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Abstract

This paper considers the problem of sequential fault diagnosis for various multiprocessor sys-
tems. We propose a simple sequential diagnosis algorithm and show that the degree of sequential
diagnosability of any system with processors is at lea§(+/N). We also show upper bounds for
various networks. These are the first nontrivial upper bounds for the degree of sequential diagnos-
ability, to the best of our knowledge. Our upper bounds are proved in a unified manner, which is
based on the very definition of sequential diagnosability. We show thdimensional grid and torus
with N vertices are sequentially@¢9/(@+1)_diagnosable, and a-vertexk-ary tree is QvkN)-
diagnosable. Moreover, we prove that the degree of sequential diagnosabilitiNefeatex hyper-
cube is at leas®(N /+/log N) and at most @V log log N/+/log N), and those of aN-vertex CCC,
shuffle-exchange graph, and de Bruijn graph@r&//log N).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The system diagnosis has been extensively studied in the literature in connection with
fault-tolerant multiprocessor computer systems. An original graph-theoretical model for
system diagnosis was introduced in a classic paper by Preparatflé€X aln this model,
the testing assignment is represented by a digraph (directed graph) associated with the
interconnection graph of the system. The model assumes that the processors can test each
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other along available communication links. A testing processor evaluates a tested processor
as fault-free or faulty. A syndrome is a collection of test results. The model also assumes
that the number of faulty processors is bounded.

Two strategies for the diagnosis were introduced and discusg&@]irA system is said
to be one-step-diagnosable if all faulty processors can be identified uniquely from any
syndrome provided that the number of faulty processors does not exéeggstem is said
to be sequentially-diagnosable if at least one faulty processors can be identified from any
syndrome provided that the number of faulty processors does not eCeeeldegree of
one-step (sequential) diagnosability of a system is the maximath that the system is
one-step (sequentialljydiagnosable. A characterization of one-gtejlagnosable systems
by Hakimi and Amin[3] implies that the degree of one-step diagnosability of any system is
bounded by the minimum degree of a vertex in its interconnection graph. On the other hand,
it is known that the degree of sequential diagnosability of any systemNyittocessors is
at leastQ(v/N) [6]. Unfortunately, computing the degree of sequential diagnosability of a
system is co-NP hard as proved by Raghavan and Trifthi

The grid, hypercube, tree, cube-connected cycles (CCC), shuffle-exchange graph, and
de Bruijn graph are popular interconnection graphs for multiprocessor computer systems.
The sequential diagnosis for hypercube was first considered by Kavianpour and]Kim
They proved that the degree of sequential diagnosability fax-amertex hypercube is at
leastQ(,/N Tog N) [4]. Khanna and Fuchs also showed the same lower bound by giving
a linear time algorithm for sequential diagnosis for hyperd@eMoreover, they showed
in [6] that the degree of sequential diagnosability forNwmertex hypercube is at least
Q(N log log N/log N). In the same papd6], they proved that the degree of sequential
diagnosability for al-dimensional grid withN vertices is at leag®(N%/(@+D) In addition,
it is shown in[6] that the degree of sequential diagnosability of any system Migno-
cessors is at leasd(,/N/4) andQ(4), where4 is the maximum degree of a vertex in its
interconnection graph. The former lower bound is based on a sequential diagnosis algorithm
called PARTITION, while the latter is based on another algorithm called MAX. It follows
that the degree of sequential diagnosability &fary tree withN vertices is2(\/N/k) and
those of arN-vertex CCC, shuffle-exchange graph, and de Bruijn grap2éa¢éV). From
lower bounds ofQ(,/N/A) and 2(4) mentioned above, we can derive a general lower
bound ofQ(/N), which is independent ofl [6]. However, we know no grapB with N
vertices such that the degree of sequential diagnosabilitiisvg.

This paper first shows that this is indeed the case by proving that the degree of sequential
diagnosability of any system wit processors i€(~/N). Our lower bound is based on a
sequential diagnosis algorithm called HYBRID, which is a natural common generalization
of algorithms PARTITION and MAX proposed if6]. We next show upper bounds for
various networks. These are the first nontrivial upper bounds for the degree of sequential
diagnosability, to the best of our knowledge. Our upper bounds are proved in a unified
manner, which is based on the very definition of sequential diagnosability. We show that
ad-dimensional grid and torus witN vertices are sequentially(@4/@+9)-diagnosable,
and anN-vertexk-ary tree is @vkN)-diagnosable. Finally, we prove that the degree of
sequential diagnosability of ad-vertex hypercube is at lea&(N /+/log N) and at most
O(N log log N/+/Tog N), and those of ail-vertex CCC, shuffle-exchange graph, and de
Bruijn graph are® (N/log N).
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Preliminary versions of the paper appeare{Bi9,13,14]

2. Sequential diagnosis

The interconnection network of a multiprocessor computer system is modeled by a graph,
called an interconnection graph, with the processors represented by the vertices of the graph
and the communication links by the edges. The testing assignment in the system is modeled
by a digraph, called a testing digraph, with the processors represented by the vertices of the
digraph and the test by the arcs (directed edges), If) is an arc of the testing digraph then
the processox tests processor. A test is performed along an edge of the interconnection
graph.

We denote the vertex set and the edge set of a geaphV (G) andE(G), respectively.

We also denote the vertex setand the arc set of a digddhV’ (D) andA (D), respectively.
The associated digrapt of a graphG is the digraph obtained when each edge G is
replaced with two oppositely oriented arcs with the same ends as

LetD be atesting digraph of a system. A syndromedas a mapping : A(D) — {0, 1}
defined as follows:

(. y) = 0 if x testsy with outcome pass
R testsy with outcome fail

where we denote({x, y)) simply bya(x, y). The outcome of the test is considered reliable
if and only if x is fault-free. A setF C V(D) is said to be a consistent fault set for a
syndromes if neither (i) nor (ii) below holds:

(i) o(x,y)=0wherex € V(D) — F andy € F,
(i) o(x,y)=1wherex,y e V(D) —F.

For any syndrome for D and positive integet;, define

F(o,1)={F: F C V(D) is a consistent fault set far and | F| <1},
Spt)y={o: F(a,1) #0}.

D is said to be sequentialtydiagnosabile if
\F(e.0l=1or (\(F:FeZF(@.n}#0
for any syndromes € & p(r). The degree of sequential diagnosability Bardenoted by
Jd(D), is the largest integdrfor which D is sequentiallyt-diagnosable.
3. Algorithm HYBRID

In this section, we propose a linear-time sequential diagnosis algorithm for strongly-
connected testing digraphs.
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LetD be atesting digraph of a system, andiéie a syndrome fdd. D,—g is the digraph
defined as follows:
V(Ds=0) = V(D); A(Dg=0) ={{x,y) € A(D): o{x,y)=0}

Lemma 1. Let F be a consistent fault set ferand let X be a strongly-connected component
of Dy—o. Theneither XN F=yor X C F.

Proof. Assume thai ¢ F. Then, there exists somec X — F. Consider any € X. Since
Xis a strongly-connected component@f_o, there exists a dipath fromto v in Ds—o.
Notice that by the definition of syndromeif¢ F and(x, y) € A(Ds—o) theny ¢ F. Thus,
we conclude that ¢ F, and henc&X N F =¢. [

D(o) is the graph defined as follows:
V(D(0)) ={X : X is a strongly-connected component Bf_o};

E(D(o)) ={(X,Y): alx,y)=1o0ra(y,x) =1 for somex € X andy € Y}.
Lemma 2. Forany (X, Y) € E(D(¢)), X C ForY C F.

Proof. AssumeX¢ F. Then,X N F =¢ by Lemma 1. Notice that(x, y)=1ora(y, x)=1
for somex € X andy e Y by the definition ofD(s). Sincex ¢ F, we conclude that € F,
and hence C F by Lemmal. O

For anyX € V(D(o0)), define that

No(X)=|JIY: (X, Y) € E(D(0))}.

