
Cost-Constrained Minimum-Delay Multicasting
(Extended Abstract)

Satoshi Tayu, Turki Ghazi Al-Mutairi, and Shuichi Ueno

Department of Communications and Integrated Systems,
Tokyo Institute of Technology, Tokyo 152–8552–S3–57, Japan

{tayu, ueno}@lab.ss.titech.ac.jp

Abstract. We consider a problem of cost-constrained minimum-delay
multicasting in a network, which is to find a Steiner tree spanning the
source and destination nodes such that the maximum total delay along
a path from the source node to a destination node is minimized, while
the sum of link costs in the tree is bounded by a constant. The problem
is NP-hard even if the network is series-parallel. We present a fully
polynomial time approximation scheme for the problem if the network is
series-parallel.

1 Introduction

The multicasting is the simultaneous transmission of data from a source node to
multiple destination nodes in a network. The multicasting involves the generation
of a multicast tree, which is a Steiner tree spanning the source and destination
nodes. The performance of multicasting is determined by both the cost of the
multicast tree and the maximum delay between the source node and a destination
node in the tree. Therefore, constructing efficient multicasting is formulated as
a bicriteria Steiner tree problem.

In connection with the problem, the following problem has been considered
in the literature [1, 2, 3, 4, 5]. The delay-constrained minimum cost multicast tree
problem (DCMCMT) is to construct a multicast tree such that the cost of the
tree is minimized while the delay between the source node and a destination
node in the tree is bounded by a constant integer. DCMCMT is NP-hard since
it reduces to the Steiner tree problem, which is well-known to be NP-hard. Chen
and Xue proposed a fully polynomial time approximation scheme (FPTAS) for
DCMCMT if the number of destination nodes is bounded by a constant [1],
while many heuristic algorithms have been proposed in [2, 3, 4, 5]. We present a
pseudo-polynomial time algorithm for DCMCMT if the network is series-parallel.

We also consider the following problem, which is another variant of the prob-
lem of constructing efficient multicasting. The cost-constrained minimum de-
lay multicast tree problem (CCMDMT) is to construct a multicast tree such
that the maximum delay between the source node and a destination node in
the tree is minimized while the cost of the tree is bounded by a constant in-
teger. CCMDMT is NP-hard since it reduces to the cost-constrained shortest

M. Bieliková et al. (Eds.): SOFSEM 2005, LNCS 3381, pp. 330–339, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Cost-Constrained Minimum-Delay Multicasting 331

path problem (CCSP) which is known to be NP-hard [6]. In fact, CCMDMT
is NP-hard even for series-parallel networks, since CCSP is NP-hard for series-
parallel networks as mentioned by Chen and Xue [7]. We present in this paper a
pseudo-polynomial time algorithm and an FPTAS for CCMDMT if the network
is series-parallel. This paper is the first to consider CCMDMT, as far as the
authors know.

Due to space limitations most proofs are omitted in the extended abstract
and will appear in the final version of the paper.

2 Problems

We consider a connected graph G with vertex set V (G) and edge set E(G). Each
edge e is assigned a cost γ(e) and a delay δ(e) which are assumed to be non-
negative integers. The cost of a subgraph H of G, denoted by γ(H), is defined as
γ(H) =

∑
e∈E(H) γ(e). The delay of a path P in G, denoted by δ(P), is defined

as δ(P) =
∑

e∈E(P) δ(e). A vertex s is designated as the source and a set D of
vertices is designated as the destinations. A tree T is called a multicast tree if
{s} ∪ D ⊆ V (T). The delay of a multicast tree T , denoted by δ(T), is defined
as δ(T) = max{δ(P (s, d))|d ∈ D, P (s, d): (s, d)-path in T}. Let Γ and ∆ be
positive integers. The delay-constrained minimum cost multicast tree problem
(DCMCMT) is to construct a multicast tree T such that δ(T) ≤ ∆ and γ(T)
is minimized, while the cost-constrained minimum delay multicast tree problem
(CCMDMT) is to construct a multicast tree T such that γ(T) ≤ Γ and δ(T) is
minimized.

3 Pseudo-Polynomial Time Algorithms

A graph is said to be series-parallel if it contains no subdivision of K4 as a
subgraph. A maximal series-parallel graph is called a 2-tree. The 2-trees can be
defined recursively as follows: (1) K2 is a 2-tree on two vertices; (2) Given a
2-tree on n vertices (n ≥ 2), a graph obtained from G by adding a new vertex
adjacent to the ends of an edge of G is a 2-tree on n + 1 vertices. A 2-tree on
n ≥ 2 vertices has 2n − 3 edges by definition.

