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Abstract

This paper considers the problem of sequential fault diagnosis for various multiprocessor sys-
tems. We propose a simple sequential diagnosis algorithm and show that the degree of sequential
diagnosability of any system withN processors is at least�(

√
N). We also show upper bounds for

various networks. These are the first nontrivial upper bounds for the degree of sequential diagnos-
ability, to the best of our knowledge. Our upper bounds are proved in a unified manner, which is
based on the very definition of sequential diagnosability.We show that ad-dimensional grid and torus
with N vertices are sequentially O(Nd/(d+1))-diagnosable, and anN-vertexk-ary tree is O(

√
kN)-

diagnosable. Moreover, we prove that the degree of sequential diagnosability of anN-vertex hyper-
cube is at least�(N/

√
log N) and at most O(N log logN/

√
log N), and those of anN-vertex CCC,

shuffle-exchange graph, and de Bruijn graph are�(N/ log N).
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The system diagnosis has been extensively studied in the literature in connection with
fault-tolerant multiprocessor computer systems. An original graph-theoretical model for
system diagnosis was introduced in a classic paper by Preparata et al.[10]. In this model,
the testing assignment is represented by a digraph (directed graph) associated with the
interconnection graph of the system. The model assumes that the processors can test each
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other along available communication links.A testing processor evaluates a tested processor
as fault-free or faulty. A syndrome is a collection of test results. The model also assumes
that the number of faulty processors is bounded.
Two strategies for the diagnosis were introduced and discussed in[10]. A system is said

to be one-stept-diagnosable if all faulty processors can be identified uniquely from any
syndrome provided that the number of faulty processors does not exceedt. A system is said
to be sequentiallyt-diagnosable if at least one faulty processors can be identified from any
syndrome provided that the number of faulty processors does not exceedt. The degree of
one-step (sequential) diagnosability of a system is the maximalt such that the system is
one-step (sequentially)t-diagnosable.A characterization of one-stept-diagnosable systems
by Hakimi andAmin[3] implies that the degree of one-step diagnosability of any system is
bounded by theminimum degree of a vertex in its interconnection graph. On the other hand,
it is known that the degree of sequential diagnosability of any system withN processors is
at least�( 3

√
N) [6]. Unfortunately, computing the degree of sequential diagnosability of a

system is co-NP hard as proved by Raghavan and Tripathi[11].
The grid, hypercube, tree, cube-connected cycles (CCC), shuffle-exchange graph, and

de Bruijn graph are popular interconnection graphs for multiprocessor computer systems.
The sequential diagnosis for hypercube was first considered by Kavianpour and Kim[4].
They proved that the degree of sequential diagnosability for anN-vertex hypercube is at
least�(

√
N log N) [4]. Khanna and Fuchs also showed the same lower bound by giving

a linear time algorithm for sequential diagnosis for hypercube[5]. Moreover, they showed
in [6] that the degree of sequential diagnosability for anN-vertex hypercube is at least
�(N log logN/ log N). In the same paper[6], they proved that the degree of sequential
diagnosability for ad-dimensional grid withN vertices is at least�(Nd/(d+1)). In addition,
it is shown in[6] that the degree of sequential diagnosability of any system withN pro-
cessors is at least�(

√
N/�) and�(�), where� is the maximum degree of a vertex in its

interconnection graph. The former lower bound is based on a sequential diagnosis algorithm
called PARTITION, while the latter is based on another algorithm called MAX. It follows
that the degree of sequential diagnosability of ak-ary tree withN vertices is�(

√
N/k) and

those of anN-vertex CCC, shuffle-exchange graph, and de Bruijn graph are�(
√
N). From

lower bounds of�(
√
N/�) and�(�) mentioned above, we can derive a general lower

bound of�( 3
√
N), which is independent of� [6]. However, we know no graphG with N

vertices such that the degree of sequential diagnosability is o(
√
N).

This paper first shows that this is indeed the case by proving that the degree of sequential
diagnosability of any system withN processors is�(

√
N). Our lower bound is based on a

sequential diagnosis algorithm called HYBRID, which is a natural common generalization
of algorithms PARTITION and MAX proposed in[6]. We next show upper bounds for
various networks. These are the first nontrivial upper bounds for the degree of sequential
diagnosability, to the best of our knowledge. Our upper bounds are proved in a unified
manner, which is based on the very definition of sequential diagnosability. We show that
ad-dimensional grid and torus withN vertices are sequentially O(Nd/(d+1))-diagnosable,
and anN-vertexk-ary tree is O(

√
kN)-diagnosable. Finally, we prove that the degree of

sequential diagnosability of anN-vertex hypercube is at least�(N/
√
log N) and at most

O(N log logN/
√
log N), and those of anN-vertex CCC, shuffle-exchange graph, and de

Bruijn graph are�(N/ log N).



T. Yamada et al. / Discrete Applied Mathematics 146 (2005) 311–342 313

Preliminary versions of the paper appeared in[8,9,13,14].

2. Sequential diagnosis

The interconnection network of amultiprocessor computer system ismodeled by a graph,
called an interconnection graph, with the processors represented by the vertices of the graph
and the communication links by the edges. The testing assignment in the system is modeled
by a digraph, called a testing digraph, with the processors represented by the vertices of the
digraph and the test by the arcs (directed edges). If〈x, y〉 is an arc of the testing digraph then
the processorx tests processory. A test is performed along an edge of the interconnection
graph.
We denote the vertex set and the edge set of a graphG byV (G) andE(G), respectively.

We also denote the vertex set and the arc set of a digraphD byV (D) andA(D), respectively.
The associated digrapĥG of a graphG is the digraph obtained when each edgee of G is
replaced with two oppositely oriented arcs with the same ends ase.
LetDbea testingdigraphof a system.Asyndrome forD is amapping� : A(D)→ {0,1}

defined as follows:

�〈x, y〉 =
{
0 if x testsy with outcome pass,
1 if x testsy with outcome fail,

where we denote�(〈x, y〉) simply by�〈x, y〉. The outcome of the test is considered reliable
if and only if x is fault-free. A setF ⊆ V (D) is said to be a consistent fault set for a
syndrome� if neither (i) nor (ii) below holds:

(i) �〈x, y〉 = 0 wherex ∈ V (D)− F andy ∈ F ,
(ii) �〈x, y〉 = 1 wherex, y ∈ V (D)− F .
For any syndrome� for D and positive integert, define

F(�, t)= {F : F ⊆ V (D) is a consistent fault set for� and |F |� t},
SD(t)= {� : F(�, t) �= ∅}.

D is said to be sequentiallyt-diagnosable if

|F(�, t)| = 1 or
⋂
{F : F ∈F(�, t)} �= ∅

for any syndrome� ∈ SD(t). The degree of sequential diagnosability forD, denoted by
�(D), is the largest integert for whichD is sequentiallyt-diagnosable.

3. Algorithm HYBRID

In this section, we propose a linear-time sequential diagnosis algorithm for strongly-
connected testing digraphs.
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LetD be a testing digraph of a system, and let� be a syndrome forD.D�=0 is the digraph
defined as follows:

V (D�=0)= V (D); A(D�=0)= {〈x, y〉 ∈ A(D) : �〈x, y〉 = 0}.

Lemma 1. Let F be a consistent fault set for� and let X be a strongly-connected component
ofD�=0. Then, eitherX ∩ F = ∅ or X ⊆ F .

Proof. Assume thatX�F . Then, there exists someu ∈ X−F . Consider anyv ∈ X. Since
X is a strongly-connected component ofD�=0, there exists a dipath fromu to v in D�=0.
Notice that by the definition of syndrome, ifx /∈F and〈x, y〉 ∈ A(D�=0) theny /∈F . Thus,
we conclude thatv /∈F , and henceX ∩ F = ∅. �

D(�) is the graph defined as follows:

V (D(�))= {X : X is a strongly-connected component ofD�=0};
E(D(�))= {(X, Y ) : �〈x, y〉 = 1 or �〈y, x〉 = 1 for somex ∈ X andy ∈ Y }.

Lemma 2. For any(X, Y ) ∈ E(D(�)),X ⊆ F or Y ⊆ F .

Proof. AssumeX�F . Then,X∩F =∅ by Lemma 1. Notice that�〈x, y〉=1 or�〈y, x〉=1
for somex ∈ X andy ∈ Y by the definition ofD(�). Sincex /∈F , we conclude thaty ∈ F ,
and henceY ⊆ F by Lemma 1. �

For anyX ∈ V (D(�)), define that
N�(X)=

⋃
{Y : (X, Y ) ∈ E(D(�))}.

Lemma 3. Let t be a positive integer, � ∈SD(t), andF ∈F(�, t). Then, if |N�(X)|�
t + 1 for someX ∈ V (D(�)),X ⊆ F .