Lemma 3. Let t be a positive integer € ' p(7), and F € F (o, 1). Thenif | A 5(X)| >
t + 1for someX € V(D(0)), X C F.

Proof. If (X, X) € E(D(0)) thenX C F by Lemma 2.

Consider the case whe(X, X) ¢ E(D(s)), and assume contrary thaIgZF. By
Lemma 2,Y C F for any (X,Y) € E(D(0)). Hence, we conclude that";(X) C F,
which is contradicting to the fact thaf| <. Hence X C F. [

Define that
_ [N (X)) if A ¢(X) # @,
no(X) = { |X] otherwise
and
vp(t)= min max ng(X).

6eSp(t) XeV(D(o))

Theorem 1. Let D be a strongly-connected testing digraphupf(r) >t + 1 for a positive
integer t then D is sequentiallydiagnosable.
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Proof. Consider any syndrome € % (r). By the definition ofv(t), there exists some
X € V(D(o)) with nys(X)>1 + 1. LetF € Z (o, ). There are following two cases:

Casel: N ;(X) # ?: Thenngs(X) = |A (X)| >t + 1, and saX C F by Lemma 3.

Case2: N/ (X)) =@: Then,ns(X) = |X|>t+1,andsoX N F =@. If a(x,y) =0
for every(x, y) € A(D) thenX =V (D), and hencek = X N F =@. If a(x, y) = 1 for
some(x, y) € A(D) then there exists a dipath= (vg, v1, ..., vr) in D such thatg € X,
o(vi_1,v;)=0foranyi=1,2,...,k—1,ando(v;_1, vx) = 1. Sincevg ¢ F, we conclude
thatv, € F by the definition of syndrome.

HenceD is sequentiallyt-diagnosable. [J

Now, we are ready to describe a linear time sequential diagnosis algorithm for strongly-
connected testing digraphs based on TheorefigdL.1 shows our algorithm, referred to
HYBRID. Itis easy to see the correctness of HYBRID from the proof of Theorem 1. Phase
1 is performed in QA(D)|) time, and Phase 2 is performed i|@(D)|) time by using
the depth-first search. Thus, we obtain the following:

Theorem 2. Let D be a strongly-connected testing grapind let t be a positive integer

withvp (1) >t + 1. Then HYBRID diagnoses correctly all faulty processors in D in linear
time provided that D has at most t faulty processors

4. General lower bound

Let G be a connected graph and éebbe a syndrome fof. We denoté(a) by G (o) for
simplicity.

Lemma 4. G(o) is connected

Proof. The lemma follows from the fact that {f, y) € E(G) thenx,y € X, orx € X,
yeY,and(X,Y) € E(G(s)). O

For anyX € V(G(0)), define that
Ie(X)=Ng(X)UX.

Lemma 5. Let F be a consistent fault set fer Then there exists a partition X1, X»,
..., X,;) of F such that

(1) X; € V(G(0)) for any positive integei <m, and

@) I'o(X) NUZ3To(X) # @ for any intege2<i <m,
wherem = |{X € V(G(s)) : X C F}|.

Proof. Let

2 ={X e V(G()): X C F).
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algorithm HYBRID
input D: testing digraph;
t: integer s.t. vp(t) >t + 1;
begin
{Phase 1}
Construct a syndrome o for D;
Construct D,—o and D(o);
Compute | X| and |[N,(X)| for VX € V(D(0));
if 3X |N,(X)| > t+ 1 then begin
Choose X s.t. [NL(X)| > ¢+ 1;
Replace each processor in X with a spare processor; end
else
Choose X with | X| >t +1;
{Phase 2}
while X # V(D) do begin
Select any v € V(D) — X s.t. (u,v) € A(D) for Ju € X
Compute o(u, v);
Replace v with a spare processor if o(u,v) = 1;
Add v to X;
end
end

Fig. 1. Algorithm HYBRID.

Notice thatl Jy., X = F by Lemma 1, and N X’ = ¢ for any distinctX, X" € Z by the
definition of G(¢). Thus, in order to prove the lemma, it suffices to label the elemenits of
asXi,..., X,, so that condition 2 is satisfied.
Let X1 be any element of. Suppose thak, ..., andX;_1 (i >2) are given. Assume
contrary that
i-1
Te(x)n | J I'o(X;) =1
j=1

foranyX € 2’ —{X1, ..., X;_1}. Then, the distance ofandX ; in G (o) is atleast 3 for any
j (1< j<i—1).SinceG (o) is connected by Lemma 4, there exists s@bigV) € E(G (o))
with (U U V) N F =@, which is contradicting to Lemma 2. Thus, we have

i—1
I's(X) N U Is(X;) # 0.

j=t

forsomeX € 4 — {X1, ..., X;_1}, and we can select suchasX;. O
The following shows a tradeoff betweéandvg(1).

Lemma 6. For any Nvertex connected graph G and any positive integgiv,

t-vg(t)+1=N.
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Proof. Leto € % p(¢) such that

max nqs(X) =vg().
XeV(G(a)

Then, for anyX € V(G(a)), we have
| (X)) <vg@) and [Ta(X)|<vg () + [X].

Fix F € # (0,1), and let(X1, X2, ..., X,,) be a partition of satisfying the conditions in
Lemma 5. For any positive integex m, define that

I's(X1) if i =1,
7 = i—1 ]
T Ie(X) — U I's(X;) otherwise

j=1
Itis easy to see thdlZ, Zo, ..., Z,,) is a partition ofV(@). Since

Vo) +1X1  ifi=1,

s {Vé(l) +|Xi|—1 otherwise

by Lemma5 andV(5)| = N, we conclude that

N = Z 1Zi| < Z(Va(f)+|xi| - D+1=mOg)—-D+I|F|+1
i=1 i=1
<t-vg®) + 1 O

Theorem 3. For any Nvertex connected graph,G
&@>{N—q—1

Proof. Selectingt = [N — 1] — 1, we havevs(t) >[N — 1] =t + 1 by Lemma 6.
Hence, we havé(G) >t = [+/N — 1] — 1 by Theorem 1. (I

Thek-partition number of a grap@, denoted byr'; (k), is defined as the largest integer
p such that for alp-element subset$ € V (G), the subgraph o induced by the vertices
in V(G) — S has a connected component of dizw larger. The following general theorems
are proved if6].

Theorem 4 (Khanna and Fuch§s]). If T (z + 1) >t for some integer t theﬁ(@) >t.

Theorem 5 (Khanna and Fuchg6]). 5(5)2 L4(G)/2], where A4(G) is the maximum
vertex degree of G

It should be noted that our lower bound in Theorem 3 is an improvement on those in
Theorems 4 and 5. Léfk3 be anN-vertex completek-ary tree of height 3. It is easy to
see thafers(k +1)=k?>k and TTka(k +2)=k—1<k+ 1. Itis also easy to see that
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A(T®) = k + 1. SinceN = k3 + k2 + k + 1, the lower bound foB(7;2) obtained from

Theorems 4 and 5 is= O(JN).
Notice also that our lower bound is asymptotically tight in the sense that fdX-asmytex
treeT with bounded degre&(T) = O(+/N) as shown in Section 5.2.

5. Upper bounds for arrays and trees

Our upper bounds are derived from the following simple observation, which is straight-
forward from the definition of sequential diagnosability.

Lemma 7. Let D be a testing digraph and t be a positive integer. If there exist a syndrome
o for D and a collection{F1, F>, ..., F,} of consistent fault sets far with m >2 and
0<|F;|<t (1<i<m),suchthat

m
N 5=
i=1
then D is not sequentiallydiagnosablethat is
o(D) <t.
5.1. Grids and Tori

For any positive integen, [n] = {0, 1,...,n — 1}. The d-dimensionalm-sided grid,
denoted byR;(m), is defined as follows:

d
V(Rg(m) =[ml,  ERqm)=10xy): Y |xi—yl= 1} ,
i=1

wherex= (x4, x4-1, . .., x1) andy= (yg4, y4—1, . . . , y1). Thed-dimensionam-sided torus,
denoted byD,(m), is defined as follows:

V(Dg(m)) = [m]4;
E(Dg(m)) = {(X,y) : @)y = (x; £ )ymodm, (¥j # i)[x; = y;]1I}.

