
1090
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.4 APRIL 2005

LETTER

A Note on the Complexity of Scheduling for Precedence
Constrained Messages in Distributed Systems

Koji GODA†, Nonmember, Toshinori YAMADA††, and Shuichi UENO†a), Members

SUMMARY This note considers a problem of minimum length
scheduling for a set of messages subject to precedence constraints for
switching and communication networks, and shows some improvements
upon previous results on the problem.
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1. Introduction

This note considers a problem of minimum length schedul-
ing for a set of messages subject to precedence constraints
for switching and communication networks. The problem
was first studied by Barcaccia, Bonuccelli, and Di Iannii [1].

We consider a network with n inputs and n outputs.
The messages to be sent are represented by an n × n ma-
trix D = [di j], the traffic matrix, whose entries are nonneg-
ative integers, where 0 ≤ i, j ≤ n − 1. Entry di j represents
the number of messages to be sent from input i to output j.
In order to specify precedence constraints among messages,
we represent a traffic matrix D by a sequence of n× n matri-
ces D = (D(0),D(1), . . . ,D(k−1)) such that D =

∑k−1
r=0 D(r). We

consider precedence constraints on the rows, which means
that the entries in each row of D(r+1) can be scheduled only
if the entries in the corresponding row of D(r) have already
been scheduled (0 ≤ r ≤ k − 2).

A switching matrix is a binary matrix with at most one
nonzero entry in each row and in each column. A switching
matrix represents messages that can be sent simultaneously
without conflicts.

A sequence of n × n switching matrices S =

(S (0), S (1), . . . , S (t−1)) is called a switching schedule for D
if the following conditions are satisfied:

(1)
t−1∑
r=0

S (r) =

k−1∑
r=0

D(r) = D;

(2) For any integers p, 0 ≤ p ≤ k − 1, and i, 0 ≤ i ≤
n − 1, there exists an integer q, 0 ≤ q ≤ t − 1, such that∑q

r=0 s(r)
i j =
∑p

r=0 d(r)
i j holds for every j, 0 ≤ j ≤ n − 1.

Notice that condition (2) represents the precedence con-
straints on the rows. Integer t is called the length of S and
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denoted by |S|.
We consider the following problems.

Problem 1 (PCRMS): Given D = (D(0),D(1), . . . , D(k−1))
and positive integer h, decide if there exists a switching
schedule S for D with |S| ≤ h. �

Problem 2 (MIN-PCRMS-k): Given D = (D(0),D(1), . . .,
D(k−1)), find a switching schedule S for D with minimum
length. �

It is shown in [1] that PCRMS is NP-complete if k = 2, D(0)

is a binary matrix and D(1) is a ternary matrix, and h = 3.
We improve this by showing the following.

Theorem 1: PCRMS is NP-complete if k = 2, D(0) and
D(1) are binary matrices, and h = 3. �

It should be noted that PCRMS can be solved in polynomial
time if k = 1 or h ≤ 2. In particular, MIN-PCRMS-1 can
be solved in polynomial time by solving the edge coloring
problem for a bipartite graph associated with D(0).

It follows from Theorem 1 that even MIN-PCRMS-2
is NP-hard. It is proved in [1] that for any positive integer
k and positive number ε < 4/3, there exists no polynomial
time ε-approximation algorithm for MIN-PCRMS-k unless
P = NP. It is also mentioned in [1] that the following naive
algorithm is a polynomial time k-approximation algorithm
for MIN-PCRMS-k.

Algorithm 1:

Step 1: Find an optimal switching schedule for D(r) (0 ≤
r ≤ k − 1).

Step 2: Schedule D(r+1) after the schedule for D(r) (0 ≤
r ≤ k − 2). �

Thus, the approximation ratio of a polynomial time approx-
imation algorithm for MIN-PCRMS-k is between 4/3 and k
if k ≥ 2.

