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1 Introduction
This paper shows a generalization of a previous result
on the 3-D channel routing presented in [2].

In the 3-D channel routing, the channel is a 3-D
grid G consisting of columns, rows, and layers which
are planes defined by fixing x-, y-, and z-coordinates,
respectively. A terminal is a vertex of G located in
the top or bottom layer. A net is a set of terminals to
be connected. A net containing k terminals is called
a k-net. A tree connecting the terminals in a net is
called a wire. The object of the 3-D channel routing
problem is to connect the terminals in each net with a
wire in G using as few layers as possible and as short
wires as possible in such a way that wires for distinct
nets are disjoint. The number of layers is called the
height of the 3-D channel. The following two theorems
are shown in [2].

Theorem I If the layers are square 2-D grids of area
4n, the terminals are located on vertices with odd x-
and y-coordinates, and each net has terminals both in
top and bottom layers, then any set of n 2-nets can be
routed in a 3-D channel of height O(

√
n) using wires

of length O(
√

n).

Theorem II There exists a set of n 2-nets that re-
quires a 3-D channel of height Ω (

√
n) to be routed.

Theorem I implies that any set of n 2-nets can be
routed in a 3-D channel of volume O(n3/2), while for
the ordinary 2-D channel routing there exists a set of
n 2-nets requiring a 2-D channel of area Ω(n2) to be
routed [1].

The purpose of this paper is to show a generalization
of Theorem I as follows:

Theorem 1 If the layers are square 2-D grids of area

(
√

2n + 1)2, the terminals are located on vertices with
odd x-coordinates, and each net has terminals both in
top and bottom layers, then any set of n 2-nets can be
routed in a 3-D channel of height O(

√
n) using wires

of length O(
√

n).

2 Preliminaries
We consider a 3-D channel of height h + 1, which is a
(
√

2n + 1) × (
√

2n + 1) × (h + 1) 3-D grid. Each grid

point is denoted by (x, y, z) with 0 ≤ x, y ≤
√

2n and
0 ≤ z ≤ h. The column, row, and layer defined by
x = i, y = j, and z = k are called the i-column, j-row,
and k-layer, respectively. (See Fig. 1.) The h-layer and
0-layer are corresponding to the top and bottom layers,
respectively. Let N = {Ni|0 ≤ i ≤ n − 1} be a set of

n 2-nets, and let (X
(h)
i , Y

(h)
i , h) and (X

(0)
i , Y

(0)
i , 0) be

the terminals of Ni (0 ≤ i ≤ n − 1), where X
(h)
i and

X
(0)
i are odd for every i, Y

(h)
i , Y

(0)
i ≥ 1 for every i, and

(X
(h)
i , Y

(h)
i , h) 6= (X

(h)
j , Y

(h)
j , h) and (X

(0)
i , Y

(0)
i , 0) 6=

(X
(0)
j , Y

(0)
j , 0) if i 6= j.
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Figure 1: The three-dimensional channel.

3 Sketch of the Proof of Theorem 1
The theorem is proved by showing a polynomial time
routing algorithm. The algorithm consists of three
phases, each of which uses O (

√
n) layers. We use two

virtual terminals (X
(l)
i , Y

(l)
i , l) and (X

(m)
i , Y

(m)
i , m) for

each net Ni such that X
(l)
i = X

(h)
i and X

(m)
i = X

(0)
i ,

and such that Y
(l)
i 6= Y

(l)
j if X

(h)
i = X

(h)
j for i 6= j,

where 0 < m < l < h. Such virtual terminals can
be computed in polynomial time as shown in [2]. We

connect (X
(h)
i , Y

(h)
i , h) with (X

(l)
i , Y

(l)
i , l) in the first

phase, connect (X
(l)
i , Y

(l)
i , l) with (X

(m)
i , Y

(m)
i , m) in

the second phase, and connect (X
(m)
i , Y

(m)
i , m) with

(X
(0)
i , Y

(0)
i , 0) in the last phase. In each phase, the con-

nection of terminals is accomplished by using a poly-
nomial time 2-D channel routing algorithm proposed
in [1].

The second phase consists of three steps. We use

two more virtual terminals (X
(l−1)
i , Y

(l−1)
i , l − 1) and

(X
(m+1)
i , Y

(m+1)
i , m + 1) for each net Ni such that

X
(l−1)
i = X

(l)
i and Y

(l−1)
i = Y

(l)
i if X

(l)
i is odd,

X
(l−1)
i = X

(l)
i + 1 and Y

(l−1)
i = Y

(l)
i − 1 if X

(l)
i is

even, X
(m+1)
i = X

(m)
i and Y

(m+1)
i = Y

(m)
i if X

(m)
i

is odd, and X
(m+1)
i = X

(m)
i + 1 and Y

(m+1)
i =

Y
(m)
i − 1 if X

(m)
i is even. We connect (X

(l)
i , Y

(l)
i , l)

and (X
(l−1)
i , Y

(l−1)
i , l − 1) within a subgrid consist-

ing of (l − 1)- and l-layers in the first step, con-

nect (X
(l−1)
i , Y

(l−1)
i , l−1) and (X

(m+1)
i , Y

(m+1)
i , m+1)

within a subgrid consisting of layers between (l − 1)-
and (m + 1)-layers in the second step, and connect

(X
(m+1)
i , Y

(m+1)
i , m+1) and (X

(m)
i , Y

(m)
i , m) within a

subgrid consisting of (m + 1)- and m-layers in the last
step.
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