The following lower bound can be found in the literature.
Theorem 6 (Khanna and Fuchf]). 8(Ry(m)) = Q(N9/(@+D)y,
In this subsection, we prove the following upper bound:

Theorem 7. §(Dy(m)) = O(N4/(@+D)y,

Note thatd(Ry(m)) < 5(D4(m)) since Ry(m) is a subgraph oDy(m). Thus, we have
the following two corollaries from Theorems 6 and 7.
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Corollary 1. §(Ry(m)) = @(N/@+D)y,
Corollary 2. §(Dy(m)) = @(N/@+D)y,

5.1.1. Proof of Theorem 7

5.1.1.1. Partition ofV (D, (m)). Let ¥ be a positive integer. In this subsection, suppose
that¥|m for simplicity of argument. We can prove the theorem by a similar argument even
for the other case. Lgt = m/¥. For eacht = (14, 14_1, ..., t1) € [P]¢, defineP(t) and

Q(t) as follows:

Pt = {x € V(Da(m)) : (¥)[|xi/p] = t; and 1<x; modp < p — 2]},

() = {x € V(Da(m)) : (V)[Lxi/p) =t;] and (3j)[x; modp =0 or p — 1]}.
It is easy to see tha(tP((O,...,O)),...,PL(Y’ -1,...,¥ —-1),000,...,0n,...,
oY -1,..., ¥ —1))) is a partition ofV (Dg(m)). LetZ = J; P(t) and2 = J; Q(V).

5.1.1.2. Syndrome and fault setsThe syndrome y for 5d (m) is defined as follows:

0 if 1. X,y e P(t) for somet, or
2. X,y € Q(t) for somet,
1 otherwise

oy (X,y) = {
We define?? fault sets as follows:
Fy=PMO U2 - Q) (te[P1.

We prove Theorem 7 by showing the following claims:
Claim 1. For anyt € [¥]¢, F(t) is a consistent fault set fary.
Claim 2. ﬂte[q,]d F@) =4.

Claim 3. |F(t)| = O(N9/@+D) for anyt € [P]9.

5.1.1.3. Proof of Claim 1. We will prove the claim by showing that neither (i) nor (ii)
below holds for any € [¥]¢:

() owix.y)=0if x € V(Dy(m)) — F(t) andy € F(1),
(i) ow(x,y) =1ifX,ye V(Dy(m)) — F(t).

Let F(t) be a fault setx € V(Dq(m)) — F(t), and(x, y) € A(Dq(m)).
Casel: x € P(t') for somet’ # t: The vertices adjacent toare contained irP (t') U
o(t).
Casel.l:y e F(t):ye Q') and saow(X,y) = 1.
Casel.2:y € V(Dq(m)) — F(t):y € P(t) and sosy (X, y) = 0.
Case2: x € Q(1): The vertices adjacent toare contained irP (t) U 2.
Case2.1:y e F(t):y¢ Q(t) and sooy (X, y) = 1.
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Case2.2:y e V(ﬁd(m)) — F(t):ye Q(t) and sooy(X,y) =0.
Thus, neither (i) nor (ii) holds for any aKg, y).

5.1.1.4. Proof of Claim 2. The claim follows from the fact tha® (t) N F(t) = ¢ for anyt,
and P (t) N F(t') = ¢ for any distinctt andt’.

5.1.1.5. Proof of Claim 3. Since

o~ m\d
IP()] < |{x € V(Dg(m)) : (¥D)[Lx;/p) =11} < (?)

and

12| < |{X € V(Dg(m)) : Fi)[x; modp =0 or p — 1]}

d V-1 d V-1

< DD Icx=ip+Y] ) xix=0+Dp—1
i=1 j=0 i=1 j=0

=2d¥Pm?1,

we conclude that
d
IF()| =[Pt U (2 — 0(t)| <|PHt)U 2| < (%) T 2d¥md-t,

If we choose? = [(m/d)Y D], we have

|F(t)| = O((dm?)?/@+Dy = o(N4/d+D)y,

5.2. k-ary trees

Let T be a rooted tree with roat For anyv € V(T), the level ofv, denoted by (v),
is defined as the number of edges of the unique path connactindr. A rooted tre€T is
said to be of heighlh if max{lr(v) : v € V(T)} = h. A vertexv is called an ancestor of a
vertexu (andu is called a descendant of if v is on the unique path ifi connecting and
u. If vis an ancestor ai and(u, v) € E(T) thenv is the parent ofi (andu is a child ofv).
If each vertex ofl has at mosk children thenT is called ak-ary tree.

Let 7y, y denote arN-vertexk-ary tree. In this subsection, we prove the following upper
bound:

Theorem 8. §(Ty. ) = O(VAN).
The following corollary is a direct consequence of Theorems 3 and 8.

Corollary 3. Ifkis fixed (T y) = O(VN).
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algorithm Partition_k_Tree
input Ty y: N-vertex k-ary tree;
r: root of Ty n;
U integer;
output P(1),..., P(m): subsets of V(T n);
q1;- - qm: vertex of Ty n;
begin
T:=Tpn;i:=1;
while [V(T)| > k¥ + 1 do begin
ri=r;
while |V(T(r'))| =2 k¥ + 1 do 7’ := childz(r');
P@) :=V(T(") = {r'}; ¢ :==1';
T:=T-V(T());i=1i+1,
end
P(@) =V(T) —A{r}; ¢ ==
end

Fig. 2. Algorithm partitionk tree

5.2.1. Proof of Theorem 8

5.2.1.1. Partition ofV (T; ). LetT be arooted tree. Foramye V(T), letT (') denote
the rooted subtree df with rootr’ induced by the descendantsrdfand let chilg-(r’) be
a childx of " such that

V(T (x))| =max{|V(T(y))| : y is a child of r'}.

LetP(d),..., P(m),q1, ..., gn bethe output of the Partitiok_Tree algorithm shownin
Fig. 2 DefineZ?=\J; P(i) and2={qx, ..., gm}-. Itis easy to see thaP (1), ..., P(m), 2)
is a partition ofV (Tx n), and thus a partition o¥ (T n).

5.2.1.2. Syndrome and fault setsThe syndrome y for ?k,zv is defined as follows:

oy lx. y) = 1 ifxe2oryel,
YY) =10  otherwise

We definen + 1 fault sets as follows: For any integef0<i <m)

2 if i =0,

F@)= { P@i)U(2—{q;}) UR(@{) otherwise

whereR(i) = P(j) if the parent ofy; isin P(j) for somej, andR (i) = ¥ otherwise.
We prove Theorem 8 by showing the following claims:

Claim 4. For any integer i(0<i <m), F(i) is a consistent fault set fary.

Claim 5. (iLy F(i) = .
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Claim 6. |F(i)| = O(«W/kN) for any integer i(0<i <m).

5.2.1.3. Proof of Claim 4. We prove the claim by showing that neither (i) nor (ii) below
holds foranyi =0, 1, ..., m;

(i) op(x,y)=0ifx € V(T"kﬂ) — F(i) andy € F(i),
(i) op(x,y)=21ifx,y € V(Tr.n) — F(i).

Let F(i) be afault set. Let € V(Tr.y) — F(i) and(x, y) € A(Te.n).
Casel:x € P(j)(# R(i)) forsomej # i: The vertices adjacent toare contained in
P(j)U (2 —{gi}.
Casel.liy € F(i): y € 2 — {q;} and saoy(x, y) = 1.
Casel.2:y € V(Tx.y) — F(i): y € P(j) and sooy(x, y) =0.
Case2:x=¢q; (i #0):y e P())U (2 —{g;})) UR(@) = F(i) andow(x, y) = 1.
Thus, neither (i) nor (ii) holds for any akg, y).