In this section, we will show an O(n∆3) time algorithm and an O(n4δmax
3)

time algorithm to solve DCMCMT and CCMDMT, respectively, for a series-
parallel graph G with n vertices, where δmax = max{δ(e)|e ∈ E(G)}. We use
methods similar to those used in [7]. We first augment a connected series-parallel
graph with n vertices to a 2-tree on n vertices using a linear time algorithm pre-
sented in [8]. Each added edge has infinite cost and delay so that the added edges
are never chosen in an optimal multicast tree. We next find an optimal multicast
tree in the 2-tree. The algorithms are based on the dynamic programming.

3.1 Preliminaries

Let G be a 2-tree and C3(G) be the set of triangles of G. A tree TG is defined
as follows: V (TG) = E(G) ∪ C3(G); for any e ∈ E(G) and ∇ ∈ C3(G), (e,∇) ∈

332 S. Tayu, T.G. Al-Mutairi, and S. Ueno

E(TG) if and only if e ∈ E(∇). TG thus defined is indeed a tree since G is a
2-tree. TG is considered as a rooted tree with root r, where r is an edge incident
to s in G.

Let C(p) be the set of all children of p ∈ E(G) in TG. Notice that a child of
p is a triangle in G. Let D(∇) be the set of triangles which are descendants of
∇ ∈ C3(G) in TG. For C′(p) ⊆ C(p), G[p, C′(p)] is a subgraph of G induced by
the edges of triangles in

⋃
∇∈C′(p) D(∇) together with edge p.

Let ≺ be a partial order on V (G) satisfying the following conditions:

• s ≺ v for all v ∈ V (G);
• If ∇ is a triangle with V (∇) = {x, y, z}, and edge (x, z) is the parent of ∇

with x ≺ z, then x ≺ y and y ≺ z.

Such an order can be constructed recursively from the root of TG as follows:
First, we define s ≺ v for edge r = (s, v). For every edge p = (x, z) with x ≺ z, if
p has a child triangle C, we define x ≺ y and y ≺ z for vertex y ∈ V (C) \ {x, z}.
We continue this process until ≺ is defined on every pair of endvertices of an
edge. Then the transitive reflexive closure of ≺ is the desired partial order.

For any edge p = (x, y) with x ≺ y and C′(p) ⊆ C(p), H
[p,C′(p)]
•-• , H

[p,C′(p)]
•◦ ,

H
[p,C′(p)]
◦• , and H

[p,C′(p)]
•• are subgraphs of G[p, C′(p)] such that each subgraph

contains the vertices (destinations) in D ∩ V (G[p, C′(p)]) and;

• H
[p,C′(p)]
•-• is a tree including both x and y,

• H
[p,C′(p)]
•◦ is a tree with x ∈ V (H [p,C′(p)]

•◦) and y 	∈ V (H [p,C′(p)]
•◦),

• H
[p,C′(p)]
◦• is a tree with x 	∈ V (H [p,C′(p)]

◦•) and y ∈ V (H [p,C′(p)]
◦•),

• H
[p,C′(p)]
•• consists of vertex-disjoint two trees T

[p,C′(p)]
x and T

[p,C′(p)]
y such that

x ∈ V (T [p,C′(p)]
x) and y ∈ V (T [p,C′(p)]

y).

Finally, let S∆ = {−∞, 0, 1, . . . , ∆}.

3.2 Functions

Let p = (x, y) be an edge with x ≺ y and C′(p) ⊆ C(p).
W•-•(p, C′(p); ξx, ξxy) is the minimum cost of a tree H

[p,C′(p)]
•-• in G[p, C′(p)]

such that max {δ(x, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξx and δ(x, y) ≤ ξxy, where
δ(u, v) is the delay of (u, v)-path in tree H

[p,C′(p)]
•-• , and ξx, ξxy ∈ S∆.

W •-•(p, C′(p); ξy, ξxy) is the minimum cost of a tree H
[p,C′(p)]
•-• in G[p, C′(p)]

such that max {δ(y, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξy and δ(x, y) ≤ ξxy, where
δ(u, v) is the delay of (u, v)-path in tree H

[p,C′(p)]
•-• , and ξy, ξxy ∈ S∆.

W•◦(p, C′(p); ξx) is the minimum cost of a tree H
[p,C′(p)]
•◦ in G[p, C′(p)] such

that max {δ(x, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξx, where δ(x, d) is the delay of
(x, d)-path in tree H

[p,C′(p)]
•◦ , and ξx ∈ S∆.