Proof. If (X,X) ∈ E(D(�)) thenX ⊆ F by Lemma 2.
Consider the case when(X,X) /∈E(D(�)), and assume contrary thatX�F . By

Lemma 2,Y ⊆ F for any (X, Y ) ∈ E(D(�)). Hence, we conclude thatN�(X) ⊆ F ,
which is contradicting to the fact that|F |� t . Hence,X ⊆ F . �

Define that

n�(X)=
{ |N�(X)| if N�(X) �= ∅,
|X| otherwise,

and

�D(t)= min
�∈SD(t)

max
X∈V (D(�))

n�(X).

Theorem 1. Let D be a strongly-connected testing digraph. If�D(t)� t + 1 for a positive
integer t then D is sequentially t-diagnosable.
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Proof. Consider any syndrome� ∈ SD(t). By the definition of�D(t), there exists some
X ∈ V (D(�)) with n�(X)� t + 1. LetF ∈F(�, t). There are following two cases:
Case1:N�(X) �= ∅: Then,n�(X)= |N�(X)|� t + 1, and soX ⊆ F by Lemma 3.
Case2: N�(X) = ∅: Then,n�(X) = |X|� t + 1, and soX ∩ F = ∅. If �〈x, y〉 = 0

for every〈x, y〉 ∈ A(D) thenX = V (D), and henceF = X ∩ F = ∅. If �〈x, y〉 = 1 for
some〈x, y〉 ∈ A(D) then there exists a dipathP = 〈v0, v1, . . . , vk〉 in D such thatv0 ∈ X,
�〈vi−1, vi〉=0 for anyi=1,2, . . . , k−1, and�〈vk−1, vk〉=1. Sincev0 /∈F , we conclude
thatvk ∈ F by the definition of syndrome.
HenceD is sequentiallyt-diagnosable. �

Now, we are ready to describe a linear time sequential diagnosis algorithm for strongly-
connected testing digraphs based on Theorem 1.Fig. 1 shows our algorithm, referred to
HYBRID. It is easy to see the correctness of HYBRID from the proof of Theorem 1. Phase
1 is performed in O(|A(D)|) time, and Phase 2 is performed in O(|A(D)|) time by using
the depth-first search. Thus, we obtain the following:

Theorem 2. Let D be a strongly-connected testing graph, and let t be a positive integer
with �D(t)� t + 1.Then, HYBRID diagnoses correctly all faulty processors in D in linear
time provided that D has at most t faulty processors.

4. General lower bound

LetG be a connected graph and let� be a syndrome for̂G. We denotêG(�) byG(�) for
simplicity.

Lemma 4. G(�) is connected.

Proof. The lemma follows from the fact that if(x, y) ∈ E(G) thenx, y ∈ X, or x ∈ X,
y ∈ Y , and(X, Y ) ∈ E(G(�)). �

For anyX ∈ V (G(�)), define that

��(X)=N�(X) ∪X.

Lemma 5. Let F be a consistent fault set for�. Then, there exists a partition(X1, X2,

. . . , Xm) of F such that

(1) Xi ∈ V (G(�)) for any positive integeri�m, and
(2) ��(Xi) ∩⋃i−1

j=1��(Xj ) �= ∅ for any integer2� i�m,
wherem= |{X ∈ V (G(�)) : X ⊆ F }|.

Proof. Let

X= {X ∈ V (G(�)) : X ⊆ F }.
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Fig. 1. Algorithm HYBRID.

Notice that
⋃
X∈XX = F by Lemma 1, andX ∩X′ = ∅ for any distinctX,X′ ∈ X by the

definition ofG(�). Thus, in order to prove the lemma, it suffices to label the elements ofX
asX1,…,Xm so that condition 2 is satisfied.
LetX1 be any element ofX. Suppose thatX1, . . ., andXi−1 (i�2) are given. Assume

contrary that

��(X) ∩
i−1⋃
j=1

��(Xj )= ∅

for anyX ∈ X−{X1, . . . , Xi−1}. Then, the distance ofXandXj inG(�) is at least 3 for any
j (1�j� i−1). SinceG(�) is connected by Lemma4, there exists some(U, V ) ∈ E(G(�))
with (U ∪ V ) ∩ F = ∅, which is contradicting to Lemma 2. Thus, we have

��(X) ∩
i−1⋃
j=1

��(Xj ) �= ∅.

for someX ∈ X− {X1, . . . , Xi−1}, and we can select suchX asXi . �

The following shows a tradeoff betweent and�Ĝ(t).

Lemma 6. For any N-vertex connected graph G and any positive integert�N ,

t · �Ĝ(t)+ 1�N.
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Proof. Let � ∈SD(t) such that

max
X∈V (G(�)) n�(X)= �Ĝ(t).

Then, for anyX ∈ V (G(�)), we have
|N�(X)|��Ĝ(t) and |��(X)|��Ĝ(t)+ |X|.

Fix F ∈F(�, t), and let(X1, X2, . . . , Xm) be a partition ofF satisfying the conditions in
Lemma 5. For any positive integeri�m, define that

Zi =


��(X1) if i = 1,

��(Xi)−
i−1⋃
j=1

��(Xj ) otherwise.

It is easy to see that(Z1, Z2, . . . , Zm) is a partition ofV (Ĝ). Since

|Zi |�
{

�Ĝ(t)+ |X1| if i = 1,
�Ĝ(t)+ |Xi | − 1 otherwise,

by Lemma 5 and|V (Ĝ)| =N , we conclude that

N =
m∑
i=1
|Zi |�

m∑
i=1
(�Ĝ(t)+ |Xi | − 1)+ 1=m(�Ĝ(t)− 1)+ |F | + 1

� t · �Ĝ(t)+ 1. �

Theorem 3. For any N-vertex connected graph G,

�(Ĝ)�
⌈√
N − 1

⌉
− 1.

Proof. Selectingt = �√N − 1� − 1, we have�Ĝ(t)��
√
N − 1� = t + 1 by Lemma 6.

Hence, we have�(Ĝ)� t = �√N − 1� − 1 by Theorem 1. �

Thek-partition number of a graphG, denoted byΥG(k), is defined as the largest integer
p such that for allp-element subsetsS ⊆ V (G), the subgraph ofG induced by the vertices
in V (G)−S has a connected component of sizekor larger. The following general theorems
are proved in[6].

Theorem 4 (Khanna and Fuchs[6] ). If ΥG(t + 1)� t for some integer t then�(Ĝ)� t .

Theorem 5 (Khanna and Fuchs[6] ). �(Ĝ)���(G)/2�, where�(G) is the maximum
vertex degree of G.

It should be noted that our lower bound in Theorem 3 is an improvement on those in
Theorems 4 and 5. LetT 3

k be anN-vertex completek-ary tree of height 3. It is easy to
see thatΥT 3k

(k + 1) = k2�k andΥT 3k (k + 2) = k − 1<k + 1. It is also easy to see that
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�(T 3
k ) = k + 1. SinceN = k3 + k2 + k + 1, the lower bound for�(T̂ 3

k ) obtained from
Theorems 4 and 5 isk =�( 3

√
N).

Notice also that our lower bound is asymptotically tight in the sense that for anyN-vertex
treeTwith bounded degree,�(T )=O(

√
N) as shown in Section 5.2.

5. Upper bounds for arrays and trees

Our upper bounds are derived from the following simple observation, which is straight-
forward from the definition of sequential diagnosability.

Lemma 7. Let D be a testing digraph and t be a positive integer. If there exist a syndrome
� for D and a collection{F1, F2, . . . , Fm} of consistent fault sets for� with m�2 and
0< |Fi |� t (1� i�m), such that

m⋂
i=1

Fi = ∅

then D is not sequentially t-diagnosable, that is

�(D)< t.

5.1. Grids and Tori

For any positive integern, [n] = {0,1, . . . , n − 1}. The d-dimensionalm-sided grid,
denoted byRd(m), is defined as follows:

V (Rd(m))= [m]d , E(Rd(m))=
{
(x, y) :

d∑
i=1
|xi − yi | = 1

}
,

wherex=(xd, xd−1, . . . , x1) andy=(yd, yd−1, . . . , y1). Thed-dimensionalm-sided torus,
denoted byDd(m), is defined as follows:

V (Dd(m))= [m]d;
E(Dd(m))= {(x, y) : (∃i)[yi = (xi ± 1)modm, (∀j �= i)[xj = yj ]]}.

The following lower bound can be found in the literature.

Theorem 6 (Khanna and Fuchs[6] ). �(R̂d(m))= �(Nd/(d+1)).