5.2.1.4. Proof of Claim 5. The claim follows from the fact tha®? N F (0) =0, andg; ¢ F (i)
for any integeii (1<i<m).

5.2.1.5. Proof of Claim 6. Let V; = P (i) U {¢;} for any integeii (1<i <m). Itis easy to
see the following lemma:

Lemma 8. |V;|<kW for any integer i(1<i <m).
Lemma 9. |V;| > ¥ for any integer i(1<i <m — 1).

Proof. If »”” = child (+") then we have

VTl -1
—

Thus, if|V(T (r"))| ZkW+1then| V(T (r"))| = V. Hencd V;| > ¥ for any integer (1<i <
m—1. O

V(T @)=

By Lemma 8, we have
|[P()|<k¥Y —1
for any integei (1<i <m). Thus, for any integer(0<i <m),

m if i=0,

N .
IF(l)I\{Zkg/+m_3 otherwise

Sincem < [N/¥] by Lemma 9, we have

N
[F@)I<2AY + 35— 2
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By setting¥ = [/N/2k], we conclude that, for any integet0<i <m),
|F(i)] = O(VkN),

which completes the proof.
5.3. Complete k-ary trees of even height

The completek-ary tree of height, denoted by (h), is defined as th&-ary tree of
heighth such that every vertex with Iz, ;) (v) < h has exactlk children.
In this subsection, we prove the following upper bound:

Theorem 9. Let k be an integer with > 2. Then
3(T(h)) = OWN),
whereN = (k"1 — 1)/(k — 1).
The following corollary is a direct consequence of Theorems 3 and 9.
Corollary 4. 5(ﬁ(h)) = @(+/N) for any positive integek > 2.

5.3.1. Proof of TheoreAm 9
5.3.1.1. Partition ofV (T (h)). Let ¥ be a positive integer such th#t<s — 1. For any
integeri (1<i <k?), define that

P(@i)={x : x is a descendant of; andx # ¢;},
whereg1, q2, . ... g denotek ¥ vertices of level? in Ty (h). Let 2 = U; P@),
2=1{q1.q2,....qxr}, and Z={x:0<Ilpmx)<¥ -1}
Itis easytosee thaP(1),..., P(k¥), 2, #R)isa partition ofV (7y (h)), and thus a partition
of V(Ty(h)).
5.3.1.2. Syndrome and fault setsThe syndromery for ?k(h) is defined as follows:

1 ifxe2orye2,

oplx.y) = {O otherwise

We definek¥ + 1 fault sets as follows: For any integef0<i <k?),

2 if i=0,

F(i) = { P(i)U(2—{g;}) UZ otherwise

We prove Theorem 9 by showing the following claims:

Claim 7. F(i) is a consistent fault set fary for any integer i(0<i <k¥).



324 T. Yamada et al. / Discrete Applied Mathematics 146 (2005) 311-342
. K .

Claim 8. (i_g F (i) =9.

Claim 9. |F(i)| = O(v/N) for any integer i(0<i <k").

5.3.1.3. Proof of Claim 7. We prove the claim by showing that neither (i) nor (ii) below
holds foranyi =0, 1, ..., k¥;

() oy(x,y)=0ifx € V(Tx(h)) — F(i) andy € F (i),
(i) owlx,y)=1ifx,y e V(Tk(h) — F@).

Let F(i) be a fault sety € V(Ti(h)) — F (), and(x, y) € A(Tx(h)).

Casel:x € P(j) for some; # i: The vertices adjacent toare contained irP (j) U

(2 —A{ai).
Casel.liy € F(i):y € 2 —{g:} and sooy (x, y) = L.
Casel.2:y € V(Tiy(h)) — F(i): y € P(j) and sooy(x, y) =0.

Case2:x=gq; (i #0):y e P()UZR C F(i) andowy(x, y) = 1.

Case3: x € # (i = 0): The vertices adjacent toare contained i2 U £.
Case3.1iy € F(i): y € 2and sooy(x, y) = 1.
Case3.2:y € V(Ti(h)) — F(i): y € # and sooy(x, y) =0.

Thus, neither (i) nor (ii) holds for any afa, y).

5.3.1.4. Proof of Claim 8. The claim follows from the fact that? U #) N F(0) = @, and
gi ¢ F(i) for any integeii (1<i <k?).

5.3.1.5. Proof of Claim 9. For any integer (1< <k?)

h—‘P_l lP_]_

k
12|=k¥, and |2|=

k
P =k- .
PG —

k—1 "~

Thus,

()| = 34 if i =0,
M=V + 6% —2)/(k —1) otherwise

for any integeii (0<i <k"). If we choose? = /2, we have

|F(i)| = O(N).

6. Hypercubes

Then-dimensional cube, denoted Iy, is defined as follows:

V(Qn) =12"; E(Qn) ={XX.y):dn(X,y) =1},

wheredy (X, y) denotes the Hamming distance betweaeandy. Let N = |V (Q,)| = 2".
The following lower bound can be found in the literature.
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Theorem 10 (Khanna and Fuchfg]). 8(Q,) = @ (%).

In this section, we prove the following lower and upper bounds:

Theorem 11. §(0,) = Q (\/kgizv)'

Theorem 12. 5(0,) =0 (%)'

6.1. Proof of Theorem 11

Kleitman proves irff7] the following theorem on thk-partition number of th@-dimen-
sional cube:

-1 n
Theorem 13. Ty, (21 + 1) > (Ln /ZJ) —1.
The following lemma is well-known. (S€é].)

Lemma 10 (Cormen et al[1]). (Ln72J> -0 (%)

By combining Theorems 4 and 13, and Lemma 10, we have

~ N
5<Q"):Q<JIC)§1_N>’

whereN = 2",

6.2. Proof of Theorem 12

6.2.1. The case when n is a power of 2

6.2.1.1. Partition 01\/(@,). Letk be a non-negative integer. i m) is them-bit binary
representation & and birk, m, i) is theith least significant bit of bigk, m) (0<k <2" -1,
1<i<m). If X = bin(k, m) then we denot& = deqx). Let ¥ be an integer such that
1< ¥ < log i, and letd = 2%, The concatenation of binary stringsandy is denoted by
X - y. The concatenation ah x’s is denoted by™. For an integera such that Ka < ¥,
r(a) is a binary string of length defined as follows:

r(a) _ (On/z‘l’—n+l ) 1’1/2‘I’—a+1)2‘1’—a '

We consider(a) as a vertex o@,, in a natural way. Defing, (X) andg, (X) as follows:

0 if 0<dy (X, r(a))<n/2—2,
paX) =11 if n/242<dn(X, r(a))<n,
-1 if n/2—-1<dy(X, r(a))<n/2+1,
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0 if 0<dn(x, r(a)<n/2—1,
gaX) =11 if n/2+ 1<dn(X, r(a))<n,
—1 if dy(X, r(a)) =n/2.

It should be noted that if, (X) € {0, 1} theng, (X) = p,(X) by definition. R
For an integeb such that &5 < @ — 1, define subsetB(b), Q(b), andR(b) of V(Q,,)
as follows:

P(b) ={x: (Ya)[pa(X) € {0, 1}], dedpy(X) - - - p1(X)) = b},
0(b) = {x: Fa")[py (¥) = =11, Va)[ga(X) € {0, 1}], dedgqy (X) - - - q1(X)) = b},
R(b) = {Xx: Fa)[ga(X) = —1], T(X) = b},

whereT (x) is the decimal representation of the most signific&rhits of x. Define? =
Uy P(b), 2=, Q(b), andZ =, R(b).

Lemma 11. IT = (P(0), ..., P(®—1),000),..., 0(® — 1), R(0), ..., R(®—1)isa

-~

partition of V(Q,,).