W◦•(p, C′(p); ξy) is the minimum cost of a tree H
[p,C′(p)]
◦• in G[p, C′(p)] such

that max {δ(y, d)|d ∈ D ∩ V (G[p, C′(p)])} ≤ ξy, where δ(x, d) is the delay of
(x, d)-path in tree H

[p,C′(p)]
◦• , and ξy ∈ S∆.

Cost-Constrained Minimum-Delay Multicasting 333

W••(p, C′(p); ξx, ξy) is the minimum cost of a forest H
[p,C′(p)]
•• in G[p, C′(p)]

such that max{δ(x, d)|d ∈ D ∩ V (T [p,C′(p)]
x)} ≤ ξx, and max{δ(y, d)|d ∈ D ∩

V (T [p,C′(p)]
y)} ≤ ξy, where δ(x, d) is the delay of (x, d)-path in tree T

[p,C′(p)]
x and

δ(y, d) is the delay of (y, d)-path in tree T
[p,C′(p)]
y , and ξx, ξy ∈ S∆.

N◦◦(p) is defined to be 0 if G[p, C(p)] has no destination and ∞ otherwise.
For an edge p = (x, y) ∈ E(G) with x ≺ y and C′(p) ⊆ C(p), the ta-

ble W(p, C′(p)) for p and C′(p) is the list of values of W•-•(p, C′(p); ξx, ξxy),
W •-•(p, C′(p); ξy, ξxy), W•◦(p, C′(p); ξx), W◦•(p, C′(p); ξy), and W••(p, C′(p); ξx, ξy)
for every ξx, ξy, ξxy ∈ S∆.

The following is immediate from the definition of functions above.

Lemma 1. For any ξ ∈ {0, 1, . . . , ∆}, min{W•◦(r, C(r); ξ), W•-•(r, C(r); ξ, ∆)}
is the minimum cost of a multicast tree T of G with δ(T) ≤ ξ, where r = (s, y) ∈
E(G) is the root of TG. ��

3.3 Basic Algorithm BA(G, s, D, γ, δ, ∆)

We describe in this subsection a basic algorithm BA(G, s, D, γ, δ, ∆) which com-
putes W(r, C(r)) for a 2-tree G with n vertices in O(n∆3) time.

BA(G, s, D, γ, δ, ∆) first computes TG and chooses an edge incident with s
in G as the root of TG.

Then, BA(G, s, D, γ, δ, ∆) recursively computes the functions defined in Sec-
tion 3.2. We distinguish three cases.
Case 1 : C′(p) = ∅.
For every p = (x, y) ∈ E(G) with x ≺ y, and ξx, ξy, ξxy ∈ S∆,

W•-•(p, ∅; ξx, ξxy) =

⎧
⎪⎪⎨

⎪⎪⎩

γ(p) if the following conditions are satisfied:
(i) if y ∈ D then ξx ≥ δ(p); (ii) if x ∈ D then ξx ≥ 0;
(iii) ξxy ≥ δ(p),

∞ otherwise.

W •-•(p, ∅; ξy, ξxy) =

⎧
⎪⎪⎨

⎪⎪⎩

γ(p) if the following conditions are satisfied:
(i) if y ∈ D then ξy ≥ 0; (ii) if x ∈ D then ξy ≥ δ(p);
(iii) ξxy ≥ δ(p),

∞ otherwise.

W•◦(p, ∅; ξx) =
{

0 if y 	∈ D, and if x ∈ D then ξx ≥ 0,
∞ otherwise.

W◦•(p, ∅; ξy) =
{

0 if x 	∈ D, and if y ∈ D then ξy ≥ 0,
∞ otherwise.

W••(p, ∅; ξx, ξy) =

⎧
⎨

⎩

0 if the following conditions are satisfied:
(i) if x ∈ D then ξx ≥ 0, (ii) if y ∈ D then ξy ≥ 0,

∞ otherwise.