In this subsection, we prove the following upper bound:

Theorem 7. �(D̂d(m))=O(Nd/(d+1)).

Note that�(R̂d(m))��(D̂d(m)) sinceRd(m) is a subgraph ofDd(m). Thus, we have
the following two corollaries from Theorems 6 and 7.
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Corollary 1. �(R̂d(m))=�(Nd/(d+1)).

Corollary 2. �(D̂d(m))=�(Nd/(d+1)).

5.1.1. Proof of Theorem 7
5.1.1.1. Partition ofV (D̂d(m)). Let � be a positive integer. In this subsection, suppose
that�|m for simplicity of argument.We can prove the theorem by a similar argument even
for the other case. Let	 = m/�. For eacht = (td , td−1, . . . , t1) ∈ [�]d , defineP(t) and
Q(t) as follows:

P(t)= {x ∈ V (D̂d(m)) : (∀i)[�xi/	� = ti and 1�xi mod	�	− 2]},
Q(t)= {x ∈ V (D̂d(m)) : (∀i)[�xi/	� = ti] and (∃j)[xj mod	= 0 or 	− 1]}.

It is easy to see that(P ((0, . . . ,0)), . . . , P ((� − 1, . . . ,� − 1)),Q((0, . . . ,0)), . . . ,
Q((�− 1, . . . ,�− 1))) is a partition ofV (D̂d(m)). LetP=⋃

t P(t) andQ=
⋃

tQ(t).

5.1.1.2. Syndrome and fault sets.The syndrome�� for D̂d(m) is defined as follows:

��〈x, y〉 =
{
0 if

{
1. x, y ∈ P(t) for somet, or
2. x, y ∈ Q(t) for somet,

1 otherwise.

We define�d fault sets as follows:

F(t)= P(t) ∪ (Q−Q(t)) (t ∈ [�]d).
We prove Theorem 7 by showing the following claims:

Claim 1. For anyt ∈ [�]d , F(t) is a consistent fault set for��.

Claim 2.
⋂

t∈[�]d F (t)= ∅.

Claim 3. |F(t)| =O(Nd/(d+1)) for anyt ∈ [�]d .

5.1.1.3. Proof of Claim 1. We will prove the claim by showing that neither (i) nor (ii)
below holds for anyt ∈ [�]d :

(i) ��〈x, y〉 = 0 if x ∈ V (D̂d(m))− F(t) andy ∈ F(t),
(ii) ��〈x, y〉 = 1 if x, y ∈ V (D̂d(m))− F(t).
Let F(t) be a fault set,x ∈ V (D̂d(m))− F(t), and〈x, y〉 ∈ A(D̂d(m)).

Case1: x ∈ P(t′) for somet′ �= t: The vertices adjacent tox are contained inP(t′) ∪
Q(t′).

Case1.1:y ∈ F(t): y ∈ Q(t′) and so��〈x, y〉 = 1.
Case1.2:y ∈ V (D̂d(m))− F(t): y ∈ P(t′) and so��〈x, y〉 = 0.

Case2: x ∈ Q(t): The vertices adjacent tox are contained inP(t) ∪ Q.
Case2.1:y ∈ F(t): y /∈Q(t) and so��〈x, y〉 = 1.
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Case2.2:y ∈ V (D̂d(m))− F(t): y ∈ Q(t) and so��〈x, y〉 = 0.
Thus, neither (i) nor (ii) holds for any arc〈x, y〉.

5.1.1.4. Proof of Claim 2. The claim follows from the fact thatQ(t)∩ F(t)=∅ for anyt,
andP(t) ∩ F(t′)= ∅ for any distinctt andt′.

5.1.1.5. Proof of Claim 3. Since

|P(t)|< |{x ∈ V (D̂d(m)) : (∀i)[�xi/	� = ti]}�
(m
�

)d
and

|Q|< |{x ∈ V (D̂d(m)) : (∃i)[xi mod	= 0 or 	− 1]}

<

d∑
i=1

�−1∑
j=0
|{x : xi = j	}| +

d∑
i=1

�−1∑
j=0
|{x : xi = (j + 1)	− 1}|

= 2d�md−1,

we conclude that

|F(t)| = |P(t) ∪ (Q−Q(t))|< |P(t) ∪ Q|<
(m
�

)d + 2d�md−1.

If we choose�= �(m/d)1/(d+1)�, we have
|F(t)| =O((dmd)d/(d+1))=O(Nd/(d+1)).

5.2. k-ary trees

Let T be a rooted tree with rootr. For anyv ∈ V (T ), the level ofv, denoted bylT (v),
is defined as the number of edges of the unique path connectingv andr. A rooted treeT is
said to be of heighth if max{lT (v) : v ∈ V (T )} = h. A vertexv is called an ancestor of a
vertexu (andu is called a descendant ofv) if v is on the unique path inT connectingr and
u. If v is an ancestor ofu and(u, v) ∈ E(T ) thenv is the parent ofu (andu is a child ofv).
If each vertex ofT has at mostk children thenT is called ak-ary tree.
Let Tk,N denote anN-vertexk-ary tree. In this subsection, we prove the following upper

bound:

Theorem 8. �(T̂k,N )=O(
√
kN).

The following corollary is a direct consequence of Theorems 3 and 8.

Corollary 3. If k is fixed, �(T̂k,N )=�(
√
N).
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Fig. 2. Algorithm partition_k_tree

5.2.1. Proof of Theorem 8
5.2.1.1. Partition ofV (Tk,N ). LetT be a rooted tree. For anyr ′ ∈ V (T ), letT (r ′) denote
the rooted subtree ofTwith root r ′ induced by the descendants ofr ′, and let childT (r ′) be
a childx of r ′ such that

|V (T (x))| =max{|V (T (y))| : y is a child of r ′}.
LetP(1), . . . , P (m),q1, . . . , qm be theoutput of thePartition_k_Treealgorithmshown in

Fig. 2. DefineP=⋃
i P (i) andQ={q1, . . . , qm}. It is easy to see that(P (1), . . . , P (m),Q)

is a partition ofV (Tk,N ), and thus a partition ofV (T̂k,N ).

5.2.1.2. Syndrome and fault sets.The syndrome�� for T̂k,N is defined as follows:

��〈x, y〉 =
{
1 if x ∈ Q or y ∈ Q,
0 otherwise.

We definem+ 1 fault sets as follows: For any integeri (0� i�m)

F(i)=
{
Q if i = 0,
P (i) ∪ (Q− {qi}) ∪ R(i) otherwise.

whereR(i)= P(j) if the parent ofqi is in P(j) for somej, andR(i)= ∅ otherwise.
We prove Theorem 8 by showing the following claims:

Claim 4. For any integer i(0� i�m), F(i) is a consistent fault set for��.

Claim 5.
⋂m
i=0F(i)= ∅.
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Claim 6. |F(i)| =O(
√
kN) for any integer i(0� i�m).

5.2.1.3. Proof of Claim 4. We prove the claim by showing that neither (i) nor (ii) below
holds for anyi = 0,1, . . . , m;

(i) ��〈x, y〉 = 0 if x ∈ V (T̂k,N )− F(i) andy ∈ F(i),
(ii) ��〈x, y〉 = 1 if x, y ∈ V (T̂k,N )− F(i).
Let F(i) be a fault set. Letx ∈ V (T̂k,N )− F(i) and〈x, y〉 ∈ A(T̂k,N ).

Case1: x ∈ P(j)(�= R(i)) for somej �= i: The vertices adjacent tox are contained in
P(j) ∪ (Q− {qi}).

Case1.1:y ∈ F(i): y ∈ Q− {qi} and so��〈x, y〉 = 1.
Case1.2:y ∈ V (T̂k,N )− F(i): y ∈ P(j) and so��〈x, y〉 = 0.

Case2: x = qi (i �= 0): y ∈ P(i) ∪ (Q− {qi}) ∪ R(i)= F(i) and��〈x, y〉 = 1.
Thus, neither (i) nor (ii) holds for any arc〈x, y〉.

5.2.1.4. Proof of Claim 5. The claim follows from the fact thatP∩F(0)=∅, andqi /∈F(i)
for any integeri (1� i�m).

5.2.1.5. Proof of Claim 6. Let Vi = P(i) ∪ {qi} for any integeri (1� i�m). It is easy to
see the following lemma:

Lemma 8. |Vi |�k� for any integer i(1� i�m).

Lemma 9. |Vi |�� for any integer i(1� i�m− 1).

Proof. If r ′′ = childT (r ′) then we have

|V (T (r ′′))|� |V (T (r
′))| − 1

k
.