Proof. We will prove the lemma by showing the following:

(i) for any distinct blockJ andU’ of I1, U N U’ = ;
@iy 2U202%=V(0,).

Proof of (i). Firstofall, observetha? N 2=2N2%=2%N 2% = by definition. We will
show thatP (b) N P(b") = ¢ for any distinctb andd’ (0<b, b’ < @ — 1). Assume contrary
that P(b) N P(b’) # @ for some distincb andb’. There exista such that bib, ¥, a) #
bin(?’, ¥, a). Suppose without loss of generality that@in¥, a)=0 and bir’, ¥, a)=1.
Letx € P(b) N P(D'). Sincex € P(b), we havep,(X) = 0 anddy (X, r(a))<n/2 — 2.
However, sinc& € P (b'), we also have, (X)=1anddy (X, r(a)) >n/2+2, acontradiction.
Thus,P(b)N P (b')=¢ for any distinctb andp’. Similarly, it can be shown tha@ (b)) N Q(»')
for any distinctb and?’. It is easy to see tha(b) N R(»’) for any distincto andd’.

Proof of (ii). Suppose € V(@n). For anya such that K a < ¥, we have Gdy (X, r(a))
<n. f dy(x, r(a))=n/2 for someatheng, (X)=—1, and s € R(b) for bwith T (x)=b. If
du (X, r(a)) # n/2foranyaanddy(X, r(a")) =n/24+ 1 for some:’ theng, (X) € {0, 1} and
pa(X) = —1, and sax € Q(b) for b with dedgy(X) - - - g1(X)) = b. If dy(X, r(a)) ¢ {n/2,
n/2+1} foranyathenp,(x) € {0, 1}, and s € P (b) for bwith ded py (X) - - - p1(X))=b.
Thus, we conclude that¥f e V(Q,) thenx e ZU2UZ% and we have/ (Q,)=2U2UZ.

O

6.2.1.2. Syndrome and fault setsThe syndrome ¢ for @n is defined as follows:

2. X e Q(b) andy € R(b) for someb, or

3. X e R(b) andy € Q(b) for someb,
1 otherwise

1. X,y e P(b) for someb,
0 if
ap(X,Y) = [ {
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We define® fault sets as follows: For any integei(0<bs < @ — 1),
F(b) = P(b)U(2— Q(b)) U(Z — R(D)).

We prove Theorem 12 by showing the following claims.
Claim 10. For any integer l0<b < @ — 1), F(b) is a consistent fault set farg.
Claim 11. N3 F(b) = 4.

Claim 12. |F(b)] =0 (%) for any integer KO<h< @ — 1).

6.2.1.3. Proof of Claim 10. Before proving the claim, we need a couple of lemmas.

Lemma 12. For any adjacent vertices, y € V(Qn),

(1) if x € 2theny¢ 2.
(2) if X € Ztheny¢ £.

Proof. We will show (1). Assume contrary thaty € 2. Then, there exista andda’
such that

pPa¥)=-1 q.(X) # -1  ps(y)=-1 and gu(y) # -1
We also have

dy(X,r(a)), du(y,r@))=n/2+1.
Since

du(r(a),0") =du(r(a’),0") =n/2,
we conclude that

du(X, r(a)) +dn(r(a), 0") + dn (0", r(@") + du(r(a’),y)
=2n—2,2n,2n + 2,

which is even. However, sinceandy are adjacenyy (X, y) = 1, which is odd, a contra-
diction.
We can show (2) by a similar argument]

Lemma 13. For any integer h0<bo <@ — 1),

(1) The vertices adjacenttoe P(b) are contained inP (b) U Q(b).
(2) The vertices adjacenttoe Q(b) are contained inP(b) U £.
(3) The vertices adjacenttoe R(b) are contained in2.

Proof. We will show (1). Letx € P(b) andy be a vertex adjacent ta Then
ldn(y. r(@)) —dn (X, r(a)) =1
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for anya. If p,(X) =0 then
0< di (X, r(a))gg —2
Thus, we have
0<dn(y. r@) <3 — 1,
and sog, (y) = 0. If p,(X) =1 then
5 +2<dux.r@) <n.
It follows that
>+ 1<dn(y. @) <n,

and sqy, (y)=1. Thus we conclude thaj, (y)=p, (X) foranyaand sode@y(y) - - - q1(y))=
b. Ifthere exists:’ such thatly (y, r(a’))=n/2+1theny € Q(b). Otherwisep, (Y) =q.(Y)
for anya, and soy € P (D).

(2) and (3) follow from (1) and Lemma 12.00

We will prove Claim 10 by showing that neither (i) nor (ii) below holds for &y

() ca(x.y)=0ifx € V(Q,) — F(b) andy € F(b),
(i) opX,y)=1ifx,ye V(Q,) — F(b).

Let F(b) be a fault set. Lex € V(Q,) — F(b) and(X, y) € A(Q,).

Casel: x € P(b') for someb’ # b: From Lemma 13, the vertices adjacenixtare

contained inP (") U Q(b').
Casel.l:y e F(b):y € Q(b') and soog(X,y) = 1.
Casel.2:y e V(Q,) — F(b):y € P(b') and soog(X, y) = 0.

Case2:x € Q(b): FromLemma 13, the vertices adjacentre contained il (b) UZ.
Case2.1:y € F(b):y¢ R(b) and soop(X,y) = 1.
Case2.2:y € V(Q,) — F(b):y € R(b) and sagg (X, y) = 0.

Case3: X € R(b): From Lemma 13, the vertices adjacenktare contained i2.
Case3.l:y e F(b):y¢ 0(b) and soog (X, y) = 1.
Case3.2:ye V(Q,) — F(b):y e Q(b) and sogg (X, y) = 0.

Thus, neither (i) nor (ii) holds for any akg, y).

6.2.1.4. Proof of Claim 11. The claim follows from the fact tha®(b) N F(b) = R(b) N
F(b) = ¢ for anyb, and P (b) N F(b") = ¢ for any distinctb and’.

6.2.1.5. Proof of Claim 12. We will prove the claim by a series of lemmas.

Lemma 14. 2/ <2¥ - (3, ).
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Proof.

12| < l{X: Ga)ldn (X, T(a)) =n/2 £ 1]}]
<{X: @a)ldn (X, r(a)) =n/2 - 1]}
+ {X: @a)ldn (X, r(a)) =n/2+ 1]}

v 14
< D HXdu 1) =n/2— 1]+ Y X d(X. 1) =n/2+ 1]

i=1 i=1
—2% " —2y. " 0
o P n/2—1)" nf2—1)"

Lemma 15. |Z| < ¥ - (,172).

Proof.

4
2] = (X : Ga)[du(X, (@) =n/21}| < Y [{X: dn(X, 1) =n/2)]

i=1

= é (n,}Z) =7 (nljz) =

Lemma 16. |P(b)| = | P(b)| for any integers b and’ (0<b, b’ <P — 1).

Proof. For any integek anda (0<k <2¥ — 1, 1<a < V), let extk, a) denote the integer
such that bikex(k, a), ¥) and bink, ¥) differ just in theath least significant bit. It should
be noted thab = ex(ex(b, a), a).

We prove the lemma by showing the following:

Claim A. |P(b)| =|P(ex(b,a))| for any integersband O<hr <P — 1, 1<a<¥P).