Case 2 : C′(p) = {∇} for some ∇ ∈ C(p).
For every p = (x, z) ∈ E(G) with C(p) 	= ∅ and x ≺ z, for every ∇ ∈ C(p) with

334 S. Tayu, T.G. Al-Mutairi, and S. Ueno

V (∇) = {x, y, z}, E(∇) = {p = (x, z), q = (x, y), t = (y, z)}, and x ≺ y ≺ z, and
for every ξx, ξy, ξxy ∈ S∆, the functions are computed as follows:

W•-•(p, {∇}; ξx, ξxz) =

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
γ(p) + W•◦(q, C(q); ξ′

x) + W◦•(t, C(t); ξ′′
z)

∣
∣ ξxz ≥ δ(p),

ξx ≥ max{ξ′
x, δ(p) + ξ′′

z }, (ξ′
x, ξ′′

z) ∈ S
2
∆

}
,

min
{
γ(p) + W•-•(q, C(q); ξ′

x, ξ′
xy) + W••(t, C(t); ξ′′

y , ξ′′
z)

∣
∣ ξxz ≥ δ(p),

ξx ≥ max{ξ′
x, ξ′

xy + ξ′′
y , δ(p) + ξ′′

z }, (ξ′
x, ξ′

xy, ξ′′
y , ξ′′

z) ∈ S
4
∆

}
,

min
{
γ(p) + W••(q, C(q); ξ′

x, ξ′
y) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣
∣ ξxz ≥ δ(p),

ξx ≥ max{ξ′
x, δ(p) + ξ′′

z , δ(p) + ξ′′
yz + ξ′

y}, (ξ′
x, ξ′

y, ξ′′
z , ξ′′

yz) ∈ S
4
∆

}
,

min
{
W•-•(q, C(q); ξ′

x, ξ′
xy) + W•-•(t, C(t); ξ′′

y ξ′′
yz)

∣
∣ ξxz ≥ ξ′

xy + ξ′′
yz,

ξx≥ max{ξ′
x, ξ′

xy + ξ′′
y }, (ξ′

x, ξ′
xy, ξ′′

y , ξ′′
yz) ∈ S

4
∆

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

W •-•(p, {∇}; ξz, ξxz) =

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
γ(p) + W•◦(q, C(q); ξ′

x) + W◦•(t, C(t); ξ′′
z)

∣
∣ ξxz ≥ δ(p),

ξx ≥ max{ξ′
x, δ(p) + ξ′′

z }, (ξ′
x, ξ′′

z) ∈ S
2
∆

}
,

min
{
γ(p) + W •-•(q, C(q); ξ′

y, ξ′
xy) + W••(t, C(t); ξ′′

y , ξ′′
z)

∣
∣ ξxz ≥ δ(p),

ξx ≥ max{ξ′
x, ξ′

xy + ξ′′
y , δ(p) + ξ′′

z }, (ξ′
y, ξ′

xy, ξ′′
y , ξ′′

z) ∈ S
4
∆

}
,

min
{
γ(p) + W••(q, C(q); ξ′

x, ξ′
y) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣
∣ ξxz ≥ δ(p),

ξx ≥ max{ξ′
x, δ(p) + ξ′′

z , δ(p) + ξ′′
yz + ξ′

y}, (ξ′
y, ξ′′

y , ξ′′
z , ξ′′

yz) ∈ S
4
∆

}
,

min
{
W •-•(q, C(q); ξ′

y, ξ′
xy) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣
∣ ξxz ≥ ξ′

xy + ξ′′
yz,

ξz≥ max{ξ′
y + ξ′′

yz, ξ
′′
z }, (ξ′

y, ξ′
xy, ξ′′

z , ξ′′
yz) ∈ S

4
∆

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2)

W•◦(p, {∇}; ξx) = min

⎧
⎪⎪⎨

⎪⎪⎩

min
{
W•◦(q, C(q); ξ′

x) + N◦◦(t)
∣
∣ ξx≥ξ′

x,
ξ′
x ∈ S∆

}
,

min
{
W•-•(q, C(q); ξ′

x, ξ′
xy) + W•◦(t, C(t); ξ′′

y)
∣
∣

ξx≥ max{ξ′
x, ξ′

xy + ξ′′
y }, (ξ′

x, ξ′
xy, ξ′′

y) ∈ S
3
∆

}

⎫
⎪⎪⎬

⎪⎪⎭

, (3)

W◦•(p, {∇}; ξz) = min

⎧
⎪⎪⎨

⎪⎪⎩

min
{
N◦◦(q) + W◦•(t, C(t); ξ′′

z)
∣
∣ ξz≥ξ′′

z ,
ξ′′
z ∈ S∆

}
,

min
{
W◦•(q, C(q); ξ′

y) + W •-•(t, C(t); ξ′′
z , ξ′′

yz)
∣
∣

ξz≥ max{ξ′′
z , ξ′′

yz + ξ′
y}, (ξ′

y, ξ′′
z , ξ′′

yz) ∈ S
3
∆

}

⎫
⎪⎪⎬

⎪⎪⎭

, (4)

