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A Note on the Complexity of Scheduling for Precedence
Constrained Messages in Distributed Systems

Koji GODA', Nonmember, Toshinori YAMADA T, and Shuichi UENO'®, Members

SUMMARY  This note considers a problem of minimum length
scheduling for a set of messages subject to precedence constraints for
switching and communication networks, and shows some improvements
upon previous results on the problem.
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1. Introduction

This note considers a problem of minimum length schedul-
ing for a set of messages subject to precedence constraints
for switching and communication networks. The problem
was first studied by Barcaccia, Bonuccelli, and Di Iannii [1].

We consider a network with n inputs and n outputs.
The messages to be sent are represented by an n X n ma-
trix D = [d;;], the traffic matrix, whose entries are nonneg-
ative integers, where 0 < i, j < n — 1. Entry d;; represents
the number of messages to be sent from input i to output j.
In order to specify precedence constraints among messages,
we represent a traffic matrix D by a sequence of n X n matri-
cesD = (DO, DD, ..., D*) such that D = Y*2) D", We
consider precedence constraints on the rows, which means
that the entries in each row of DUV can be scheduled only
if the entries in the corresponding row of D have already
been scheduled (0 < r < k- 2).

A switching matrix is a binary matrix with at most one
nonzero entry in each row and in each column. A switching
matrix represents messages that can be sent simultaneously
without conflicts.

A sequence of n X n switching matrices S =
SO, sM . §EDyis called a switching schedule for D
if the following conditions are satisfied:

-1 k=1
1) >80 =3"D" =p;
r=0 r=0
(2) For any integers p, 0 < p < k—-1,and i, 0 < i <
n — 1, there exists an integer g, 0 < g < ¢ — 1, such that

4 s = 37 4" holds for every j,0< j<n-— 1.

=0 Sij r=0 %ij

Notice that condition (2) represents the precedence con-
straints on the rows. Integer ¢ is called the length of S and
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denoted by |[S].
We consider the following problems.

Problem 1 (PCRMS): Given D = (D@, DD, . . D*=D)
and positive integer A, decide if there exists a switching
schedule S for D with |S| < h. O

Problem 2 (MIN-PCRMS-k): Given D = (D@, DD, .,
D* =Dy find a switching schedule S for D with minimum
length. O

It is shown in [1] that PCRMS is NP-complete if k£ = 2, DO
is a binary matrix and D" is a ternary matrix, and i = 3.
We improve this by showing the following.

Theorem 1: PCRMS is NP-complete if k = 2, DO and
DU are binary matrices, and & = 3. O

It should be noted that PCRMS can be solved in polynomial
time if k = 1 or A < 2. In particular, MIN-PCRMS-1 can
be solved in polynomial time by solving the edge coloring
problem for a bipartite graph associated with D©.

It follows from Theorem 1 that even MIN-PCRMS-2
is NP-hard. It is proved in [1] that for any positive integer
k and positive number € < 4/3, there exists no polynomial
time e-approximation algorithm for MIN-PCRMS-k unless
P = NP. It is also mentioned in [1] that the following naive
algorithm is a polynomial time k-approximation algorithm
for MIN-PCRMS-k.

Algorithm 1:

Step 1: Find an optimal switching schedule for D® (0 <
r<k-1).

Step 2: Schedule D"*! after the schedule for D (0 <
r<k-2). |

Thus, the approximation ratio of a polynomial time approx-
imation algorithm for MIN-PCRMS-£ is between 4/3 and k
ifk>2.

We show an estimate of the approximation ratio of Al-
gorithm 1 by means of the structure of D. For an nxn matrix
M = [mi_i], define that

n—1 n—1

L(M) = max {Z mik,kaj|O <ij<n- 1} )
k=0 k=0
n—1

n—1
(M) = min {Z Mg,
k=0

For D = (D@, DD, ..., D*=D), define that

mkj|()si,j$n—l}.
k=0
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(r)
a(D) :min{Z(D ) 0<r<k- 1},
L(DD)
l(D(’))
BD) = max{L(D(r)) 0<r<k- 1}.

It should be noted that L(D) is the length of an optimal
switching schedule for D (0 < r < k- 1).

Theorem 2: The approximation ratio of Algorithm 1 for
MIN-PCRMS-k is at most 2 — B(D) if k = 2, and at most
k—(k—1Da®D)if k > 3. O

Theorem 3: The approximation ratio of Algorithm 1 for
MIN-PCRMS-k is at least k — (k — 1)B(D) for any positive
integer k. o

It follows from Theorems 2 and 3 that the approximation
ratio of Algorithm 1 for MIN-PCRMS-2 is exactly 2 — (D).

2. Proof of Theorem 1

We first need some preliminaries. Let B = (X, Y, E) be a
bipartite graph with maximum vertex degree 3, where (X, Y)
is a bipartition of B, and E is the set of edges of B. We
denote by X° and Y?° the sets of vertices in X and Y with
degree o, respectively. Let E; be a perfect matching of B,
and E; be a perfect matching of (X’,Y’,E — E;), where X’
and Y’ denote the sets of nonisolated vertices in X and Y,
respectively, after the removal of the edges in E;. (E|, E»)
is called a double perfect matching for B. It is mentioned in
[1] that the following problem is NP-complete:

Problem 3 (DPM-3): Given a bipartite} graph B=(X,Y,E)
with maximum vertex degree 3, and |X°| = |Y°| (1 < 6 < 3),
decide if there exists a double perfect matching for B. O

Now we are ready to prove the theorem. It is obvious
that our problem is in NP. We prove the theorem by showing
a polynomial time reduction from DPM-3 to PCRMS.