Proof of Claim A. Before proving the claim, we need some preliminaries. Foramy
V(0,) and any integeu (0<u <2¥ — 1), let

Xy = (xn/Z‘I'x(u—Q—l)’ ) xn/Zqu—Q—l)'

For any distincaanda’ (1<a, a’ < ¥) andw, w’ € {0, 1}, let
Wawa'w (X) = Z{U)H (Xy) : bin(l/t, v, a)=w and blr'(l/t, v, a’) = w’},
Wa (0 = Y {wn(X,) : bin(u, ¥, @) = w)
= Wawa’l(x) + Wawa/O(X),

wherewy (X,) denotes the Hamming weight gf. For anyx anda (1<a < V), let

€a(X) = Xex2”—1,4) * Xex(2¥—2,a) " * * Xex(0,a)-
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It should be noted that, is a one-to-one mapping and that
Wala’w(ea (X)) = WaOa’w(X), WaOa’w (eq (X)) = Walu’w(x)v
Wao(eq (X)) = Wo1(X),  and Wyi(eq (X)) = Weo(X)

for any distincta anda’ (1<a, a’ < ¥) and anyw € {0, 1}.
By the definition ofr (a), it is easy to see the following claim:

Claim B. Foranyaand ul<a<V¥, 0<u<2? —1),

172" i f pinu, ¥, a) =0,

ra), = {On/zT if bin(u,¥,a)=1

Claim C. Foranyxand a(1<a< V),

dn(X, r(a)) = Wa1(X) + (n/2 — Wao(X)).

Proof of Claim C. By the definition ofW,,,(x) and Claim B, we have

dn(X. T(@) = Y {dn(X,. r(@),) : bin(u, ¥, a) = 1}
+ Y {dn (X, T(a),) : bin(u, ¥, a) =0}
=Y (dn (%, 072" binGu, ¥, a) = 1)
+ 3 tdn (%, 172" 2 binGu, ¥, a) = 0)
=Y {wn(x,) : binw, ¥, a) =1}
+ (n/z — S {wn(x,) : bin(u, ¥, a) = 0})
=War(X) + (/2 = Wao(x)). U

Claim D. Foranyaandd’ (1<a,a’' <V),

n—dy(X,r(a) if a =a,
du(X,r(a’)) otherwise.

dn(ea(X), 1)) = {

Proof of Claim D. Suppose that’ = a. SinceW,1(e, (X)) = W,0(X) and W,o(e, (X)) =
W,1(X) as mentioned earlier, we have from Claim C that

dr(eq(X), 1(@)) = Waa(eqa (X)) + (n/2 — Wao(eq (X))
= Wa0(X) + (n/2 — Wy1(X))
=n— {Wu1(X) + (n/2 — W,0(X))}
=n —dy(X,r(a)).
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If @’ # a then we have from Claim C that

dr(eq(X), 1(a")) = Wyi(ea (X)) + (n/2 = Wao(ea(X)))
= War1a1(ea (X)) + War1a0(eq (X))
+ (n/2 — Waoa1(ea (X)) + Waroao(ea (X))
= Wa1,0%) + War141(X)
+ (1/2 — War0a0(X) + War041(X))
= Wy1(X) + (”/2 — Wao(X)
=dn(X, r(a")). Il

Claim E. Foranyband a0<h<® -1, 1<a<¥P),

X € P(b) = e,(X) € P(ex(b, a)).
Proof of Claim E. It follows from Claim D that ifx € P(b) then p, (e, (X)) & {n/2,
n/2 4+ 1} for anya’ (1<a’<WP) and soe,(X) € 2. It also follows from Claim D that

if X € P(b) then p,(e,(X)) # pa(X) and py(e,(X)) = pu(X) for any distincta anda’
(1<a,d’ <¥P).Thus,

dedpy(eq(X) - -~ pi(eq(X))) =dedpy(X) -+ pa(X) - - - p1(X)) = ex(b, a),

wherev is the complement af. It follows if X € P (b) thene,(X) € P(ex(b, a)) for anyb
anda(0<hr<®—1,1<a<¥P). O

Now we are ready to prove ClaimA. Singgis a one-to-one mapping andex(b, a), a)=
b as mentioned above, we conclude from Claim E tlrgb)| = | P (ex(b, a))| for anyb and
a(0<h<d—-1,1<ag?y). O

This completes the proof of Lemma 1601
Lemma 17. |P(b)| <2"/® forany b(0O<hb< P — 1).

Proof. From Lemma 16, we have

12
PB) =5 )

foranyb (0<b < ® — 1). We also have
2] < V(0w = 2", )
from Lemma 11. From (1) and (2), we have the lemmal

Lemma 18. |F(b)| = O (%)_
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Proof. From Lemmas 14, 15, and 17,

|[F(B)| =|P®B)|+ |2 — Qb))+ % — R(b)| < |P®b)| + 2| + |Z]

2" n n

From Lemma 10, we have

(w2.) (wa—)=2(5)

and thus
2" 2"
Fb)|=0|—+¥Y—).
|F(b)] ((p + ﬁ)
If we choose? = [(log n)/2 — log log n] then® = ©(/n/ log n) and we have
2"log n N log IogN>
FB)=0—— |=0| —— ).
e ( ﬁ) ( Viog N

6.2.2. The case when n is not a power of 2

Letny =299 ") andny,=n —ny. Let ¥ be an integer such thatd¥' < log ny = |log n},
and let® = 27 Definer(a), Pa(X), andg, (x) on Q,, as in Section 6.2.1.1. Define subsets
P(b), Q(b), andR(b) of V(Q,) as follows:

P(b) ={X1-X2: (Va)[pa(X1) € {0, 1}], dedpy(X1) - - - p1(X1)) = b},

0(b) = {X1- Xz : Fa")[pa (x1) = —11,
(Va)lga(x1) € {0, 1}], dedgy (X1) - - - q1(X1)) = b},

R(b) = {X1- X2 : (Fa)[ga(X1) = —1], T (X1) = b},

wherex; € [2]" (i = 1 or 2). Define the syndromeg for Qn and @ fault setsF(b) as
follows:

0 if 1. X,ye P(b) for someb, or
op(X,y) = { 2. X,y € Q(b)U R(b) for someb,
1 otherwise
Fb)=Pb)U (2 - Qb)) U(Z—R(D) 0<b< D).

Then, we can prove that

~ 2" log n1 ) <N log log N)
5 n) — O —2"2 = O —_—
(Qn) < Jn1 JIog N

by a similar arguments as those of Section 6.2.1.



T. Yamada et al. / Discrete Applied Mathematics 146 (2005) 311-342 333
7. Cube-connected cycles

For anyX = x,,_1x,—2---x0 € [2]", define
2i(X) =Xp—1+ Xi41X;X;—1 "+ X0.

Then-dimensional cube-connected cycles, denoted’bYC,,, is the graph defined as fol-
lows:

V(CCC,) ={[X,i]:x€[2]",i € [n]};
E(CCC,) ={(x,il,[X, jD :x € [2]", j= (i +1)modn}
UL, i1, Iy, iD s x e [2]", y= ;(X)}.

CCC, is constructed fronQ,, by replacing each vertex @, with a cycle of lengtmin
CCC,. It should be noted thaV (Q,)| =2" andN = |V(CCC,)| = n2".
In this section, we prove the following bounds:

Theorem 14. 5(CCC,) > L%J

Theorem 15. §(CCC,) < W oY),

n

From Theorems 14 and 15, we have the following corollary.
—_— _ N
Corollary 5. é6(CCC,) =0 (log_N)
7.1. Proof of Theorem 14

Before proving the theorem, we need some preliminaries, which are also used in
Section 8.
Let G be anN-vertex connected graph. A wallK in G is defined as a sequenp®), v1,
..., vi] of vertices such thaw;, v;+1) € E(G) for anyi € [k]. Wis also called dwvg, vy)-
walk. The length oV, denoted byW |, is defined ak. For any ordered pajr:, v] of vertices
in G, let W[u, v] be a(u, v)-walk in G. We define

W (w)={Wlu,v]l: weVWu,v)},

foranyw € V(G), and
WS = #w)
weSs

foranyS C V(G).