W••(p, {∇}; ξx, ξz) =

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{
W•◦(q, C(q); ξ′

x) + W◦•(t, C(t); ξ′′
z)

∣
∣ ξx≥ξ′

x, ξz≥ξ′′
z ,

(ξ′
x, ξ′′

z) ∈ S
2
∆

}
,

min
{
W•-•(q, C(q); ξ′

x, ξ′
xy) + W••(t, C(t); ξ′′

y , ξ′′
z)

∣
∣

ξx≥ max{ξ′
x, ξ′

xy + ξ′′
y }, ξz≥ξ′′

z , (ξ′
x, ξ′

xy, ξ′′
y , ξ′′

z) ∈ S
4
∆

}
,

min
{
W••(q, C(q); ξ′

x, ξ′
y) + W •-•(t, C(t); ξ′′

z , ξ′′
yz)

∣
∣ ξx≥ξ′

x,
ξz≥ max{ξ′′

z , ξ′′
yz + ξ′

y}, (ξ′
x, ξ′

xy, ξ′′
z , ξ′′

yz) ∈ S
4
∆

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (5)

Case 3 : C′(p) = C′′(p) ∪ {∇} for some C′′(p) ⊆ C(p) and ∇ ∈ C(p) − C′′(p).

Cost-Constrained Minimum-Delay Multicasting 335

For every p = (x, y) ∈ E(G), C′(p) ⊆ C(p), ∇ ∈ C′(p), and ξx, ξy, ξxy ∈ S∆, the
functions are computed as follows:

W•-•(p, C′(p); ξx, ξxy) =

min

⎧
⎪⎪⎨

⎪⎪⎩

min
{
W•-•(p, C′′(p); ξ′

x, ξ′
xy) + W••(p, {∇}; ξ′′

x , ξ′′
y)

∣
∣ ξxy ≥ ξ′

xy,
ξx≥ max{ξ′

x, ξ′′
x , ξ′′

y + ξ′
xy}, (ξ′

x, ξ′
xy, ξ′′

x , ξ′′
y) ∈ S

4
∆

}
,

min
{
W••(p, C′′(p); ξ′

x, ξ′
y) + W•-•(p, {∇}; ξ′′

x , ξ′′
xy)

∣
∣ ξxy ≥ ξ′′

xy,
ξx≥ max{ξ′

x, ξ′′
x , ξ′

y + ξ′′
xy}, (ξ′

x, ξ′
y, ξ′′

x , ξ′′
xy) ∈ S

4
∆

}

⎫
⎪⎪⎬

⎪⎪⎭

, (6)

W •-•(p, C′(p); ξy, ξxy) =

min

⎧
⎪⎪⎨

⎪⎪⎩

min
{
W •-•(p, C′′(p); ξ′

y, ξ′
xy) + W••(p, {∇}; ξ′′

x , ξ′′
y)

∣
∣ ξxy ≥ ξ′

xy,
ξy≥ max{ξ′

y, ξ′′
y , ξ′′

x + ξ′
xy}, (ξ′

y, ξ′
xy, ξ′′

x , ξ′′
y) ∈ S

4
∆

}
,

min
{
W••(p, C′′(p); ξ′

x, ξ′
y) + W •-•(p, {∇}; ξ′′

y , ξ′′
xy)

∣
∣ ξxy ≥ ξ′′

xy,
ξy≥ max{ξ′

y, ξ′′
y , ξ′

x + ξ′′
xy}, (ξ′

y, ξ′
y, ξ′′

y , ξ′′
xy) ∈ S

4
∆

}

⎫
⎪⎪⎬

⎪⎪⎭

, (7)

W•◦(p, C′(p); ξx) = W•◦(p, C′′(p); ξx) + W•◦(p, {∇}; ξx), (8)
W◦•(p, C′(p); ξy) = W◦•(p, C′′(p); ξy) + W◦•(p, {∇}; ξy), (9)

W••(p, C′(p); ξx, ξy) = W••(p, C′′(p); ξx, ξy) + W••(p, {∇}; ξx, ξy). (10)

The computation of the tables for functions proceeds as follows. We first
compute W(p, C(p)) = W(p, ∅) for every leaf p of TG as in Case 1 above.

For every triangle ∇ with parent p and children q and t, W(p, {∇}) is com-
puted using tables W(q, C(q)) and W(t, C(t)) as in Case 2.