Thus, if|V (T (r ′))|�k�+1 then|V (T (r ′′))|��. Hence|Vi |�� for any integeri (1� i�
m− 1). �

By Lemma 8, we have

|P(i)|�k�− 1

for any integeri (1� i�m). Thus, for any integeri (0� i�m),

|F(i)|�
{
m if i = 0,
2k�+m− 3 otherwise.

Sincem��N/�� by Lemma 9, we have

|F(i)|�2k�+ N
�
− 2.
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By setting�= �√N/2k�, we conclude that, for any integeri (0� i�m),

|F(i)| =O(
√
kN),

which completes the proof.

5.3. Complete k-ary trees of even height

The completek-ary tree of heighth, denoted byTk(h), is defined as thek-ary tree of
heighth such that every vertexv with lTk(h)(v)<h has exactlyk children.
In this subsection, we prove the following upper bound:

Theorem 9. Let k be an integer withk�2.Then,

�(T̂k(h))=O(
√
N),

whereN = (kh+1− 1)/(k − 1).

The following corollary is a direct consequence of Theorems 3 and 9.

Corollary 4. �(T̂k(h))=�(
√
N) for any positive integerk�2.

5.3.1. Proof of Theorem 9
5.3.1.1. Partition ofV (T̂k(h)). Let� be a positive integer such that��h − 1. For any
integeri (1� i�k�), define that

P(i)= {x : x is a descendant ofqi andx �= qi},
whereq1, q2, . . . , qk� denotek� vertices of level� in Tk(h). LetP=⋃

i P (i),

Q= {q1, q2, . . . , qk�}, and R= {x : 0� lTk(h)(x)��− 1}.
It is easy to see that(P (1), . . . , P (k�),Q,R) is a partition ofV (Tk(h)), and thus a partition
of V (T̂k(h)).

5.3.1.2. Syndrome and fault sets.The syndrome�� for T̂k(h) is defined as follows:

��〈x, y〉 =
{
1 if x ∈ Q or y ∈ Q,
0 otherwise.

We definek� + 1 fault sets as follows: For any integeri (0� i�k�),

F(i)=
{
Q if i = 0,
P (i) ∪ (Q− {qi}) ∪R otherwise.

We prove Theorem 9 by showing the following claims:

Claim 7. F(i) is a consistent fault set for�� for any integer i(0� i�k�).
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Claim 8.
⋂k�

i=0F(i)= ∅.

Claim 9. |F(i)| =O(
√
N) for any integer i(0� i�k�).

5.3.1.3. Proof of Claim 7. We prove the claim by showing that neither (i) nor (ii) below
holds for anyi = 0,1, . . . , k�;

(i) ��〈x, y〉 = 0 if x ∈ V (T̂k(h))− F(i) andy ∈ F(i),
(ii) ��〈x, y〉 = 1 if x, y ∈ V (T̂k(h))− F(i).
Let F(i) be a fault set,x ∈ V (T̂k(h))− F(i), and〈x, y〉 ∈ A(T̂k(h)).

Case1: x ∈ P(j) for somej �= i: The vertices adjacent tox are contained inP(j) ∪
(Q− {qi}).

Case1.1:y ∈ F(i): y ∈ Q− {qi} and so��〈x, y〉 = 1.
Case1.2:y ∈ V (T̂k(h))− F(i): y ∈ P(j) and so��〈x, y〉 = 0.

Case2: x = qi (i �= 0): y ∈ P(i) ∪R ⊂ F(i) and��〈x, y〉 = 1.
Case3: x ∈ R (i = 0): The vertices adjacent tox are contained inQ ∪R.

Case3.1:y ∈ F(i): y ∈ Q and so��〈x, y〉 = 1.
Case3.2:y ∈ V (T̂k(h))− F(i): y ∈ R and so��〈x, y〉 = 0.

Thus, neither (i) nor (ii) holds for any arc〈x, y〉.

5.3.1.4. Proof of Claim 8. The claim follows from the fact that(P∪R)∩ F(0)=∅, and
qi /∈F(i) for any integeri (1� i�k�).

5.3.1.5. Proof of Claim 9. For any integeri (1� i�k�)

|P(i)| = k · k
h−� − 1

k − 1
, |Q| = k�, and |R| = k

� − 1

k − 1
.

Thus,

|F(i)| =
{
k� if i = 0,
k(k� + kh−� − 2)/(k − 1) otherwise,

for any integeri (0� i�k�). If we choose�= h/2, we have
|F(i)| =O(

√
N).

6. Hypercubes

Then-dimensional cube, denoted byQn, is defined as follows:

V (Qn)= [2]n; E(Qn)= {(x, y) : dH(x, y)= 1},
wheredH(x, y) denotes the Hamming distance betweenx andy. LetN = |V (Qn)| = 2n.
The following lower bound can be found in the literature.
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Theorem 10(Khanna and Fuchs[6] ). �(Q̂n)= �
(
N log log N

log N

)
.

In this section, we prove the following lower and upper bounds:

Theorem 11. �(Q̂n)= �
(

N√
log N

)
.

Theorem 12. �(Q̂n)=O
(
N log log N√

log N

)
.

6.1. Proof of Theorem 11

Kleitman proves in[7] the following theorem on thek-partition number of then-dimen-
sional cube:

Theorem 13. ΥQn(2
n−1+ 1)�

(
n
�n/2�

)
− 1.

The following lemma is well-known. (See[1].)

Lemma 10 (Cormen et al.[1] ).
(

n
�n/2�

)
=�

(
2n√
n

)
.

By combining Theorems 4 and 13, and Lemma 10, we have

�(Q̂n)= �
(

N√
log N

)
,

whereN = 2n.

6.2. Proof of Theorem 12

6.2.1. The case when n is a power of 2
6.2.1.1. Partition ofV (Q̂n). Let kbe a non-negative integer. bin(k,m) is them-bit binary
representationofk, andbin(k,m, i) is theith least significant bit of bin(k,m) (0�k�2m−1,
1� i�m). If x = bin(k,m) then we denotek = dec(x). Let � be an integer such that
1��� log n, and let
 = 2�. The concatenation of binary stringsx andy is denoted by
x · y. The concatenation ofm x’s is denoted byxm. For an integera such that 1�a��,
r(a) is a binary string of lengthn defined as follows:

r(a)= (0n/2�−a+1 · 1n/2�−a+1
)2

�−a
.

We considerr(a) as a vertex of̂Qn in a natural way. Definepa(x) andqa(x) as follows:

pa(x)=
{0 if 0�dH(x, r(a))�n/2− 2,
1 if n/2+ 2�dH(x, r(a))�n,
−1 if n/2− 1�dH(x, r(a))�n/2+ 1,
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qa(x)=
{0 if 0�dH(x, r(a))�n/2− 1,
1 if n/2+ 1�dH(x, r(a))�n,
−1 if dH(x, r(a))= n/2.

It should be noted that ifpa(x) ∈ {0,1} thenqa(x)= pa(x) by definition.
For an integerb such that 0�b�
− 1, define subsetsP(b),Q(b), andR(b) of V (Q̂n)

as follows:

P(b)= {x : (∀a)[pa(x) ∈ {0,1}],dec(p�(x) · · ·p1(x))= b},
Q(b)= {x : (∃a′)[pa′(x)=−1], (∀a)[qa(x) ∈ {0,1}],dec(q�(x) · · · q1(x))= b},
R(b)= {x : (∃a)[qa(x)=−1], T (x)= b},

whereT (x) is the decimal representation of the most significant� bits of x. DefineP =⋃
b P (b), Q=

⋃
b Q(b), andR=

⋃
b R(b).

Lemma 11. �= (P (0), . . . , P (
− 1),Q(0), . . . ,Q(
− 1), R(0), . . . , R(
− 1)) is a
partition ofV (Q̂n).

Proof. We will prove the lemma by showing the following:

(i) for any distinct blocksU andU ′ of �, U ∩ U ′ = ∅;
(ii) P ∪ Q ∪R= V (Q̂n).

Proof of (i). First of all, observe thatP∩Q=Q∩R=R∩P=∅ by definition. We will
show thatP(b) ∩ P(b′)= ∅ for any distinctb andb′ (0�b, b′�
− 1). Assume contrary
thatP(b) ∩ P(b′) �= ∅ for some distinctb andb′. There existsa such that bin(b,�, a) �=
bin(b′,�, a). Supposewithout loss of generality that bin(b,�, a)=0 and bin(b′,�, a)=1.
Let x ∈ P(b) ∩ P(b′). Sincex ∈ P(b), we havepa(x) = 0 anddH(x, r(a))�n/2− 2.
However, sincex ∈ P(b′), wealsohavepa(x)=1anddH(x, r(a))�n/2+2, a contradiction.
Thus,P(b)∩P(b′)=∅ for any distinctbandb′. Similarly, it can be shown thatQ(b)∩Q(b′)
for any distinctb andb′. It is easy to see thatR(b) ∩ R(b′) for any distinctb andb′.

