A Note on Sparse Networks Tolerating Random Faults for Cycles

Keisuke Inoue, Kumiko Nomura, Satoshi Tayu, and Shuichi Ueno Department of Communications and Integrated Systems, Tokyo Institute of Technology

1 Introduction

A-1-31

An $\mathcal{O}(n)$ -vertex graph $G^*(n,p)$ is called a randomfault-tolerant (RFT) graph for an *n*-vertex graph G_n if $G^*(n,p)$ contains G_n as a subgraph with probability $\operatorname{Prob}(G_n, G^*(n,p))$ converging to 1, $\operatorname{as } n \to \infty$, even after deleting each vertex from $G^*(n,p)$ independently 10° with constant probability *p*. The construction of RFT 10^{40} graphs for various graphs has been extensively studied 10° in the literature[1, 3]. The purpose of this paper is to show a proof of the following theorem mentioned in [1].

Theorem I An *n*-vertex cycle C_n has an RFT graph with $\mathcal{O}(n)$ edges.

2 Sketch of the Proof of Theorem I

The proof of the theorem is based on the following lemma shown in [2].

Lemma II There exist constants c and q_t , $0 < c, q_t \le 1$, such that a $\lceil \sqrt{m} \rceil \times \lceil \sqrt{m} \rceil$ grid has a connected component of size at least cm with probability converging to 1, as $m \to \infty$, even after deleting each vertex from the grid independently with constant probability q, if $q < q_t$.

The following lemmas can be proved by the same arguments in [1]. Let G(n) be a $2\lceil \sqrt{\lceil n/4 \rceil/c} \rceil \times 2\lceil \sqrt{\lceil n/4 \rceil/c} \rceil$ grid with one direction diagonals. c = 0.25

Lemma 1 If $p < p_t = 1 - (1 - q_t)^{1/4}$, G(n) is an $\underbrace{RET_{0.35}}_{c=0.45}$ graph for C_n .

Let H(n, p) be a graph obtained from G(n) by replacing each vertex in G(n) by k vertices, and each edge (x, y) by k^2 edges forming a complete bipartite graph between the vertices representing x and the vertices representing y, where k is the smallest integer such that $1 - (1 - p^k)^4 < q_t$.

Lemma 2 If $p \ge p_t$, H(n, p) is an RFT graph for C_n .

3 Estimate of c

Since it has been known that the largest value of q_t is close to 0.4 [2], the largest value of p_t is close to 0.12. On the other hand, no estimate has been known for c. Figure 1 shows simulation results estimating c. The results suggest that the largest value of c is around 0.25, which means that the size of G(n) is practical. Figure 2 shows simulation results for $\operatorname{Prob}(C_n, G(n))$ when c = 0.25 and $n = 10^2, 10^4$, and 10^5 . The results suggest that G(n) contains C_n with high probability even for practical values of n and p.

Figure 1: $Prob(C_n, G(n))$ for $n = 10^5$, and c = 0.25, 0.35, and 0.45.

Figure 2: $Prob(C_n, G(n))$ for c = 0.25, and $n = 10^2, 10^4$, and 10^5 .

References

- P. Fraigniaud, C. Kenyon, and A. Pelc, "Finding a target subnetwork in sparse networks with random faults," Information Processing Letters, vol.48, pp.297–303, 1993.
- [2] T. Mathies, "Percolation theory and computing with faulty arrays of processors," Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.100–103, 1992.
- [3] T. Yamada, K. Nomura, and S. Ueno, "Sparse networks tolerating random faults," Discrete Applied Mathematics, vol.137, no.2, pp.223–235, 2004.