Lemma 19. Let t be a positive integeand F € V(G) with |F| = . If every connected
component of the subgraph H of G induced by the vertic&€ @) — F has size t or smaller
then|# (F)| > N2 — tN.
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Proof. We prove the lemma by a series of claims. &t ..., Vi be vertex sets of the
connected components Hf

Claim 13. If F NV (W[u, v]) =@ thenu, v € V; for some i

Proof of Claim 13. The lemma follows from the fact that the vertices adjacent te V;
are contained irv; U F for anyi. 0O

Claim 14. Letm be a positive integer.df, az, ...,anday are integers such tht) 0 <a; <t
for any i, and (ii) Zf.‘zl a; =m, then

k
> af< L?J 2 + (m modr)?.
i—1

Proof of Claim 14. Letby, ..., by bekintegers satisfying the conditions (i) and (ii) such
thaty *_, b2 > S a?. Assume that & b, <b, <t for some distinct positive integeps
andg. For anyi, let

bi—1 ifi=p,
cl—{b,'—}-l if i =gq,
b; otherwise
Then,cy, ..., ¢ satisfy the conditions (i) and (ii), and
k k

D et =D b= by = D2+ (b + 1P = b — b =2(by —by) +2>0,
i=1 i=1

which is a contradiction. Hence, we have at most one integevith 1<b, <t. Assume
without loss of generality that>b1> --- > b, >0. Then,

t if 1<i<<|m/t],
b,-:{mmodt if i=_m/t]+1, and
0 otherwise

It follows that
‘ 2 : 2 mi 2 dr)2 0
Z“"\Zbi :L7Jt + (mmodr)?.

By Claim 13,

k
W (F)=N? =il
i=1
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Since|V;| <1 for anyi ande-‘=1 |Vi| = N — t, we obtain by Claim 14 that
N —t N
|'W (F)| = N? — LTJ 1> — {(N — rymods}?> > N? — LTJ t>>N? —(N.

This completes the proof of Lemma 19
Now, we are ready to prove Theorem 14.

Lemma 20. Fort = [2N/(4n + 1) ],
Ycce,(t+1D) >t

Proof. Assume contrary thélt'ccc, (t + 1) <t. Then, there exists somé € V(CCC,,)
with | F'| = ¢ such that every connected component of the subg@phC CC,, induced by
the vertices inV (CCC,,) — F has sizd or smaller.

For any ordered pair of vertices= [x,_1x,—2- - - xo, i] andv = [y,—1y,—2- - - yo, j] In
v(CcCC,),let W[u, v] denote the following walk connectingandv in CCC,:

u = [xp—1--Xi41XX-1 - X0, [] = [Xp—1- - Xip1yiXi—1- - X0, i]
= [xp—1--Xipayixi—1ooex0, i 11— [xp—1--Xigp2yipayiXio1-c-xo, 1+ 1]
- . = [Yn-1yn—2---yiXi—1---x0,n — 1]
= [Yn-1yn—2---yiXi—1---x0, 0] = [Yn-1yn—2---yixXi—1---0, 0]
- e = [Yn-1Yn—2---yiyi-1---yo,i — 1]
= [Yn—1Yn-2""YiYi-1-" Y0, 1] - e
= [Yn-1yn—2---yiyi-1---y0, j1 = v

For anyw € V(CCC,), define# " (w) = {W[u,v] :u,v € V(CCC,),w € V(W[u, v])},
and foranyV € V(CCC,), define?” (V) =J,cy ? (w).

Lemma 21. Foranyw € V(CCC,),
W (w)|< (2n — 3) N.
Moreover
W (F)|<t(2n—3)N.
Proof. Itis easy to see that

' i< Y (Wl +D, and

weV(CCCyp) u,veV(CCCy)

3 |V(W[u,v])|=(n—1+f+”—‘1+1> N2=<2n—1')N2_

2 2 2
u,veV(CCCy)
Thus, by the symmetry off"(w), we have

W ()< (21— 3) N,
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and
W NS Y 1F W<t (2n=5)N. O
weF
By Lemma 19, we have
2N -1,
N = N-.
dn+1 dn+1

|# (F)| > N? —

On the other hand, by Lemma 21,

2N 1 4n —1
W(F)<——(2n—Z|N= N2,
)] 4n+1< 2) 4n + 1

which is a contradiction. Hence,
Ycce,(t+1)>t. O

From Theorem 4 and Lemma 20, we have Theorem 14.
7.2. Proof of Theorem 15

7.2.1. Partition ofv (CCC,)

Suppose that is even for simplicity of argument. We can prove the theorem by a similar
argument for odah. For anyX = x,_1x,_2 - - - xo € [2]" and positive integen <n, define
mappingsL,, andR,, as follows:

L,yX)=xp-1-Xp—m and R, (X) =x;_1...x0.

For eacht € [2]"/2 andk € [2], defineP(t, k) and Q(t, k) as follows:
P(t,0) = {IX.i] € V(CCCp) : Lyj2(X) =1, 1<i < (n/2) — 2},
P(t ) ={[x.il € V(CCCy): Rup2(X) =1, (n/2) + 1<i<n — 2},
0(t,0) = {[x,i] € V(CCC,y) : Lypp(X)=1i=0o0r(n/2) -1},
O(t, 1) ={[x.i] € V(CCC,) : Ryj2(X) =t,i =n/2 orn —1}.

Itis easy to see thatP(0---0,0),..., P(1---1,1),0(0---0,0),...,0(1---1,1))isa
partition of V(CCCy). Let? =i, P(t, k) and2 = [, O(t, k).

7.2.2. Syndrome and fault sets
The syndrome for CCC,, is defined as follows:

olu,v) = 2. u,v e Q(t, k) for somet andk,

[0 i {1. u,v € P(t, k) for somet andk, or
1 otherwise
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We define 2/2+1 fault sets as follows:
Ft,k)=Pt, kU2 -0t k) (te [2]"/2, k €[2])

We prove Theorem 15 by showing the following claims:

Claim 15. For anyt € [2]"/2 andk € [2], F(t, k) is a consistent fault set far.

Clalm 16. ﬂte[Z]"/Z,ke[Z] F(t, k) - VJ.
Claim 17. |F(t, k)| < % + o (&) for anyt € [2]"/2 andk € [2].

7.2.3. Proof of Claim 15
Before proving the lemma, we need the following lemma.

Lemma 22. For anyt € [2]"/2 andk € [2],

(1) The vertices adjacentto € P(t, k) are contained inP (t, k) U Q(t, k).
(2) The vertices adjacentto e Q(t, k) are contained inP (t, k) U 2.

Proof. We will prove (1). Letu =[x, i] € P(t, k), andv = [y, j] be a vertex adjacent to
u. If k =0then 1<i < (n/2) — 2, and sal,/2(y; (X)) = L,/2(X). Thus, we conclude that
Ly2(Y) = L, 2(X) and 0< j < (n/2) — 1, and hence € P(t,0) U Q(t,0). If k =1 then
(n/2)+1<i <n—2,and s, ;2(y; (X))=R,/2(X). Thus, we conclude tha&, 2 (Y)=R, /2(X)
andn/2<j<n—1,andhence € P(t,1) U O(t, 1).

2 follows from 1. O

We prove Claim 15 by showing that neither (i) nor (i) below holds for tay{2]"/2 and
ke [2];

(i) o(u,v)=0ifu e V(CCC,) — F(t, k) andv € F(t, k),
(i) o(u,v)=1ifu,ve V(CCCy) — F(t, k).

Let F(t, k) be a fault set. Let € V(CCC,) — F(t, k) and(u, v) € A(CCCy).
Casel:u € P(t, k") for some(t’, k') # (1, k): From Lemma 22, the vertices adjacent
tou are contained irP(t', k') U Q(t', k).
Casel.l:v e F(t,k):v e Q(t, k') and soo(u, v) = 1.
Casel.2:v € V(C/C\Cn) — F(t,k):ve P, k') and sos(u, v) =0.
Case2: u € Qf(t, k): From Lemma 22, the vertices adjacentu@re contained in
P(t, k) U 2.
Case2.l:v e F(t,k):v¢ Q(t, k) and soo(u, v) = 1.
Case2.2:v € V(CCCy) — F(t, k): v € Q(t, k) and sos(u, v) = 0.
Thus, neither (i) nor (ii) holds for any axe, v).