Proof of (ii). Supposex ∈ V (Q̂n). For anya such that 1�a��, we have 0�dH(x, r(a))
�n. If dH(x, r(a))=n/2 for somea thenqa(x)=−1, and sox ∈ R(b) for bwith T (x)=b. If
dH(x, r(a)) �= n/2 for anyaanddH(x, r(a′))=n/2±1 for somea′ thenqa(x) ∈ {0,1} and
pa′(x)=−1, and sox ∈ Q(b) for bwith dec(q�(x) · · · q1(x))= b. If dH(x, r(a)) /∈ {n/2,
n/2±1} for anya thenpa(x) ∈ {0,1}, and sox ∈ P(b) for bwith dec(p�(x) · · ·p1(x))=b.
Thus, we conclude that ifx ∈ V (Q̂n) thenx ∈ P∪Q∪R andwe haveV (Q̂n)=P∪Q∪R.

�

6.2.1.2. Syndrome and fault sets.The syndrome�
 for Q̂n is defined as follows:

�
〈x, y〉 =
0 if

{1. x, y ∈ P(b) for someb,
2. x ∈ Q(b) andy ∈ R(b) for someb,or
3. x ∈ R(b) andy ∈ Q(b) for someb,

1 otherwise.
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We define
 fault sets as follows: For any integerb (0�b�
− 1),

F(b)= P(b) ∪ (Q−Q(b)) ∪ (R− R(b)).
We prove Theorem 12 by showing the following claims.

Claim 10. For any integer b(0�b�
− 1), F(b) is a consistent fault set for�
.

Claim 11.
⋂
−1
b=0 F(b)= ∅.

Claim 12. |F(b)| =O
(
N log log N√

log N

)
for any integer b(0�b�
− 1).

6.2.1.3. Proof of Claim 10. Before proving the claim, we need a couple of lemmas.

Lemma 12. For any adjacent verticesx, y ∈ V (Q̂n),
(1) if x ∈ Q theny /∈Q.
(2) if x ∈ R theny /∈R.

Proof. We will show (1). Assume contrary thatx, y ∈ Q. Then, there existsa and a′
such that

pa(x)=−1, qa(x) �= −1, pa′(y)=−1, and qa′(y) �= −1.
We also have

dH(x, r(a)), dH(y, r(a′))= n/2± 1.

Since

dH(r(a),0n)= dH(r(a′),0n)= n/2,
we conclude that

dH(x, r(a))+ dH(r(a),0n)+ dH(0n, r(a′))+ dH(r(a′), y)
= 2n− 2,2n,2n+ 2,

which is even. However, sincex andy are adjacent,dH(x, y) = 1, which is odd, a contra-
diction.
We can show (2) by a similar argument.�

Lemma 13. For any integer b(0�b�
− 1),

(1) The vertices adjacent tox ∈ P(b) are contained inP(b) ∪Q(b).
(2) The vertices adjacent tox ∈ Q(b) are contained inP(b) ∪R.
(3) The vertices adjacent tox ∈ R(b) are contained inQ.

Proof. We will show (1). Letx ∈ P(b) andy be a vertex adjacent tox. Then

|dH(y, r(a))− dH(x, r(a))| = 1
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for anya. If pa(x)= 0 then

0�dH(x, r(a))�
n

2
− 2.

Thus, we have

0�dH(y, r(a))�
n

2
− 1,

and soqa(y)= 0. If pa(x)= 1 then

n

2
+ 2�dH(x, r(a))�n.

It follows that
n

2
+ 1�dH(y, r(a))�n,

andsoqa(y)=1.Thusweconclude thatqa(y)=pa(x) for anyaandsodec(q�(y) · · · q1(y))=
b. If there existsa′ such thatdH(y, r(a′))=n/2±1 theny ∈ Q(b). Otherwise,pa(y)=qa(y)
for anya, and soy ∈ P(b).
(2) and (3) follow from (1) and Lemma 12.�

We will prove Claim 10 by showing that neither (i) nor (ii) below holds for anyb:

(i) �
〈x, y〉 = 0 if x ∈ V (Q̂n)− F(b) andy ∈ F(b),
(ii) �
〈x, y〉 = 1 if x, y ∈ V (Q̂n)− F(b).
Let F(b) be a fault set. Letx ∈ V (Q̂n)− F(b) and〈x, y〉 ∈ A(Q̂n).

Case1: x ∈ P(b′) for someb′ �= b: From Lemma 13, the vertices adjacent tox are
contained inP(b′) ∪Q(b′).

Case1.1:y ∈ F(b): y ∈ Q(b′) and so�
〈x, y〉 = 1.
Case1.2:y ∈ V (Q̂n)− F(b): y ∈ P(b′) and so�
〈x, y〉 = 0.

Case2:x ∈ Q(b): FromLemma13, the vertices adjacent toxare contained inP(b)∪R.
Case2.1:y ∈ F(b): y /∈R(b) and so�
〈x, y〉 = 1.
Case2.2:y ∈ V (Q̂n)− F(b): y ∈ R(b) and so�
〈x, y〉 = 0.

Case3: x ∈ R(b): From Lemma 13, the vertices adjacent tox are contained inQ.
Case3.1:y ∈ F(b): y /∈Q(b) and so�
〈x, y〉 = 1.
Case3.2:y ∈ V (Q̂n)− F(b): y ∈ Q(b) and so�
〈x, y〉 = 0.

Thus, neither (i) nor (ii) holds for any arc〈x, y〉.

6.2.1.4. Proof of Claim 11. The claim follows from the fact thatQ(b) ∩ F(b) = R(b) ∩
F(b)= ∅ for anyb, andP(b) ∩ F(b′)= ∅ for any distinctb andb′.

6.2.1.5. Proof of Claim 12. We will prove the claim by a series of lemmas.

Lemma 14. |Q|<2� ·
(

n
n/2−1

)
.
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Proof.

|Q|< |{x : (∃a)[dH(x, r(a))= n/2± 1]}|
< |{x : (∃a)[dH(x, r(a))= n/2− 1]}|
+ |{x : (∃a)[dH(x, r(a))= n/2+ 1]}|

<

�∑
i=1
|{x : dH(x, r(i))= n/2− 1}| +

�∑
i=1
|{x : dH(x, r(i))= n/2+ 1}|

= 2
�∑
i=1

(
n

n/2− 1

)
= 2� ·

(
n

n/2− 1

)
. �

Lemma 15. |R|<� · ( n
n/2).

Proof.

|R| = |{x : (∃a)[dH(x, r(a))= n/2]}|<
�∑
i=1
|{x : dH(x, r(i))= n/2}|

=
�∑
i=1

(
n

n/2

)
=� ·

(
n

n/2

)
. �

Lemma 16. |P(b)| = |P(b′)| for any integers b andb′ (0�b, b′�
− 1).

Proof. For any integerk anda (0�k�2� − 1, 1�a��), let ex(k, a) denote the integer
such that bin(ex(k, a),�) and bin(k,�) differ just in theath least significant bit. It should
be noted thatb = ex(ex(b, a), a).
We prove the lemma by showing the following:

Claim A. |P(b)| = |P(ex(b, a))| for any integers b and a(0�b�
− 1, 1�a��).

Proof of Claim A. Before proving the claim, we need some preliminaries. For anyx ∈
V (Q̂n) and any integeru (0�u�2� − 1), let

xu = (xn/2�×(u+1), . . . , xn/2�×u+1).

For any distincta anda′ (1�a, a′��) andw,w′ ∈ {0,1}, let
Wawa′w′(x)=

∑
{wH(xu) : bin(u,�, a)= w and bin(u,�, a′)= w′},

Waw(x)=
∑
{wH(xu) : bin(u,�, a)= w}

=Wawa′1(x)+Wawa′0(x),
wherewH(xu) denotes the Hamming weight ofxu. For anyx anda (1�a��), let

ea(x)= xex(2�−1,a) · xex(2�−2,a) · · · xex(0,a).
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It should be noted thatea is a one-to-one mapping and that

Wa1a′w(ea(x))=Wa0a′w(x), Wa0a′w(ea(x))=Wa1a′w(x),

Wa0(ea(x))=Wa1(x), and Wa1(ea(x))=Wa0(x)

for any distincta anda′ (1�a, a′��) and anyw ∈ {0,1}.
By the definition ofr(a), it is easy to see the following claim:

Claim B. For any a and u(1�a��, 0�u�2� − 1),

r(a)u =
{
1n/2

�
if bin(u,�, a)= 0,

0n/2
�

if bin(u,�, a)= 1.

