
2�+ 1 + 1)2

2
lnN

= � lnN;

and

1
2
�2qm¿

1
2

4
(
√
2�+ 1 + 1)2

(1− p)
(
√
2�+ 1 + 1)2

2(1− p)
lnN = lnN;
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we obtain by Lemma 3 that

Prob[Yi6 � lnN ]6Prob[Yi6 (1− �)qm]6 exp
(
−1
2
�2qm

)
6

1
N

:

Moreover,

Prob

[
l−1⋃
i=0

{Yi6 � lnN}
]
6

l−1∑
i=0

Prob[Yi6 � lnN ]6
�

lnN
:

Lemma 5. G∗[V] is an RFT graph for G.

Proof. Let � be a one-to-one mapping from V (G) to V (G∗[V]) such that �(v) is a
fault-free vertex of V ∗

i for any v∈Vi. By Lemma 4, such � exists with probability at
least 1− (�=lnN ).
Now we show that (�(u); �(v))∈E(G∗[V]) for any (u; v)∈E(G). Let u∈Vi and

v∈Vj. Then, (i; j)∈�(G;V). Since �(u)∈V ∗
i and �(v)∈V ∗

j , we conclude that (�(u);
�(v))∈E(G∗[V]). Hence G∗[V] is an RFT graph for G.

This completes the proof of Theorem 1.

Since �(G;V)6 |E(G)|, we obtain the following corollary.

Corollary 1. Let G be any N-vertex graph, and let V = {V0; V1; : : : ; Vl−1} be any
partition of V (G) such that |Vi| = O(lnN ) and l = O(N=lnN ). G∗[V] is an RFT
graph for G with O[(E(G)| log2 N ) edges.

This corollary means that, for any N -vertex graph G, there exists an RFT graph for
G with O(|E(G)| log2 N ) edges, which was ?rst obtained in [5].

3. RFT graphs for Cayley graphs

3.1. Groups and Cayley graphs

A group is a set Q together with a binary operation satisfying the following three
conditions: (i) (xy)z = x(yz) for all x; y; z ∈Q, (ii) there exists e∈Q, which is called
the unit element of Q, such that xe=ex=x for all x∈Q, and (iii) for every x∈Q, there
exists y∈Q, which is called the inverse for x, such that xy = yx = e. The inverse for
x is denoted by x−1. Q is said to be ?nite if |Q| is ?nite, and Q is said to be abelian
if xy= yx for all x; y∈Q. A subset Q′ of Q is called a subgroup of Q if the following
two conditions are satis?ed: (i) xy∈Q′ for all x; y∈Q′, and (ii) x−1 ∈Q′ for all x∈Q′.

Let Q be a group and let S ⊂ Q such that e 	∈ S and if s∈ S then s−1 ∈ S. The
Cayley graph C(Q; S) is de?ned as follows: V (C(Q; S))=Q; Any two vertices x; y∈Q
are connected by an edge if y= xs for some s∈ S. C(Q; S) is said to be abelian if Q is
abelian. Cayley graphs are extensively considered in [2] as symmetric interconnection
networks.
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We denote |Q| by N throughout this section. It is easy to see the following.

Lemma 6. |E(C(Q; S))|= |S| · N=2.

3.2. RFT graphs for Abelian Cayley graphs

Let Q1 and Q2 be two groups. A mapping f : Q1 → Q2 is called a homomorphism if
f(xy)=f(x)f(y) for any x; y∈Q1. If f is a bijection then f is called an isomorphism.
Q1 is isomorphic to Q2, denoted by Q1 � Q2, if there exists an isomorphism of Q1 into
Q2.
The direct product of two groups Q1 and Q2 is the set Q1×Q2 together with a binary

operation de?ned as follows: For any [x1; x2]; [y1; y2]∈Q1 × Q2,

[x1; x2][y1; y2] = [x1y1; x2y2]:

The direct product of Q1 and Q2 is a group such that the unit element of the group is
[e1; e2], and [x1; x2]−1 = [x−1

1 ; x−1
2 ], where ei is the unit element of Qi(i = 1; 2).

For any positive integer m, let ⊕m denote addition modulo m. Note that [m] with
⊕m is an abelian group. The following theorem is well-known. See, for example, [1]
for the proof.