We show an estimate of the approximation ratio of Al-
gorithm 1 by means of the structure of D. For an n×n matrix
M = [mi j], define that

L(M) = max


n−1∑
k=0

mik,

n−1∑
k=0

mk j

∣∣∣∣0 ≤ i, j ≤ n − 1

 ,

l(M) = min


n−1∑
k=0

mik,

n−1∑
k=0

mk j

∣∣∣∣0 ≤ i, j ≤ n − 1

 .
For D = (D(0),D(1), . . . ,D(k−1)), define that
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α(D) = min

{
l(D(r))
L(D(r))

∣∣∣∣0 ≤ r ≤ k − 1

}
,

β(D) = max

{
l(D(r))
L(D(r))

∣∣∣∣0 ≤ r ≤ k − 1

}
.

It should be noted that L(D(r)) is the length of an optimal
switching schedule for D(r) (0 ≤ r ≤ k − 1).

Theorem 2: The approximation ratio of Algorithm 1 for
MIN-PCRMS-k is at most 2 − β(D) if k = 2, and at most
k − (k − 1)α(D) if k ≥ 3. �

Theorem 3: The approximation ratio of Algorithm 1 for
MIN-PCRMS-k is at least k − (k − 1)β(D) for any positive
integer k. �

It follows from Theorems 2 and 3 that the approximation
ratio of Algorithm 1 for MIN-PCRMS-2 is exactly 2−β(D).

2. Proof of Theorem 1

We first need some preliminaries. Let B = (X, Y, E) be a
bipartite graph with maximum vertex degree 3, where (X, Y)
is a bipartition of B, and E is the set of edges of B. We
denote by Xδ and Yδ the sets of vertices in X and Y with
degree δ, respectively. Let E1 be a perfect matching of B,
and E2 be a perfect matching of (X′, Y ′, E − E1), where X′
and Y ′ denote the sets of nonisolated vertices in X and Y ,
respectively, after the removal of the edges in E1. (E1, E2)
is called a double perfect matching for B. It is mentioned in
[1] that the following problem is NP-complete:

Problem 3 (DPM-3): Given a bipartite graph B = (X, Y, E)
with maximum vertex degree 3, and |Xδ| = |Yδ| (1 ≤ δ ≤ 3),
decide if there exists a double perfect matching for B. �

Now we are ready to prove the theorem. It is obvious
that our problem is in NP. We prove the theorem by showing
a polynomial time reduction from DPM-3 to PCRMS.

Let B = (X, Y, E) be a bipartite graph as an in-
stance of DPM-3. Let nδ = |Xδ| = |Yδ| (1 ≤ δ ≤
3), and X = {x0, . . . , xn−1}, X1 = {x0, . . . , xn1−1}, X2 =

{xn1 , . . . , xn1+n2−1}, Y = {y0, . . . , yn−1}, Y1 = {y0, . . . , yn1−1},
and Y2 = {yn1 , . . . , yn1+n2−1}. We assume without loss of gen-
erality that n1 � 1. For any F ⊆ X × Y , M(F) = [mi j] is an
n × n binary matrix defined as:

mi j =


1 if (xi, y j) ∈ F,

0 otherwise.

M is considered as a bijection from 2X×Y to the set of n × n
binary matrices.

We define matrices D(0) and D(1) as follows: D(0) =

M(E); D(1) = D′(1)+D′′(1) where D′(1) = [d′(1)
i j ] and D′′(1) =

[d′′(1)
i j ] are binary matrices defined as

d′(1)
i j=


1 if j = i + 1 ≤ n1 − 1 or (i, j) = (n1 − 1, 0),

0 otherwise;

d′′(1)
i j=


1 if i = j ≤ n1 + n2 − 1,

0 otherwise.

Obviously, D(0) and D(1) can be constructed in polynomial
time. It is easy to see that L(D(0)+D(1)) = l(D(0)+D(1)) = 3.

We will prove that there exists a double perfect match-
ing (E1, E2) for B if and only if there exists a switching
schedule S for D = (D(0),D(1)) with |S| = 3.

If there exists a double perfect matching (E1, E2) for B,
then (M(E1),M(E2) + D′(1),M(E − (E1 ∪ E2)) + D′′(1)) is a
switching schedule for D with length 3.