Claim C. For anyx and a(1�a��),

dH(x, r(a))=Wa1(x)+ (n/2−Wa0(x)).

Proof of Claim C. By the definition ofWaw(x) and Claim B, we have

dH(x, r(a))=
∑
{dH(xu, r(a)u) : bin(u,�, a)= 1}

+
∑
{dH(xu, r(a)u) : bin(u,�, a)= 0}

=
∑
{dH(xu,0n/2�

) : bin(u,�, a)= 1}
+

∑
{dH(xu,1n/2�

) : bin(u,�, a)= 0}
=

∑
{wH(xu) : bin(u,�, a)= 1}

+
(
n/2−

∑
{wH(xu) : bin(u,�, a)= 0}

)
=Wa1(x)+ (n/2−Wa0(x)). �

Claim D. For any a anda′ (1�a, a′��),

dH(ea(x), r(a′))=
{
n− dH(x, r(a)) if a′ = a,
dH(x, r(a′)) otherwise.

Proof of Claim D. Suppose thata′ = a. SinceWa1(ea(x)) = Wa0(x) andWa0(ea(x)) =
Wa1(x) as mentioned earlier, we have from Claim C that

dH(ea(x), r(a))=Wa1(ea(x))+ (n/2−Wa0(ea(x)))
=Wa0(x)+ (n/2−Wa1(x))
= n− {Wa1(x)+ (n/2−Wa0(x))}
= n− dH(x, r(a)).
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If a′ �= a then we have from Claim C that

dH(ea(x), r(a′))=Wa′1(ea(x))+ (n/2−Wa′0(ea(x)))
=Wa′1a1(ea(x))+Wa′1a0(ea(x))
+ (n/2−Wa′0a1(ea(x))+Wa′0a0(ea(x)))

=Wa′1a0(x)+Wa′1a1(x)
+ (n/2−Wa′0a0(x)+Wa′0a1(x))

=Wa′1(x)+ (n/2−Wa′0(x))
= dH(x, r(a′)). �

Claim E. For any b and a(0�b�
− 1, 1�a��),

x ∈ P(b)⇒ ea(x) ∈ P(ex(b, a)).

Proof of Claim E. It follows from Claim D that if x ∈ P(b) thenpa′(ea(x)) /∈ {n/2,
n/2 ± 1} for any a′ (1�a′��) and soea(x) ∈ P. It also follows from Claim D that
if x ∈ P(b) thenpa(ea(x)) �= pa(x) andpa′(ea(x)) = pa′(x) for any distincta anda′
(1�a, a′��). Thus,

dec(p�(ea(x)) · · ·p1(ea(x)))= dec(p�(x) · · ·pa(x) · · ·p1(x))= ex(b, a),

wherev is the complement ofv. It follows if x ∈ P(b) thenea(x) ∈ P(ex(b, a)) for anyb
anda (0�b�
− 1, 1�a��). �

Nowweare ready toproveClaimA.Sinceea is aone-to-onemappingandex(ex(b, a), a)=
b as mentioned above, we conclude from Claim E that|P(b)|= |P(ex(b, a))| for anyband
a (0�b�
− 1, 1�a��). �
This completes the proof of Lemma 16.�

Lemma 17. |P(b)|<2n/
 for any b(0�b�
− 1).

Proof. From Lemma 16, we have

|P(b)| = |P|



(1)

for anyb (0�b�
− 1). We also have

|P|< |V (Q̂n)| = 2n, (2)

from Lemma 11. From (1) and (2), we have the lemma.�

Lemma 18. |F(b)| =O
(
N log log N√

log N

)
.
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Proof. From Lemmas 14, 15, and 17,

|F(b)| = |P(b)| + |Q−Q(b)| + |R− R(b)|< |P(b)| + |Q| + |R|
<
2n



+ 2�

(
n

n/2− 1

)
+�

(
n

n/2

)
.

From Lemma 10, we have(
n

n/2,

)
,

(
n

n/2− 1

)
=O

(
2n√
n

)
,

and thus

|F(b)| =O

(
2n



+�

2n√
n

)
.

If we choose�= �(log n)/2− log log n� then
=�(
√
n/ log n) and we have

|F(b)| =O

(
2n log n√

n

)
=O

(
N log logN√

log N

)
. �

6.2.2. The case when n is not a power of 2
Letn1=2�log n� andn2=n−n1. Let� be an integer such that 1��� log n1=�log n�,

and let
= 2�. Definer(a), pa(x), andqa(x) onQ̂n1 as in Section 6.2.1.1. Define subsets
P(b),Q(b), andR(b) of V (Q̂n) as follows:

P(b)= {x1 · x2 : (∀a)[pa(x1) ∈ {0,1}],dec(p�(x1) · · ·p1(x1))= b},
Q(b)= {x1 · x2 : (∃a′)[pa′(x1)=−1],

(∀a)[qa(x1) ∈ {0,1}],dec(q�(x1) · · · q1(x1))= b},
R(b)= {x1 · x2 : (∃a)[qa(x1)=−1], T (x1)= b},

wherexi ∈ [2]ni (i = 1 or 2). Define the syndrome�
 for Q̂n and
 fault setsF(b) as
follows:

�
〈x, y〉 =
{
0 if

{
1. x, y ∈ P(b) for someb, or
2. x, y ∈ Q(b) ∪ R(b) for someb,

1 otherwise,

F (b)= P(b) ∪ (Q−Q(b)) ∪ (R− R(b)) (0�b�
).

Then, we can prove that

�(Q̂n)=O

(
2n1 log n1√

n1
2n2

)
=O

(
N log logN√

log N

)
by a similar arguments as those of Section 6.2.1.
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7. Cube-connected cycles

For anyx= xn−1xn−2 · · · x0 ∈ [2]n, define
�i (x)= xn−1 · · · xi+1xixi−1 · · · x0.

Then-dimensional cube-connected cycles, denoted byCCCn, is the graph defined as fol-
lows:

V (CCCn)= {[x, i] : x ∈ [2]n, i ∈ [n]};
E(CCCn)= {([x, i], [x, j ]) : x ∈ [2]n, j = (i ± 1)modn}

∪ {([x, i], [y, i]) : x ∈ [2]n, y= �i (x)}.
CCCn is constructed fromQn by replacing each vertex ofQn with a cycle of lengthn in
CCCn. It should be noted that|V (Qn)| = 2n andN = |V (CCCn)| = n2n.
In this section, we prove the following bounds:

Theorem 14. �(ĈCCn)�
⌊

2N
4n+1

⌋
.

Theorem 15. �(ĈCCn)< 4N
n
+ o

(
N
n

)
.

From Theorems 14 and 15, we have the following corollary.

Corollary 5. �(ĈCCn)=�
(

N
log N

)
.

7.1. Proof of Theorem 14

Before proving the theorem, we need some preliminaries, which are also used in
Section 8.
LetG be anN-vertex connected graph. A walkW in G is defined as a sequence[v0, v1,

. . . , vk] of vertices such that(vi, vi+1) ∈ E(G) for anyi ∈ [k].W is also called a(v0, vk)-
walk. The length ofW, denoted by|W |, is defined ask. For any ordered pair[u, v] of vertices
in G, letW [u, v] be a(u, v)-walk inG. We define

W(w)= {W [u, v] : w ∈ V (W [u, v])},
for anyw ∈ V (G), and

W(S)=
⋃
w∈S

W(w)

for anyS ⊆ V (G).

Lemma 19. Let t be a positive integer, andF ⊆ V (G) with |F | = t . If every connected
component of the subgraph H of G induced by the vertices inV (G)−F has size t or smaller
then|W(F )|>N2− tN .
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Proof. We prove the lemma by a series of claims. LetV1, . . . , Vk be vertex sets of the
connected components ofH.

Claim 13. If F ∩ V (W [u, v])= ∅ thenu, v ∈ Vi for some i.

Proof of Claim 13. The lemma follows from the fact that the vertices adjacent tow ∈ Vi
are contained inVi ∪ F for any i. �

Claim 14. Letmbe a positive integer. Ifa1,a2,…,andak are integers such that(i) 0�ai� t
for any i, and(ii)

∑k
i=1 ai =m, then

k∑
i=1

a2i �
⌊m
t

⌋
t2+ (mmodt)2.

Proof of Claim 14. Let b1, . . . , bk bek integers satisfying the conditions (i) and (ii) such
that

∑k
i=1 b2i �

∑k
i=1 a2i . Assume that 0<bp�bq < t for some distinct positive integersp

andq. For anyi, let

ci =
{
bi − 1 if i = p,
bi + 1 if i = q,
bi otherwise.