Theorem I. If Q is a <nite abelian group then

Q � [m1]× [m2]× · · · × [mn]

for some integers m1; m2; : : : ; mn¿ 2, with N = m1m2 · · ·mn.

Let Q be an abelian group represented as [m1] × [m2] × · · · × [mn]. Let d be the
least integer such that m1m2 · · ·md¿ logN . Let ) be the least integer such that ) ·
m1 · · ·md−1¿ logN if d¿ 2, and )¿ logN if d= 1. Let m′ = �md=),

Ui;j = {x∈Q: )i6 xd ¡)(i + 1); [xd+1; : : : ; xn] = j}
for any i∈ [m′] and j∈ [md+1]× · · · × [mn], and

UQ = {Ui;j: i∈ [m′]; j∈ [md+1]× · · · × [mn]}:
Then, UQ is a partition of Q such that |Ui;j|=O(logN ) for any i∈ [m′] and j∈ [md+1]×
· · · × [mn], and |UQ|=O(N=logN ).

Theorem 2. If Q is a <nite abelian group represented as [m1]× [m2]×· · ·× [mn] then
C∗(Q; S)[UQ] is an RFT graph for C(Q; S) with O(|E(C(Q; S))| logN ) edges.

Proof. By Theorem 1 and Lemma 6, it suRces to prove that �(C(Q; S);UQ) =
O(|S|N=logN ).
Fix i∈ [m′]; j = [jd+1; jd+2; : : : ; jn]∈ [md+1] × · · · × [mn], and s = [s1; s2; : : : ; sn]∈ S.

If x = [x1; x2; : : : ; xn]∈Ui;j then )i6 xd ¡)(i + 1) and xk = jk(d+ 16 k6 n). Thus,

xs= [x1 ⊕m1 s1; x2 ⊕m2 s2; : : : ; xn ⊕mn sn]

= [x1 ⊕m1 s1; : : : ; jd+1 ⊕md+1 sd+1; : : : ; jn ⊕mn sn]:



228 T. Yamada et al. / Discrete Applied Mathematics 137 (2004) 223–235

Let i′ be an integer such that )i′6 )i ⊕md sd ¡)(i′ + 1). Since xd + sd = )i + sd +
(xd − )i) and 06 xd − )i¡), we conclude that xs∈Ui′ ; j′ ∪ Ui′⊕m′1;j′ if ) |md, and
xs∈Ui′ ; j′∪Ui′⊕m′1;j′∪Ui′⊕m′2;j otherwise, where j′=[jd+1⊕md+1 sd+1; : : : ; jn⊕mn sn]. Thus
any vertex adjacent with a vertex in Ui;j is contained in Ui′ ; j′ ∪ Ui′⊕m′1;j′ ∪ Ui′⊕m′2;j′ .
It follows that

�(C(Q; S);UQ)6
1
2
3|S| |UQ|=O

( |S|N
logN

)
:

From Theorems I and 2, we have the following theorem.

Theorem 3. If Q is a <nite abelian group then we can construct an RFT graph for
C(Q; S) with O(|E(C(Q; S))| logN ) edges.

3.2.1. RFT graphs for hypercubes and circulant graphs
If Q=[2]×· · ·× [2] and S={[1; 0; : : : ; 0]; [0; 1; 0; : : : ; 0]; : : : ; [0; : : : ; 0; 1]} then C(Q; S)

is a hypercube. If Q = [N ] then C(Q; S) is a circulant graph. Hence, we have the
following corollary from Theorem 2.

Corollary 2. If G is an N-vertex hypercube or circulant graph then we can construct
an RFT graph for G with O(|E(G)| logN ) edges.

3.3. RFT graphs for Cayley graphs

Let Q be a group. For any S; T ⊆ Q, let ST = {xy: x∈ S; y∈T}. If T = {y} then
we denote ST by Sy. The following theorem is well-known. See, for example, [1] for
the proof.

Theorem II. Let Q be a group, and let Q′ be a subgroup of Q. Then, there exists
some {z0; : : : ; zl−1} ⊆ Q such that {Q′z0; : : : ;Q′zl−1} is a partition of Q.

