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1 Introduction

An O(n)-vertex graph G ∗(n, p) is called a random-
fault-tolerant (RFT) graph for an n-vertex graph Gn

if G ∗(n, p) contains Gn as a subgraph with probability
Prob(Gn,G ∗(n, p)) converging to 1, as n → ∞, even
after deleting each vertex from G ∗(n, p) independently
with constant probability p. The construction of RFT
graphs for various graphs has been extensively studied
in the literature[1, 3]. The purpose of this paper is to
show a proof of the following theorem mentioned in [1].

Theorem I An n-vertex cycle Cn has an RFT graph

with O(n) edges.

2 Sketch of the Proof of Theorem I

The proof of the theorem is based on the following
lemma shown in [2].

Lemma II There exist constants c and qt, 0 < c, qt ≤
1, such that a d

√

m e × d
√

m e grid has a connected

component of size at least cm with probability converg-

ing to 1, as m → ∞, even after deleting each vertex

from the grid independently with constant probability

q, if q < qt. �

The following lemmas can be proved by the same
arguments in [1]. Let G(n) be a 2d

√

dn/4e/c e ×

2d
√

dn/4e/c e grid with one direction diagonals.

Lemma 1 If p < pt = 1−(1−qt)
1/4, G(n) is an RFT

graph for Cn. �

Let H(n, p) be a graph obtained from G(n) by re-
placing each vertex in G(n) by k vertices, and each
edge (x, y) by k2 edges forming a complete bipartite
graph between the vertices representing x and the ver-
tices representing y, where k is the smallest integer
such that 1 − (1 − pk)4 < qt.

Lemma 2 If p ≥ pt, H(n, p) is an RFT graph for Cn.

�

3 Estimate of c

Since it has been known that the largest value of qt is
close to 0.4 [2], the largest value of pt is close to 0.12.
On the other hand, no estimate has been known for
c. Figure 1 shows simulation results estimating c. The
results suggest that the largest value of c is around
0.25, which means that the size of G(n) is practical.
Figure 2 shows simulation results for Prob(Cn,G(n))
when c = 0.25 and n = 102,104, and 105. The results
suggest that G(n) contains Cn with high probability
even for practical values of n and p.
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Figure 1: Prob(Cn,G(n)) for n = 105, and
c = 0.25,0.35, and 0.45.
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Figure 2: Prob(Cn,G(n)) for c = 0.25, and
n = 102,104, and 105.
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