Conversely, if there exists a switching schedule S =
(S (0), S (1), S (2)) for D, then (M−1(S (0)),M−1(QS (1))) is a
double perfect matching for B, where Q = [qi j] is an n × n
binary matrix defined as

qi j =


1 if i = j ≥ n1,

0 otherwise.

3. Proof of Theorem 2

Let Lr = L(D(r)) and lr = l(D(r)), 0 ≤ r ≤ k − 1, and ρk be
the approximation ratio of Algorithm 1 for MIN-PCRMS-k.

Lemma 1: ρk ≤
∑k−1

r=0 Lr

max{Lr+
∑

t�r lt

∣∣∣∣0≤r≤k−1}
.

Proof: Since Lr is the length of the optimal switching sched-
ule for D(r) (0 ≤ r ≤ k−1),

∑k−1
r=0 Lr is the length of a switch-

ing schedule produced by Algorithm 1 for D.
On the other hand, the length of the optimal switching

schedule for D is at least

max


k−1∑
r=0

n−1∑
k=0

d(r)
ik ,

k−1∑
r=0

n−1∑
k=0

d(r)
k j

∣∣∣∣0 ≤ i, j ≤ n − 1


≥ max

Lr +
∑
t�r

lt
∣∣∣∣0 ≤ r ≤ k − 1

 .
Thus we have the lemma. �

We first consider the case when k = 2. Assume with-
out loss of generality that β(D) = l(D(0))/L(D(0)). We distin-
guish two cases.

(i) If L0 + l1 ≤ l0 + L1 then by Lemma 1 we have the follow-
ing.

ρ2 ≤ L0 + L1

l0 + L1

= 1 +
L0 − l0
l0 + L1

≤ 1 +
L0 − l0
L0 + l1

≤ 1 +
L0 − l0

L0

= 2 − β(D).

(ii) If L0 + l1 > l0 + L1 then by Lemma 1 we have the fol-
lowing.
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ρ2 ≤ L0 + L1

L0 + l1

= 1 +
L1 − l1
L0 + l1

< 1 +
L0 − l0
L0 + l1

≤ 1 +
L0 − l0

L0

= 2 − β(D).

We next consider the case when k ≥ 3. Assume without
loss of generality that max{Lr +

∑
t�r lt
∣∣∣∣0 ≤ r ≤ k − 1} =

L0 +
∑k−1

t=1 lt. It follows that L0 + lt ≥ l0 + Lt for any t ≥ 1.
Thus by Lemma 1 we have the following.

ρk ≤
∑k−1

r=0 Lr

L0 +
∑k−1

t=1 lt

= 1 +

∑k−1
r=1(Lr − lr)

L0 +
∑k−1

t=1 lt

≤ 1 +
(k − 1)(L0 − l0)

L0 +
∑k−1

t=1 lt

≤ 1 +
(k − 1)(L0 − l0)

L0

= k − (k − 1)
l0
L0

≤ k − (k − 1)α(D).

4. Proof of Theorem 3

Let D = (D(0),D(1), . . . ,D(k−1)) be a sequence of n × n ma-
trices defined as:

d(0)
i j =


1 if i = j or i = 0,

0 otherwise;

d(r)
i j =


1 if i = r and i � j,

0 otherwise,

where 1 ≤ r ≤ k − 1.
It is obvious that L(D(0)) = n, l(D(0)) = 1, and L(D(r)) =

n−1, l(D(r)) = 0 for 1 ≤ r ≤ k−1. It follows that β(D) = 1/n.
Since L(D(0)) = n, and L(D(r)) = n−1 for 1 ≤ r ≤ k−1,

the length of a switching schedule produced by Algorithm 1
for D is n + (k − 1)(n − 1).

On the other hand, if we define a sequence of switching
matrices S = (S (0), S (1), . . . , S (n−1)) as:

s(r)
i j =


1 if j ≡ i + r (mod n),

0 otherwise,

where 0 ≤ r ≤ n−1, then S is an optimal switching schedule
for D, since L(D(0)) = n. Thus we have the following.

ρk ≥ n + (k − 1)(n − 1)
n

= k − (k − 1)
1
n

= k − (k − 1)β(D).
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