Let Q be a group, and let be Q′ be a subgroup with |Q′|=,(logN ). Let {z0; : : : ; zl−1}
be a subset of Q as in Theorem II. Then, VQ = {Q′z0; : : : ;Q′zl−1} is a partition of Q
such that |Q′zi|=,(logN ) for any i∈ [l] and |VQ|=,(N=logN ).

Theorem 4. If Q is a group, and Q′ is a subgroup with |Q′| = ,(logN ) then
C∗(Q; S)[VQ] is an RFT graph for C(Q; S) with O(|E(C(Q; S))| logN ) edges.

Proof. By Theorem 1 and Lemma 6, it suRces to prove that �(C(Q; S);UQ)=
O(|S|N=logN ).
Notice that if x∈Q′zi then Q′x = Q′zi. Thus, if x; y∈Q′zi for some i∈ [l] then

xs; ys∈Q′zj for some j∈ [l]. Thus any vertex adjacent with a vertex in Q′zi is contained
in Q′zj. It follows that

�(C(Q; S);VQ)6
1
2
|S| N

|Q′| =O
( |S|N
logN

)
:



T. Yamada et al. / Discrete Applied Mathematics 137 (2004) 223–235 229

3.3.1. RFT graphs for CCC’s and Butter>y-Like graphs
It is proved in [4] that a CCC is a Cayley graph. For any positive integer n; An is

the n× n matrix de?ned as follows:

An =




0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

1 0 0 · · · 0



:

For any positive integer n, let Cn be the set [2]n × [n] with a binary operation de?ned
as follows: For any [x; i]; [y; j]∈Cn,

[x; i][y; j] = [x⊕2 yAi
n; i ⊕n j];

where the ?rst addition is bit-wise. It is easy to see that Cn is a group. Let

Dn = {[[0; 0; : : : ; 0]; 1]; [[0; 0; : : : ; 0]; n− 1]; [[1; 0; : : : ; 0]; 0]}; and

Bn = {[[0; 0; : : : ; 0]; 1]; [[0; 0; : : : ; 0]; n− 1]; [[1; 0; : : : ; 0]; 1]; [[0; : : : ; 0; 1]; n− 1]}:
Then, C(Cn; Dn) and C(Cn; Bn) are the n-dimensional CCC and wrapped butter9y,
respectively. De?ne that

C′
n = {[x; 0]∈Cn: ∀k ∈ [n− �log n](xk = 0)};

where x= [x0; x1; : : : ; xn−1]∈ [2]n.

Lemma 7. C′
n is a subgroup of Cn with |C′

n|=,(logN ), where N = |Cn|= n2n.

Proof. Since [x; 0][y; 0]= [x⊕2 y; 0]∈C′
n and [x; 0][x; 0]= [0; 0] for any [x; 0]; [y; 0]∈

C′
n; C′

n is a subgroup of Cn. Since |C′
n| = 2�log n� and N = n2n, we conclude that

|C′
n|=,(logN ).

By Theorem 4 and Lemma 7, we obtain the following theorem.

Theorem 5. If G is an N -vertex CCC or wrapped butter>y then we can construct an
RFT graph for G with O(|E(G)| logN ) edges.

The following is immediate.

Corollary 3. If G is an N-vertex butter>y or Bene?s network then we can construct
an RFT graph for G with O(|E(G)| logN ) edges.

3.3.2. RFT graphs for Star and Pancake graphs
Let [n]+={1; 2; : : : ; n} for any positive integer n. Let Sn denote the symmetric group

on [n]+, that is the group of the permutations on [n]+. For any integer k; 26 k6 n,
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let 0k and 1k be permutations on [n]+ as follows:

0k(i) =

{
k + 1− i if i = 1 or i = k;

i otherwise;

1k(i) =

{
k + 1− i if i∈ [k]+;

i otherwise:

Let

Sn = {0k : 26 k6 n} and Pn = {1k : 26 k6 n}:
Then, C(Sn; Sn) and C(Sn; Pn) are the star graph and pancake graph on n! vertices,
respectively. Let k = �log n+ log log n. For any x= [x1; x2; : : : ; xk ]∈ [2]k ,

3x(i) =

{
2j − (r ⊕2 xj) if i∈ [2k]+; and

i otherwise;

where j = �i=2 and r = 2j − i. De?ne that

S′
n = {3x: x∈ [2]k}:

Lemma 8. S′
n is a subgroup of Sn with |S′

n|=,(logN ), where N = |Sn|= n!.