Let B = (X,Y,E) be a bipartite graph as an in-
stance of DPM-3. Let ns; = |[X° = |[Y9| (1 < § <
3), and X = {XO, . ,x,,_l}, Xl = {)CQ, . ,)Cn]_]}, X2 =
{-xn|7 cee sxn]+n2—1}’ Y ={yo, ..., yn-1}, Y = {yo, ... 7yn1—1}v
and Y2 = {Unys -+ s Yny+np—1}. We assume without loss of gen-
erality thatn; # 1. Forany F € X X Y, M(F) = [m;;] is an
n X n binary matrix defined as:

1 if(x,-,yj)eF,
M=
Y 0 otherwise.
M is considered as a bijection from 2X*¥ to the set of n X n
binary matrices.

We define matrices D@ and DY as follows: D© =
M(E); DV = D'V 4 DD where D'V = [d’l(.jl.)] and D" =

[d”f.}'.)] are binary matrices defined as

A 1 ifj=i+1<n —-1lor(ij)=@m -10),
Y 10 otherwise;

d"(l)— 1 ifi=j$n1+n2—l,
i )10 otherwise.
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Obviously, D and DV can be constructed in polynomial
time. It is easy to see that L(D® + DIV) = [(D© + D) = 3,

We will prove that there exists a double perfect match-
ing (Ey, Ey) for B if and only if there exists a switching
schedule S for D = (D©, D) with |S| = 3.

If there exists a double perfect matching (E1, E») for B,
then (M(E,), M(E;) + D'V, M(E — (E; UE,)) + D”""V)is a
switching schedule for D with length 3.

Conversely, if there exists a switching schedule S =
SO, 5D @) for D, then (M~ '(SP), M~ 1(QSD)) is a
double perfect matching for B, where Q = [g;;] isann X n
binary matrix defined as

_ 1 ifi= ] >ny,
i = 0 otherwise.

3. Proof of Theorem 2

Let L, = L(D™) and I, = I(D"), 0 < r < k-1, and p; be
the approximation ratio of Algorithm 1 for MIN-PCRMS-k.

k=1
L
Lemma 1: p; < =0

max{L,+2 ., [/|0<r<k—1}

Proof: Since L, is the length of the optimal switching sched-
ule for DV (0 < r < k—1), Y¥2} L, is the length of a switch-
ing schedule produced by Algorithm 1 for D.

On the other hand, the length of the optimal switching
schedule for D is at least

k-1 n-1 k-1 n-1
max{Zde]:),Z d,((;)OSi,an—l}
=0 k=0 =0 k=0
Zmax{Lr+Zl,0 <r<k- 1}.
t#£r
Thus we have the lemma. ]

We first consider the case when k = 2. Assume with-
out loss of generality that (D) = I((DY)/L(D?’). We distin-
guish two cases.

@) If Ly +1; < Iy + L, then by Lemma 1 we have the follow-
ing.

L0+L1

P2 = l()+L1
Lo —
=1+ 2 o
lo+L1
Lo-1y
L0+l]
Lo -1y
Ly
=2 - B(D).

@) If Lo + I > Iy + L, then by Lemma 1 we have the fol-
lowing.

<1+

<1+
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Lo+ L

P2 —

Ly +1

L1 - 11
LO + ll
Lo— o
LO + l]
Lo —

L Lo ly

Ly

=2-p(D).

We next consider the case when k > 3. Assume without
loss of generality that max{L, + 3., l,'O <r<k-1} =
Ly + Z;:ll l;. It follows that Ly + [, > [y + L, for any ¢ > 1.
Thus by Lemma 1 we have the following.

k-1
L
Pr < 2’2701#1
LO + Z[:[ ll
gy Za =)
Lo+ Yl
(k = (Lo - lp)
LO + Zz:[ ll
|4 =L — o)
Ly

ly
=k—-(k-1)—
( )L0

< k- (k- Da(D).

<1+

<1

<

4. Proof of Theorem 3

Let D = (D©, DD, .., D*D) be a sequence of n X n ma-
trices defined as:

d(o)_ 1 lfl:]0rl:0,
i 7o otherwise;
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ij

d(r) _ 1 ifi:randiij,
0 otherwise,

where 1 <r <k-1.

It is obvious that L(D®) = n, (D®) = 1, and L(D™) =
n—1, (DY) = 0for 1 < r < k—1. It follows that (D) = 1/n.

Since L(D©Y) = n, and L(DP) =n—1forl <r <k-1,
the length of a switching schedule produced by Algorithm 1
forDisn+ (k- 1Dmn-1).

On the other hand, if we define a sequence of switching
matrices S = (S©@,SD, .., §¢=D) a:

» _ 1 ifj=i+r (modn),
g 0 otherwise,

where 0 < r < n—1, then S is an optimal switching schedule
for D, since L(D'?’) = n. Thus we have the following.

>n+(k—1)(n—1)

Pk =
n
=k—-(k- 1)l
n
=k— (k- 1BD).
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