7.2.4. Proof of Claim 16
The claim follows from the fact tha@(t, k) N F(t, k) = P(t, k) N F(t,1 — k) = @ for
anyt € [2]"/2 and anyk € [2].
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7.2.5. Proof of Claim 17

Lemma 23. | 2| = 2"*2,

Proof. The lemma follows from the fact that=[2]" x {0, 5 — 1, 5,n —1}. [

Lemma 24. For anyt € [2]"/? andk < [2],

n

IP(t, k)| = (E - 2) /2,

Proof. The lemma follows from the fact that

P(t,O):{[t~s,i]: Se[2]"/2,1<i<%—2}, and
P(t,l):{[s-t,i]:Se[2]”/2,g+1<i<n—2]. 0

From Lemmas 23 and 24, we have
IF(L =Pt +12—- 0t b <[Pt k)| + 2]
_ont2 (M S\ o2 _ AN N

— 2 +(2 2)2 - 40 .

n n

8. Shuffle-exchange graphs and de Bruijn graphs

For anyX = x,_1x,—2- - - xo € [2]", define that
T(X) = Xp—2 - X0Xp—1.

The n-dimensional shuffle-exchange graph, denotedShy,, is the graph defined as
follows:

V(SE,) =[2]";

E(SE,) ={(X,y): y=1(X) or x=t(W)}U{(X,y) : Y= 1o(X)}.
Then-dimensional de Bruijn graph, denoted &8,,, is the graph defined as follows:

V(dBy,)=[2]",

E(dBy) ={(X,y) 1 Rp—1(X) = Ly—1(y) Or Lp—1(X) = Ry—1(Y)}.

LetN =|V(SE,)|=|V(dB,)| =2". In this section, we prove the following bounds:

Theorem 16. §(SE,) = Q <|og];v1v)-

Theorem 17. 8(dB,,) = O (logLN)
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Notice thaté(ﬁf,,)gé(cﬁ?,,) sinceSE, is a subgraph ofl B, [2]. Thus, we have the
following corollaries from Theorems 16 and 17.

Corollary 6. §(SE,) = O (logLN)

Corollary 7. 8(dB,) = O <_|oé1VN>'

8.1. Proof of Theorem 16

Lemma 25. If t = [2N/(3n + 4)| then
Ysg,(t +1)>t.

Proof. Assume contrary thallsg, (r + 1) <. Then, there exists somfe € V (SE,) with
|F| =t such that every connected component of the subg@&ph SE,, induced by the
vertices inV (SE,) — F has sizd or smaller.

For any ordered pair of vertices= x,,_1---xg andy = y,—1- - - yo, let W[X, y] be the
following walk in SE,, connectingk andy:

X = Xp—1Xp-2:-X0 —> Xp—2--:X0Xp—1 —> Xp—2---X0Yn—-1 —

—  X0Yn—-1-°")1 —  Yn—1--:-Y1X0 - Yn—1-°"Y1)0 y.

Define? (20 ={W[x,y] : ze V(W[x,yD} foranyz e V(SE,), and¥ " (S) = Uzs " (2)
foranyS C V(SE,).

Claim 18. Foranyze V(SE,),

1 (2)| < (37” + 1) N.

Moreover
3
W (F)|<t (7” + 1) N.

Proof of Claim 18. Letz=z,_1z,_2-- - z0. Since

n—1
W@ = JIWIX Yl : Ly-1(D) = Ri(X) - Ly—i-1(Y), 20 = x; OF y;}
i=0
U{WI[X,y]: z=x},

we have

3
W (@) <3n -2 42" = (7” + 1) N,
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and
) 3n
|W(F)|<t(7+1>N. (]

By Lemma 19, we have

2N 3n+2
_onte e

W (F)|> N? — = .
> 3n+4 . 3n+4

On the other hand, by Claim 18, we have

ON (3 M+2 ,
g— . = 9
7)) 3n+4<2+1>N mrd

which is a contradiction. Hence,
TSE”(I + 1>t

This completes the proof of Lemma 2501
From Theorem 4 and Lemma 25, we have Theorem 16.

8.2. Proof of Theorem 17

8.2.1. Partition ofV (dB,,)
The following lemma is proved ifi2].

Lemma 26 (Schwabg12]). Let n be a positive integer. For any positive intedér n,
there exists a partitiofiV, Vo, ..., Vo) of V(dB,) such thatV;| = 27 for any i, and

— n
Zl{(u, v) € A(dB,) : u € Vi,v eV =o<?).
i#]
Let(V1,..., Vou-w) be a partition oﬂ/(@n) satisfying the condition in Lemma 26. For
any positive integer <2~ ¥, defineP (i) and Q (i) as follows:
Q)y={ueV;: (u,v) € A(cﬁ?n) for somev € V(dB,) — V;},
P@)=Vi—0(@).

Itis easy to see thatP (1), P(2), ..., P(2" %), 0(1), 0(2), ..., 02"~ ")) is a partition
of V(dB,). Let? =, P(i) and2 = |J; Q(i).

8.2.2. Syndrome and fault sets
The syndrome y for d B, is defined as follows:

oplu,v) = 2. u,v e Q() for somei,

{0 i {1. u,v € P(i) for somei, or
1 otherwise
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We define 2~ ¥ fault sets as follows: For any positive integeg 2"~ ¥,
F(i)=P@i)U(2—- 0(@)).

We prove Theorem 17 by showing the following claims:

Claim 19. For any positive integer< 2"~ ¥, F(i) is a consistent fault set fary.
. 211—‘1’ . .

Claim 20. (., F(@)=20.

Claim 21. |F(i)|=0 (bg—N> for any positive integer <k.

8.2.3. Proof of Claim 19

We will prove the claim by showing that neither (i) nor (ii) below holds for any positive
integeri <2~

() owlu,v)=0ifu € V(dB,) — F(i) andv € F(i),
(i) op(u,v)=1ifu,ve V(dB,) — F(@).

Let F(i) be afault sety € V(dB,) — F(i), and{(u, v) € A(dBy,).

Casel:u € P(i’) for somei’ # i: The vertices adjacent toare contained iP(i") U

Q).
Casel.l:iv € F(i):v e Q(') and sooy (u, v) = 1.
Casel.2:v € V(dB,) — F(i): v € P(i") and sooy(u, v) = 0.

Case2:u € Q(i): The vertices adjacent toare contained irP (i) U 2.
Case2.l:v e F(i):v¢ Q(i) and sooy (u, v) = 1.
Case2.2:v € V(cﬁ?,,) — F(@i):v e Q@) and sooy(u, v) =0.

Thus, neither (i) nor (ii) holds for any aka, v).

8.2.4. Proof of Claim 20

The claim follows from the fact tha® (i) N F (i) = @ for anyi, andP (i) N F(i") =¥ for
any distincti and;’.

8.2.5. Proof of Claim 21
By Lemma 26, we have

1

2
IP()| <|Vi|=2" and |.:2|=o<§>, and thus

2}1
[FO=[P@ U2 — Q0N <|P>E) U2 =O<2lp+ ?) :

If we choose¥ =n — [log n], we have

/N (N
'F(’)"O(7>‘O<|ogzv>'
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9. Concluding remarks

It should be noted that the upper bounds shown in the paper are proved in a unified
manner. Our proofs are based on a graph partition problem described beld@bleean
N-vertex graph. For ang C V(G), let ¢(X) denote the set of vertices K adjacent to
vertices inV (G) — X. Our partition problemis to find a partitiaivy, . .., Viv)) of V(G)
such that

Q) Vi — d(Vy)| = O(f(N)) for anyi,
@ |ULLY o] = I 16v)1 = 0g (W), and
(3) F(N) + g(N) is minimum.

Our proofs are based on the fact thatfifN) + g(N) = O(¢(N)) then the degree of
sequential diagnosability @ is O(g(N)).
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