Then,c1, . . . , ck satisfy the conditions (i) and (ii), and

k∑
i=1

c2i −
k∑
i=1

b2i = (bp − 1)2+ (bq + 1)2− b2p − b2q = 2(bq − bp)+ 2>0,

which is a contradiction. Hence, we have at most one integerbp with 1�bp < t . Assume
without loss of generality thatt�b1� · · · �bk�0. Then,

bi =
{
t if 1� i��m/t�,
mmodt if i = �m/t� + 1, and
0 otherwise.

It follows that

k∑
i=1

a2i �
k∑
i=1

b2i =
⌊m
t

⌋
t2+ (mmodt)2. �

By Claim 13,

|W(F )|�N2−
k∑
i=1
|Vi |2.
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Since|Vi |� t for any i and∑k
i=1 |Vi | =N − t , we obtain by Claim 14 that

|W(F )|�N2−
⌊
N − t
t

⌋
t2− {(N − t)modt}2>N2−

⌊
N

t

⌋
t2�N2− tN.

This completes the proof of Lemma 19.�
Now, we are ready to prove Theorem 14.

Lemma 20. For t = �2N/(4n+ 1)�,
ΥCCCn(t + 1)� t.

Proof. Assume contrary thatΥCCCn(t + 1)< t . Then, there exists someF ⊆ V (CCCn)
with |F | = t such that every connected component of the subgraphG of CCCn induced by
the vertices inV (CCCn)− F has sizet or smaller.
For any ordered pair of verticesu= [xn−1xn−2 · · · x0, i] andv = [yn−1yn−2 · · · y0, j ] in

V (CCCn), letW [u, v] denote the following walk connectingu andv in CCCn:
u = [xn−1 · · · xi+1xixi−1 · · · x0, i] → [xn−1 · · · xi+1yixi−1 · · · x0, i]
→ [xn−1 · · · xi+1yixi−1 · · · x0, i + 1] → [xn−1 · · · xi+2yi+1yixi−1 · · · x0, i + 1]
→ · · · → [yn−1yn−2 · · · yixi−1 · · · x0, n− 1]
→ [yn−1yn−2 · · · yixi−1 · · · x0,0] → [yn−1yn−2 · · · yixi−1 · · · y0,0]
→ · · · → [yn−1yn−2 · · · yiyi−1 · · · y0, i − 1]
→ [yn−1yn−2 · · · yiyi−1 · · · y0, i] → · · ·
→ [yn−1yn−2 · · · yiyi−1 · · · y0, j ] = v.

For anyw ∈ V (CCCn), defineW(w)= {W [u, v] : u, v ∈ V (CCCn),w ∈ V (W [u, v])},
and for anyV ⊆ V (CCCn), defineW(V )=⋃

w∈VW(w).

Lemma 21. For anyw ∈ V (CCCn),
|W(w)|� (

2n− 1
2

)
N.

Moreover,

|W(F )|� t (2n− 1
2

)
N.

Proof. It is easy to see that∑
w∈V (CCCn)

|W(w)|�
∑

u,v∈V (CCCn)
(|W [u, v]| + 1), and

∑
u,v∈V (CCCn)

|V (W [u, v])| =
(
n− 1+ n

2
+ n− 1

2
+ 1

)
N2=

(
2n− 1

2

)
N2.

Thus, by the symmetry ofW(w), we have

|W(w)|� (
2n− 1

2

)
N,
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and

|W(F )|�
∑
w∈F
|F(w)|� t (2n− 1

2

)
N. �

By Lemma 19, we have

|W(F )|>N2− 2N

4n+ 1
N = 4n− 1

4n+ 1
N2.

On the other hand, by Lemma 21,

|W(F )|� 2N

4n+ 1

(
2n− 1

2

)
N = 4n− 1

4n+ 1
N2,

which is a contradiction. Hence,

ΥCCCn(t + 1)� t. �

From Theorem 4 and Lemma 20, we have Theorem 14.

7.2. Proof of Theorem 15

7.2.1. Partition ofV (ĈCCn)
Suppose thatn is even for simplicity of argument.We can prove the theorem by a similar

argument for oddn. For anyx= xn−1xn−2 · · · x0 ∈ [2]n and positive integerm�n, define
mappingsLm andRm as follows:

Lm(x)= xn−1 · · · xn−m and Rm(x)= xm−1 . . . x0.
For eacht ∈ [2]n/2 andk ∈ [2], defineP(t, k) andQ(t, k) as follows:

P(t,0)= {[x, i] ∈ V (ĈCCn) : Ln/2(x)= t,1� i�(n/2)− 2},

P (t,1)= {[x, i] ∈ V (ĈCCn) : Rn/2(x)= t, (n/2)+ 1� i�n− 2},

Q(t,0)= {[x, i] ∈ V (ĈCCn) : Ln/2(x)= t, i = 0 or (n/2)− 1},

Q(t,1)= {[x, i] ∈ V (ĈCCn) : Rn/2(x)= t, i = n/2 or n− 1}.
It is easy to see that(P (0 · · ·0,0), . . . , P (1 · · ·1,1),Q(0 · · ·0,0), . . . ,Q(1 · · ·1,1)) is a
partition ofV (ĈCCn). LetP=⋃

t,k P (t, k) andQ=
⋃

t,k Q(t, k).

7.2.2. Syndrome and fault sets
The syndrome� for ĈCCn is defined as follows:

�〈u, v〉 =
{
0 if

{
1. u, v ∈ P(t, k) for somet andk, or
2. u, v ∈ Q(t, k) for somet andk,

1 otherwise.
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We define 2(n/2)+1 fault sets as follows:

F(t, k)= P(t, k) ∪ (Q−Q(t, k)) (t ∈ [2]n/2, k ∈ [2])
We prove Theorem 15 by showing the following claims:

Claim 15. For anyt ∈ [2]n/2 andk ∈ [2], F(t, k) is a consistent fault set for�.
Claim 16.

⋂
t∈[2]n/2,k∈[2] F(t, k)= ∅.

Claim 17. |F(t, k)|< 4N
n
+ o

(
N
n

)
for anyt ∈ [2]n/2 andk ∈ [2].

7.2.3. Proof of Claim 15
Before proving the lemma, we need the following lemma.

Lemma 22. For anyt ∈ [2]n/2 andk ∈ [2],
(1) The vertices adjacent tou ∈ P(t, k) are contained inP(t, k) ∪Q(t, k).
(2) The vertices adjacent tou ∈ Q(t, k) are contained inP(t, k) ∪ Q.

Proof. We will prove (1). Letu = [x, i] ∈ P(t, k), andv = [y, j ] be a vertex adjacent to
u. If k = 0 then 1� i�(n/2) − 2, and soLn/2(�i (x)) = Ln/2(x). Thus, we conclude that
Ln/2(y) = Ln/2(x) and 0�j�(n/2) − 1, and hencev ∈ P(t,0) ∪Q(t,0). If k = 1 then
(n/2)+1� i�n−2,andsoRn/2(�i (x))=Rn/2(x).Thus,weconclude thatRn/2(y)=Rn/2(x)
andn/2�j�n− 1, and hencev ∈ P(t,1) ∪Q(t,1).
2 follows from 1. �

We prove Claim 15 by showing that neither (i) nor (ii) below holds for anyt ∈ [2]n/2 and
k ∈ [2];
(i) �〈u, v〉 = 0 if u ∈ V (ĈCCn)− F(t, k) andv ∈ F(t, k),
(ii) �〈u, v〉 = 1 if u, v ∈ V (ĈCCn)− F(t, k).

Let F(t, k) be a fault set. Letu ∈ V (ĈCCn)− F(t, k) and〈u, v〉 ∈ A(ĈCCn).
Case1: u ∈ P(t′, k′) for some(t′, k′) �= (t, k): From Lemma 22, the vertices adjacent
to u are contained inP(t′, k′) ∪Q(t′, k′).

Case1.1:v ∈ F(t, k): v ∈ Q(t′, k′) and so�〈u, v〉 = 1.
Case1.2:v ∈ V (ĈCCn)− F(t, k): v ∈ P(t′, k′) and so�〈u, v〉 = 0.

Case2: u ∈ Q(t, k): From Lemma 22, the vertices adjacent tou are contained in
P(t, k) ∪ Q.

Case2.1:v ∈ F(t, k): v /∈Q(t, k) and so�〈u, v〉 = 1.
Case2.2:v ∈ V (ĈCCn)− F(t, k): v ∈ Q(t, k) and so�〈u, v〉 = 0.

Thus, neither (i) nor (ii) holds for any arc〈u, v〉.

7.2.4. Proof of Claim 16
The claim follows from the fact thatQ(t, k) ∩ F(t, k) = P(t, k) ∩ F(t,1− k) = ∅ for

anyt ∈ [2]n/2 and anyk ∈ [2].
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7.2.5. Proof of Claim 17

Lemma 23. |Q| = 2n+2.