Proof. Since 3x3y = 3x⊕2y and 3−1
x = 3x for any x; y∈ [2]k ; S′

n is a subgroup of Sn.
Since |S′

n|= 2�log n+log log n� and N = n!, we conclude that |S′
n|=,(logN ).

By Theorem 4 and Lemma 8, we obtain the following theorem.

Theorem 6. If G is an N-vertex star graph or pancake graph then we can construct
an RFT graph for G with O(|E(G)| logN ) edges.

4. RFT graphs for shu'e-exchange and de Bruijn graphs

For any v= [v1; v2; : : : ; vn]∈ [2]n, let

4(v) = [v2; : : : ; vn; v1]; 5(v) = [v1; : : : ; vn−1; vn]; and 6i(v) = [v1; : : : ; vi];

where vn denotes the complement of vn, that is vn = 1 if vn = 0, and vn = 0 otherwise.
Notice that 3 is the composite of 5 and 4, that is, 3= 5 ◦ 4.
The n-dimensional de Bruijn graph dB(n) is the graph de?ned as follows:

V (dB(n)) = [2]n;

E(dB(n)) = {(u; v): v= 4(u) or u= 4(v)}
∪{(u; v): v= 5(4(u)) or u= 5(4(v))}:

It is easy to see that |V (dB(n))|= N and |E(dB(n))|= 2N , where N = 2n.
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The n-dimensional shu7e-exchange graph SE(n) is the graph de?ned as follows:

V (SE(n)) = [2]n;

E(SE(n)) = {(u; v): v= 4(u) or u= 4(v)} ∪ {(u; v): v= 5(u)}:
Let

Vx = {v∈ [2]n: 6n−�log n�(v) = x}
for any x∈ [2]n−�log n� and let

Vn = {Vx: x∈ [2]n−�log n�}:
Then, Vn is a partition of [2]n such that |Vx|6 2 logN for any x∈ [2]n−�log n� and
|Vn|6N=logN , where N = |[2]n|= 2n.

Theorem 7. dB∗(n)[Vn] is an RFT graph for dB(n) with O(|E(dB(n))| logN ) edges.

Proof. By Theorem 1, it suRces to prove that �(dB(n);Vn) = O(N=logN ).
Consider any edge (u; v)∈E(dB(n)). Assume without loss of generality that v=4(u)

or v=5(4(u)). Let x=6n−�log n�(u) and y=6n−�log n�(v). It is easy to see that y=4(x)
or y = 5(4(x)). Thus,

�(dB(n);Vn)⊆ {(x; y): y = 4(x) or x = 4(y)}
∪{(x; y): y = 5(4(x)) or x = 5(4(y))};

and we have

�(dB(n);Vn)6 2n−�log n�+16
2N
logN

=O
(

N
logN

)
:

The following can be proved similarly.

Theorem 8. SE∗(n)[Vn] is an RFT graph for SE(n) with O(|E(SE(n))| logN ) edges.

5. RFT graphs for partial k-trees

5.1. Partial k-trees

A tree decomposition of a graph G is a pair (T; 5), where T is a tree and 5 =
{Xt ⊆ V (G): t ∈V (T )} is a family of subsets of V (G), satisfying the following three
conditions:

(1) V (G) =
⋃

t∈V (T ) Xt ;
(2) for every (u; v)∈E(G), there exists t ∈V (T ) such that u; v∈Xt ;
(3) for every r; s; t ∈V (T ), if s is on the path between r and t in T then Xr ∩Xt ⊆ Xs.
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The width of (T; 5) is max{|Xt | − 1: t ∈V (T )}. The treewidth of G is the minimum
width over all possible tree decompositions of G. A simple graph of treewidth at most
k is called a partial k-tree. A tree is a partial 1-tree. It is not diRcult to see that if G
is a connected partial k-tree, N − 16 |E(G)|6 kN .