For every p ∈ E(G) with C(p) = {∇1,∇2, . . . ,∇|C(p)|}, W(p, C(p)) is com-
puted as follows. Let C(i)(p) = {∇1,∇2, . . . ,∇i} for 1 ≤ i ≤ |C(p)|. W(p, C(i)(p))
is computed using W(p, C(i−1)(p)) and W(p, {∇i}) as in Case 3 for 2 ≤ i ≤ |C(p)|.

Finally, BA(G, s, D, γ, δ, ∆) outputs W(r, C(r)).

3.4 Analysis of BA(G, s, D, γ, δ, ∆)

We use the following lemmas to prove Theorem 1 below. The proofs of the
lemmas are omitted in the extended abstract.

Lemma 2. BA(G, s, D, γ, δ, ∆) computes W(r, C(r)), correctly. ��

Lemma 3. W(p, ∅) is computed in O(∆2) time for any leaf p of TG. ��

Lemma 4. Let ∇ be a triangle with parent p and children q and t. Given
W(q, C(q)) and W(t, C(t)), W(p, {∇}) is computed in O(∆3) time. ��

Lemma 5. Let p ∈ E(G), C(p) = {∇1,∇2, . . . ,∇|C(p)|}, and C(i)(p) = {∇1,∇2,

. . . ,∇i} for 1 ≤ i ≤ |C(p)|. Given W(p, C(i−1)(p)) and W(p, {∇i}), W(p, C(i)(p))
is computed in O(∆3) time for 2 ≤ i ≤ |C(p)|. ��

336 S. Tayu, T.G. Al-Mutairi, and S. Ueno

Theorem 1. For a 2-tree G on n vertices, BA(G, s, D, γ, δ, ∆) computes W(r,
C(r)) in O(n∆3) time.

Proof. The tables W(p, ∅) for all leaves p can be computed in O(n∆2) time
by Lemma 3. Since the number of triangles is O(n), the tables W(p, {∇}) for
all triangles ∇ can be computed in O(n∆3) time by Lemma 4. By Lemma 5,
W(p, C(p)) can be computed in O(|C(p)|∆3) time. Since

∑
p∈E(G) |C(p)| = O(n),

the tables W(p, C(p)) for all edges p can be computed in O(n∆3) time. It follows
that BA(G, s, D, γ, δ, ∆) computes W(r, C(r)) in O(n∆3) time by Lemma 2. ��

By Lemma 1 and Theorem 1, BA(G, s, D, γ, δ, ∆) computes the minimum
cost of a multicast tree with delay at most ξ for any ξ ∈ {0, 1, . . . , ∆}. If we
perform some bookkeeping operations such as recording how the minimum was
achieved during the computation of the tables for functions, we can construct
a delay-constrained minimum cost multicast tree in the same time complexity.
Thus, we have the following.

Corollary 1. Given a 2-tree G on n vertices, s, D, γ, δ, ∆, and an integer ξ,
0 ≤ ξ ≤ ∆, a minimum cost multicast tree T with δ(T) ≤ ξ can be constructed
in O(n∆3) time. ��

We denote by MT(G, s, D, γ, δ, ∆, ξ) such an O(n∆3) time algorithm con-
structing a minimum cost multicast tree T with δ(T) ≤ ξ for a given 2-tree G,
s, D, γ, δ, ∆, and an integer ξ, 0 ≤ ξ ≤ ∆.

3.5 Pseudo-Polynomial Time Algorithm for DCMCMT

Given a connected series-parallel
graph G′ with cost and delay
functions γ′ and δ′, we denote by
Ext(G′, δ′, γ′) a linear time procedure
for augmenting G′ to a 2-tree G with
V (G) = V (G′) [8], and extending γ′

and δ′ to γ and δ, respectively, by
defining γ(e) = ∞ and δ(e) = ∞
for each e ∈ E(G) − E(G′), and
γ(e) = γ′(e) and δ(e) = δ′(e) for each
e ∈ E(G′). Then, it is easy to see
that Algorithm 1 shown in Fig. 1.
solves DCMCMT for series-parallel
graphs, and we have the following by
Theorem 1.