Proof. The lemma follows from the fact thatQ= [2]n × {0, n2 − 1, n2, n− 1}. �

Lemma 24. For anyt ∈ [2]n/2 andk ∈ [2],
|P(t, k)| =

(n
2
− 2

)
2n/2.

Proof. The lemma follows from the fact that

P(t,0)=
{
[t · s, i] : s∈ [2]n/2,1� i� n

2
− 2

}
, and

P(t,1)=
{
[s · t, i] : s∈ [2]n/2, n

2
+ 1� i�n− 2

}
. �

From Lemmas 23 and 24, we have

|F(t, k)| = |P(t, k)| + |Q−Q(t, k)|< |P(t, k)| + |Q|
= 2n+2+

(n
2
− 2

)
2n/2= 4N

n
+ o

(
N

n

)
.

8. Shuffle-exchange graphs and de Bruijn graphs

For anyx= xn−1xn−2 · · · x0 ∈ [2]n, define that

(x)= xn−2 · · · x0xn−1.

The n-dimensional shuffle-exchange graph, denoted bySEn, is the graph defined as
follows:

V (SEn)= [2]n;
E(SEn)= {(x, y) : y= 
(x) or x= 
(y)} ∪ {(x, y) : y= �0(x)}.

Then-dimensional de Bruijn graph, denoted bydBn, is the graph defined as follows:

V (dBn)= [2]n,
E(dBn)= {(x, y) : Rn−1(x)= Ln−1(y) or Ln−1(x)= Rn−1(y)}.

LetN = |V (SEn)| = |V (dBn)| = 2n. In this section, we prove the following bounds:

Theorem 16. �(ŜEn)= �
(

N
log N

)
.

Theorem 17. �(d̂Bn)=O
(

N
log N

)
.
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Notice that�(ŜEn)��(d̂Bn) sinceSEn is a subgraph ofdBn [2]. Thus, we have the
following corollaries from Theorems 16 and 17.

Corollary 6. �(ŜEn)=�
(

N
log N

)
.

Corollary 7. �(d̂Bn)=�
(

N
log N

)
.

8.1. Proof of Theorem 16

Lemma 25. If t = �2N/(3n+ 4)� then
ΥSEn(t + 1)� t.

Proof. Assume contrary thatΥSEn(t + 1)< t . Then, there exists someF ⊆ V (SEn) with
|F | = t such that every connected component of the subgraphG of SEn induced by the
vertices inV (SEn)− F has sizet or smaller.
For any ordered pair of verticesx = xn−1 · · · x0 andy= yn−1 · · · y0, letW [x, y] be the

following walk in SEn connectingx andy:

x = xn−1xn−2 · · · x0 → xn−2 · · · x0xn−1 → xn−2 · · · x0yn−1 → · · ·
→ x0yn−1 · · · y1 → yn−1 · · · y1x0 → yn−1 · · · y1y0 = y.

DefineW(z)={W [x, y] : z∈ V (W [x, y])} for anyz∈ V (SEn), andW(S)=⋃
z∈SW(z)

for anyS ⊆ V (SEn).

Claim 18. For anyz∈ V (SEn),

|W(z)|�
(
3n

2
+ 1

)
N.

Moreover,

|W(F )|� t
(
3n

2
+ 1

)
N.

Proof of Claim 18. Let z= zn−1zn−2 · · · z0. Since

W(z)=
n−1⋃
i=0
{W [x, y] : Ln−1(z)= Ri(x) · Ln−i−1(y), z0 = xi or yi}

∪ {W [x, y] : z= x},
we have

|W(z)|�3n · 2n−1+ 2n =
(
3n

2
+ 1

)
N,
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and

|W(F )|� t
(
3n

2
+ 1

)
N. �

By Lemma 19, we have

|W(F )|>N2− 2N

3n+ 4
N = 3n+ 2

3n+ 4
N2.

On the other hand, by Claim 18, we have

|W(F )|� 2N

3n+ 4

(
3n

2
+ 1

)
N = 3n+ 2

3n+ 4
N2,

which is a contradiction. Hence,

ΥSEn(t + 1)� t.

This completes the proof of Lemma 25.�
From Theorem 4 and Lemma 25, we have Theorem 16.

8.2. Proof of Theorem 17

8.2.1. Partition ofV (dBn)
The following lemma is proved in[12].

Lemma 26 (Schwabe[12]). Let n be a positive integer. For any positive integer��n,
there exists a partition(V1, V2, . . . , V2n−�) of V (d̂Bn) such that|Vi | = 2� for any i, and∑

i �=j
|{〈u, v〉 ∈ A(d̂Bn) : u ∈ Vi, v ∈ Vj }| =O

(
2n

�

)
.

Let (V1, . . . , V2n−�) be a partition ofV (d̂Bn) satisfying the condition in Lemma 26. For
any positive integeri�2n−�, defineP(i) andQ(i) as follows:

Q(i)= {u ∈ Vi : 〈u, v〉 ∈ A(d̂Bn) for somev ∈ V (dBn)− Vi},
P (i)= Vi −Q(i).

It is easy to see that(P (1), P (2), . . . , P (2n−�),Q(1),Q(2), . . . ,Q(2n−�)) is a partition
of V (dBn). LetP=⋃

i P (i) andQ=
⋃
i Q(i).

8.2.2. Syndrome and fault sets
The syndrome�� for d̂Bn is defined as follows:

��〈u, v〉 =
{
0 if

{
1. u, v ∈ P(i) for somei, or
2. u, v ∈ Q(i) for somei,

1 otherwise.
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We define 2n−� fault sets as follows: For any positive integeri�2n−�,

F(i)= P(i) ∪ (Q−Q(i)).
We prove Theorem 17 by showing the following claims:

Claim 19. For any positive integeri�2n−�, F(i) is a consistent fault set for��.

Claim 20.
⋂2n−�

i=1 F(i)= ∅.

Claim 21. |F(i)| =O
(

N
log N

)
for any positive integeri�k.

8.2.3. Proof of Claim 19
We will prove the claim by showing that neither (i) nor (ii) below holds for any positive

integeri�2n−�:

(i) ��〈u, v〉 = 0 if u ∈ V (d̂Bn)− F(i) andv ∈ F(i),
(ii) ��〈u, v〉 = 1 if u, v ∈ V (d̂Bn)− F(i).
Let F(i) be a fault set,u ∈ V (d̂Bn)− F(i), and〈u, v〉 ∈ A(d̂Bn).

Case1: u ∈ P(i′) for somei′ �= i: The vertices adjacent tou are contained inP(i′) ∪
Q(i′).

Case1.1:v ∈ F(i): v ∈ Q(i′) and so��〈u, v〉 = 1.
Case1.2:v ∈ V (d̂Bn)− F(i): v ∈ P(i′) and so��〈u, v〉 = 0.

Case2: u ∈ Q(i): The vertices adjacent tou are contained inP(i) ∪ Q.
Case2.1:v ∈ F(i): v /∈Q(i) and so��〈u, v〉 = 1.
Case2.2:v ∈ V (d̂Bn)− F(i): v ∈ Q(i) and so��〈u, v〉 = 0.

Thus, neither (i) nor (ii) holds for any arc〈u, v〉.

8.2.4. Proof of Claim 20
The claim follows from the fact thatQ(i)∩F(i)=∅ for anyi, andP(i)∩F(i′)=∅ for

any distincti andi′.

8.2.5. Proof of Claim 21
By Lemma 26, we have

|P(i)|< |Vi | = 2� and |Q| =O

(
2n

�

)
, and thus

|F(i)| = |P(i) ∪ (Q−Q(i))|< |P(i) ∪ Q| =O

(
2� + 2n

�

)
.

If we choose�= n− �log n�, we have

|F(i)| =O

(
2n

n

)
=O

(
N

log N

)
.
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9. Concluding remarks

It should be noted that the upper bounds shown in the paper are proved in a unified
manner. Our proofs are based on a graph partition problem described below. LetG be an
N-vertex graph. For anyX ⊆ V (G), let �(X) denote the set of vertices inX adjacent to
vertices inV (G)−X. Our partition problem is to find a partition(V1, . . . , Vk(N)) of V (G)
such that

(1) |Vi − �(Vi)| =O(f (N)) for any i,

(2)
∣∣∣⋃k(N)

i=1 �(Vi)
∣∣∣=∑k(N)

i=1 |�(Vi)| =O(g(N)), and

(3) f (N)+ g(N) is minimum.
Our proofs are based on the fact that iff (N) + g(N) = O(q(N)) then the degree of

sequential diagnosability ofG is O(q(N)).
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