5.2. RFT graphs for partial k-trees

We assume in this section that k is a ?xed positive integer. Let G be a connected
partial k-tree with N vertices, and let (T; 5) be a tree decomposition of G with width
at most k, where 5 = {Xt ⊆ V (G): t ∈V (T )}, and T is considered as a rooted tree
with root r. For any t ∈V (T ); T (t) is a subtree of T rooted at t and induced by
the descendants of t in T . childT (t) is the set of children of t in T . De?ne that
8T (t)=

⋃
s∈V (T (t)) Xs, and 9T (t)=8T (t)−Xp, where p is the parent of t in T . Notice

that 9T (r) = V (G). We need a few preliminary lemmas.

Lemma 9. If t ∈V (T ) and s; s′ ∈ childT (t) then 9T (s) ∩9T (s′) = ∅.

Proof. Assume contrary that 9T (s)∩9T (s′) 	= ∅ and x∈9T (s)∩9T (s′). Since t is on
the path between s and s′ in T; x∈Xt by the de?nition of the tree decomposition. Since
t is the parent of s and s′, we conclude that x 	∈ 9T (s) ∪9T (s′), a contradiction.

For any t ∈V (T ), de?ne that

6T (t) = max{|9T (s)|: s∈ childT (t)}:
If t is a leaf then we de?ne that 6T (t) = 0.

Lemma 10. Let h¿ k+1 be an integer, and let t be a vertex of T with |9T (t)|¿ 2h+
1. If 6T (t)6 2h then there exists some S ⊆ childT (t) such that

h+ 16

∣∣∣∣∣
⋃
s∈S

9T (s)

∣∣∣∣∣6 2h:

Proof. Let childT (t) = {s0; s1; : : : ; sm−1}, and d be a minimal integer satisfying that
|⋃i∈[d] 9T (si)|¿ h+ 1. Since |⋃i∈[m] 9T (si)|= |9T (t)− Xt |¿ (2h+ 1)− (k + 1)¿
h + 1, there exists such d. If |⋃i∈[d] 9T (si)|6 2h then {s0; : : : ; sd−1} is a desired
set. Suppose that |⋃i∈[d] 9T (si)|¿ 2h + 1. Since si is a child of t in T for any i,
we obtain from Lemma 9 that |9T (sd−1)|= |⋃i∈[d] 9T (si)|− |⋃i∈[d−1] 9T (si)|. Since
|⋃i∈[d−1] 9T (si)|6 h by the minimality of d, we have |9T (sd−1)|¿ (2h+1)−h=h+1.
Since |9T (sd−1)|6 6T (t)6 2h; {sd−1} is a desired set.

Lemma 11. Let h¿ k+1 be an integer, and |V (G)|¿ 2h+1. Then, there exist some
t ∈V (T ) and S ⊆ childT (t) such that

h+ 16

∣∣∣∣∣
⋃
s∈S

9T (s)

∣∣∣∣∣6 2h:
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Fig. 1. Algorithm 1.

Proof. We recursively de?ne a sequence of vertices in T as follows: (1) t1 = r; (2)
If ti is not a leaf in T then ti+1 is a vertex s∈ childT (ti) such that |9T (s)| = 6T (ti).
Notice that |9T (ti)|¿ |9T (ti+1)| for any i; |9T (t1)| = |9T (r)| = |V (G)|¿ 2h + 1,
and if ti is a leaf of T then |9T (ti)|6 k + 16 h. Thus, there exists a positive inte-
ger j such that |9T (tj)|¿ 2h+1 and |9T (tj+1)|6 2h. Since 6T (tj)= |9T (tj+1)|6 2h,
it follows from Lemma 10 that there exists some S ⊆ childT (tj) such that
h+ 16 |⋃s∈S 9T (s)|6 2h.

Now, we are ready to prove a key lemma.

Lemma 12. There exists a partition Y= {Y0; Y1; : : : ; Yl−1} of V (T ) that satis<es the
following four conditions:

(1) l=O(N=logN );
(2) For any i∈ [l− 1], there exists a vertex pi ∈V (T ) such that the parent of each

vertex of Yi is contained in Yi ∪ {pi};
(3) r ∈Yl−1, and the parent of each vertex of Yl−1 − {r} is contained in Yl−1.
(4) V= {⋃t∈Yi

Xt − Xpi : i∈ [l− 1]} ∪ {⋃t∈Yl−1
Xt} is a partition of V (G) such that

the size of each block is O(logN ).