Theorem 2. For a series-parallel
graph G with n vertices and a positive
integer ∆, Algorithm 1 solves DCM-
CMT in O(n∆3) time. ��

Input a series-parallel graph G′, s ∈
V (G′), D ⊆ V (G′),
γ′ : E(G′) → N, δ′ : E(G′) → N,
∆ ∈ Z

+.
Output a minimum cost multicast

tree T with delay at most ∆.

begin
Ext(G′, γ′, δ′);
BA(G, s, D, γ, δ, ∆);
MT(G, s, D, γ, δ, ∆, ∆);
if γ(T) < ∞

return T ;
else

return “NO”;
endif

end

Fig. 1. Algorithm 1

Cost-Constrained Minimum-Delay Multicasting 337

3.6 Pseudo-Polynomial Time Algorithm for CCMDMT

Given a cost bound Γ and the
table W(r, C(r)) for functions, we
denote by Min Delay(Γ, W(r, C(r)))
a linear time procedure for com-
puting the minimum ξ satisfying
min{W•-•(r, C(r); ξ, ∆), W•◦(r, C(r); ξ)}
≤ Γ if exists. It returns ∞ if there
exists no such ξ.

Since the number of edges of mul-
ticast tree is at most n − 1, the max-
imum delay of a multicast tree is
at most (n − 1)δmax, where δmax =
maxe∈E(G′) δ′(e). Thus, it is easy to
see that Algorithm 2 shown in Fig. 2
is a pseudo-polynomial time algorithm
for CCMDMT, and we have the fol-
lowing by Theorem 1.

Theorem 3. For a series-parallel
graph G with n vertices and a non-
negative integer Γ , Algorithm 2 solves
CCMDMT in O(n4δmax

3) time if
δmax ≥ 1. ��

Input a series-parallel graph G′,
s ∈ V (G′), D ⊆ V (G′),
γ′ : E(G′) → N, δ′ : E(G′) → N,
Γ ∈ Z

+.
Output a minimum delay multicast

tree T with cost at most Γ .
begin

δmax := max
e∈E(G′)

δ(e);

∆′ := (n − 1)δmax;
Ext(G′, γ′, δ′);
BA(G, s, D, γ, δ, ∆′);
Min Delay(Γ, W(r, C(r)));
if ξ < ∞

MT(G, s, D, γ, δ, ∆, ξ);
return T ;

else
return “NO”;

endif
end

Fig. 2. Algorithm 2

4 FPTAS for CCMDMT

We use standard techniques [7, 6, 9, 10] to turn BA(G, s, D, γ, δ, ∆) into an FP-
TAS for CCMDMT. We show in Section 4.1 a pair of upper and lower bounds
U and L for the minimum delay of a cost constrained multicast tree such that
U/L ≤ n − 1. For any ε > 0, we show in Section 4.2 a (1 + ε)-approximation
algorithm for CCMDMT. The algorithm runs in O(n7/ε3) time, provided that
we have a pair of upper and lower bounds U and L for the delay of a cost con-
strained multicast tree such that U/L = O(n). It follows that we have an FPTAS
for CCMDMT.

4.1 Upper and Lower Bounds for Minimum Delay

We use a technique similar to [7]. Let ν1 < ν2 < · · · < νk be different edge delays,
and γj be the cost function defined as γj(e) = γ(e) if δ(e) ≤ νj , and γj(e) = ∞
otherwise. Let Tj be a minimum cost multicast tree of G for γj , and J be the
minimum j such that γj(Tj) ≤ Γ .

By the definition of J , the minimum delay of a cost constrained multicast tree
is at least νJ and at most (n − 1)νJ . Since such J and also TJ can be computed
in O(n log n) time [7], we have the following.

338 S. Tayu, T.G. Al-Mutairi, and S. Ueno

Theorem 4. A pair of upper and lower bounds U and L for the minimum delay
of a cost constrained multicast tree satisfying U/L = n − 1 can be computed in
O(n log n) time. Moreover, a multicast tree TJ with cost at most Γ and delay at
most U can also be computed in O(n log n) time. ��

Given a 2-tree G with source s and destinations D, cost and delay functions
γ and δ, and a positive integer Γ , we denote by Comp UL(G, s, D, γ, δ, Γ) an
O(n log n) time procedure for computing upper and lower bounds U and L with
U/L ≤ n − 1.

4.2 FPTAS for CCMDMT

For any α > 0, let δα be a delay function defined as δα(e) = �αδ(e)� for any
e ∈ E(G). Let Tα be a minimum delay multicast tree with cost at most Γ for δα

and OPT(δα) = δα(Tα). Notice that T1 is a minimum delay multicast tree with
cost at most Γ for δ = δ1. We denote by Pα a maximum delay path in Tα for
δα.