Proof. We de?ne Y = {Y0; Y1; : : : ; Yl−1} as the output of Algorithm 1 shown in
Fig. 1.It should be noted that the algorithm is based on the previous lemmas. We
show that Y is a desired partition by a series of claims. The ?rst four claims are
rather obvious.

Claim 1. Y = {Y0; Y1; : : : ; Yl−1} is a partition of V (T ).

Claim 2. l=O(N=logN ).
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Claim 3. The parent of each vertex of Yi is contained in Yi ∪ {pi}: (i∈ [l− 1]).

Claim 4. r ∈Yl−1, and the parent of each vertex of Yl−1 − {r} is contained in Yl−1.

Claim 5. Let 06 i¡ j6 l− 1. For any s∈Yi and t ∈Yj; pi is on the path between
s and t in T.

Proof. Assume contrary that pi is not on the path between s and t in T . Then, there
exists a child s′ of pi such that s; t ∈V (T (s′)) since s is a descendant of pi. Since
s′ ∈Yi, we conclude that j6 i, a contradiction.

Claim 6.

V=

{⋃
t∈Yi

Xt − Xpi : i∈ [l− 1]

}
∪



⋃
t∈Yl−1

Xt




is a partition of V (G) such that the size of each block is O(logN ).

Proof. Let

Vi =




⋃
t∈Yi

Xt − Xpi if i∈ [l− 1]; and

⋃
t∈Yl−1

Xt if i = l− 1:

Assume contrary that (V0; V1; : : : ; Vl−1) is not a partition of V (G). Since
⋃

i∈[l] Vi =
V (G); Vi∩Vj 	= ∅ for some distinct integers i and j. Assume without loss of generality
that i¡ j. Then, there exists a vertex v∈V (G) such that v∈Xs − Xpi for some s∈Yi,
and v∈Xt for some t ∈Yj. Since i¡ j; pi is on the path between s and t in T by Claim
5. It follows from the de?nition of tree decomposition that v∈Xpi , a contradiction.
Thus, V is a partition of V (G). Moreover, |Vi|6 2h = 2�logN for any i∈ [l] by
Lemma 11.

This completes the proof of Lemma 12.

Theorem 9. A partial k-tree G with N vertices has an RFT graph with O(|E(G)|
logN ) edges.

Proof. Consider a partition V of V (G) de?ned in Lemma 12. For any i∈ [l−1]; Q(i)=
{j¿ i: there exist u∈Vi and v∈Vj such that (u; v)∈E(G)}. If j∈Q(i), there exists
an edge (u; v)∈E(G) such that u∈Xs−Xpi for some s∈Yi, and v∈Xt for some t ∈Yj.
From the de?nition of the tree decomposition, there exists some t′ such that u; v∈Xt′ .
Since u 	∈ Xpi , there exists a child s′ of pi such that s; t′ ∈V (T (s′)), and thus s′ ∈Yi.
Since s′ ∈Yi; t ∈Yj, and i¡ j; pi is on the path between s′ and t by Claim 5. Notice
that s′ is on the path between pi and t′. Thus, pi is on the path between t and t′ in T .
Since v∈Xt ∩ Xt′ ; v∈Xpi by the de?nition of tree decomposition. Thus we conclude



T. Yamada et al. / Discrete Applied Mathematics 137 (2004) 223–235 235

that |Q(i)|6 |Xpi |6 k + 1. It follows that

�(G;V)6 l+
∑

i∈[l−1]

|Q(i)|6 l+
∑

i∈[l−1]

(k + 1)

= l+ (l− 1)(k + 1) = O
(

N
logN

)
:

Hence, G∗[V] is an RFT graph for G with O(|E(G)| logN ) edges by Theorem 1.

It should be noted that Theorem 9 is a natural generalization of a result for trees
shown in [5], since trees are partial 1-trees.
We conclude with a remark on an open problem posed in [5]:

Problem. Does every graph with N vertices and M edges have an RFT graph with
O(N ) vertices and O(M logN ) edges?

The answer to the problem is aRrmative if every graph G has a partition V =
(V0; V1; : : : ; Vk−1) of V (G) such that:

• |Vi|=O(logN ) for ∀i,
• k =O(N=logN ), and
• �(G;V) = O(M=logN ).
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