By the definition of δα, we have δ(e) ≥ δα(e)/α and

δ(e) < (δα(e) + 1)/α (11)
for any e ∈ E(G). If we denote by P ′

1 a maximum delay path of T1 for δα,
OPT(δ) =

∑

e∈E(P1)

δ(e) ≥
∑

e∈E(P ′
1)

δ(e) ≥
∑

e∈E(P ′
1)

δα(e)/α ≥
∑

e∈E(Pα)

δα(e)/α,

where the second inequality follows from δ(e) ≥ δα(e)/α. Thus, we have

OPT(δ) ≥ δα(Tα)/α

= OPT(δα)/α. (12)
Moreover, if we set α = (n −
1)/εL, and denote by P ′

α a maxi-
mum delay path in Tα for δ, we have

δ(Tα) =
∑

e∈E(P ′
α)

δ(e)

<
1
α

∑

e∈E(P ′
α)

(δα(e) + 1) (13)

≤ 1
α

|E(P ′
α)| +

1
α

∑

e∈E(P ′
α)

δα(e)

≤ n − 1
α

+
1
α

∑

e∈E(Pα)

δα(e)

= εL +
1
α

OPT(δα)

≤ εL + OPT(δ) (14)
≤ (1 + ε)OPT(δ),

Input a series-parallel graph G′,
s ∈ V (G′), D ⊆ V (G′),
γ′ : E(G′) → N, δ′ : E(G′) → N,
Γ ∈ Z

+, ε > 0.
Output a multicast tree T with cost

at most Γ and delay at most (1+
ε)OPT(δ′).

begin
Ext(G′, γ′, δ′);
Comp UL(G, s, D, γ, δ, Γ);
α := (n − 1)/εL;
δα(e) := �αδ(e)� ∀e ∈ E(G);
∆α := αU ;
BA(G, s, D, γ, δα, ∆α);
Min Delay(Γ, W(r, C(r)));
MT(G, s, D, γ, δα, ∆α, ξ);
return T ;

end

Fig. 3. Algorithm 3

Cost-Constrained Minimum-Delay Multicasting 339

where inequality (13) and (14) follow from (11) and (12), respectively.
Thus, we conclude that Algorithm 3 shown in Fig. 3 is an FPTAS for

CCMDMT. Since ∆α = (n − 1)U/εL = O(n2/ε), we have the following by
Theorem 2.

Theorem 5. For a series-parallel graph G with n vertices and a non-negative
integer ∆, Algorithm 3 computes a (1 + ε)-approximate solution for CCMDMT
in O(n log n + n7/ε3) time. ��

Finally, it should be noted that our method to obtain FPTAS for CCMDMT
cannot apply to DCMCMT in a straightforward way, since ∆ can be exponen-
tially large.

References

1. Chan, G., Xue, G.: k-pair delay constrained minimum cost routing in undirected
networks. ACM-SIAM Symposium on Discrete Algorithms (2001) 230–231

2. Kompella, V., Pasquale, J., Polyzos, G.: Multicast routing for multimedia com-
munication. IEEE/ACM Transactions on Networking 1 (1993) 286–292

3. Parsa, M., Zhu, Q., G.-L.-Aceves, J.J.: An iterative algorithm for delay-constrained
minimum-cost multicast. IEEE/ACM Trans. Networking 6 (2001) 213–219

4. Sriram, R., Manimaran, G., Murthy, C.: Algorithms for delay-constrained low-cost
multicast tree construction. Computer Communications 21 (1998) 1693–1706

5. Youssef, H., A.-Mulhem, A., Sait, S., Tahir, M.: QoS-driven multicast tree gener-
ation using tabu search. Computer Communications 25 (2002) 1140–1149

6. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math-
ematics of Operations Research 17 (1992) 36–42

7. Chen, G., Xue, G.: A PTAS for weight constrained steiner trees in series-parallel
graphs. Theoretical Computer Science 304 (2003) 237–247

8. Wald, J., Colbourn, C.: Steiner trees, partial 2-trees and minimum IFI networks.
Networks 13 (1983) 159–167

9. Lorenz, D., Raz, D.: A simple efficient approximation scheme for the restricted
path problem. Operations Research Letters 28 (2001) 213–219

10. Warburton, A.: Approximation of pareto optima in multiple-objective shortest
path problems. Operations Research 35 (1987) 70–79

	Introduction
	Problems
	Pseudo-Polynomial Time Algorithms
	Preliminaries
	Functions
	Basic Algorithm BA(G,s,D,γ,δ,Δ)
	Analysis of BA(G,s,D,$\gamma\delta\Delta$)
	Pseudo-Polynomial Time Algorithm for DCMCMT
	Pseudo-Polynomial Time Algorithm for CCMDMT

	FPTAS for CCMDMT
	Upper and Lower Bounds for Minimum Delay
	FPTAS for CCMDMT

