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Abstract— The 3-D channel routing is a fundamental problem
on the physical design of 3-D integrated circuits. The 3-D channel
is a 3-D grid G and the terminals are vertices of G located in the
top and bottom layers. A net is a set of terminals to be connected.
The object of the 3-D channel routing problem is to connect the
terminals in each net with a tree (wire) in G using as few layers
as possible and as short wires as possible in such a way that
wires for distinct nets are disjoint. This paper shows that any
set of n 2-terminal nets can be routed in a 3-D channel with
(0] (\/ﬁ) layers using wires of length O (\/ﬁ) We also show
that there exists a set of n 2-terminal nets that requires a 3-D
channel with Q (\/ﬁ) layers to be routed.

I. INTRODUCTION

The three-dimensional (3-D) integration is an emerging
technology to implement large circuits, and currently being
extensively investigated. (See [1]-[6], [8], for example.) In
this paper, we consider a problem on the physical design of
3-D integrated circuits.

The 3-D channel routing is a fundamental problem on the
physical design of 3-D integrated circuits. In the 3-D channel
routing, the channel is a 3-D grid G consisting of columns,
rows, and layers which are planes defined by fixing z-, y-,
and z-coordinates, respectively. (See Fig. 1.) A terminal is a
vertex of G located in the top or bottom layer. A net is a set
of terminals to be connected. A net containing k terminals
is called a k-net. A tree connecting the terminals in a net is
called a wire. The object of the 3-D channel routing problem
is to connect the terminals in each net with a wire in G using
as few layers as possible and as short wires as possible in such
a way that wires for distinct nets are disjoint. The number of
layers is called the height of the 3-D channel. The purpose of
this paper is to show the following two theorems.

Theorem 1: 1f the layers are square 2-D grids of area 4n,
the terminals are located on vertices with even x- and y-
coordinates, and each net has terminals both in top and bottom
layers, then any set of n 2-nets can be routed in a 3-D channel
of height O(y/n) using wires of length O(/n).

Theorem 2: There exists a set of n 2-nets that requires a
3-D channel of height © (y/n) to be routed.

Theorem 1 implies that any set of n 2-nets can be routed in
a 3-D channel of volume O(n3/2). It should be noted that for
the ordinary 2-D channel routing there exists a set of n 2-nets
requiring a 2-D channel of area Q(n?) to be routed [7].

Other models for the 3-D channel routing can be found in
the literature [3], [5], [8].
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Fig. 1. The three-dimensional channel.

II. PRELIMINALIES

We consider a 3-D channel of height h + 1, which is a
2y/n x 24/n x (h + 1) 3-D grid. Each grid point is denoted
by (z,y,2) with 0 < z,y < 2y/n—1 and 0 < z < h. The
column, row, and layer defined by x =i, y = j, and z = k
are called the ¢-column, j-row, and k-layer, respectively. The
h-layer and O-layer are corresponding to the top and bottom
layers, respectively. Let A = {N;|0 < i < n — 1} be a set
of n 2-nets, and Tet (X, ¥;™ h) and (X”,Y”)0) be the
terminals of N; (0 < i < n — 1), where X", v x(©)
and Yi(o) are even, and (Xi(h), Yi(h), h) # (X§h), szh), h) and
X2,y 0) £ (X0, 0) if i £ 5.

If f: A— B isamapping, f(A") = {f(a)la € A’} is the
image of A’ C A and f~1(B’) = {a|f(a) = B’} is the pre-
image of B’ C B. We denote by f|4/ the restriction of f to
A’ Thatis, f|ar : A — Band f|a (a’) = f(a') forVa' € A’
If g : B — C'is also a mapping, go f is a composite mapping
from A to C defined as g o f(a) = g(f(a)) for Va € A. A
bijection 7 : A — A is called a permutation on A.

For a positive integer I, let [I] = {0,1,...,I —1}.

III. 2-D CHANNEL ROUTING

We consider in this section a 2-D channel of height m +
1, which is a 2m x 2 x (m + 1) 3-D grid G'. Let N/ =
{N]|i € [m]} be a set of m 2-nets, and let (Xl-(m), 0,m) and
(XZ-(O), 0,0) be the terminals of N/ (i € [m]), where Xi(m) and
XZ-(O) are even, and Xi(m) £ XJ(-m) and Xl-(o) £ XJ(-O) if i # 7.

Lemma 1: N can be routed in G’ so that no wire passes
through the top layer.

Proof: Let pg, p1, - . -, px be grid points of G’ such that p;
and p;41 differ in just one coordinate, i € [k]. Then, we denote
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A routing for a set of two 2-nets.
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A T-routing for a set of six 2-nets.
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Fig. 3.

by [po,p1,--.,Pr] @ wire connecting py and pj, obtained by
connecting p; and p;4+1 by an axis-parallel line segment, 7 €
[k]. Suppose without loss of generality that Xém) = Xl(o).
Then, if m > 3, A/ can be routed in G’ using a wire defined
by (1) for N, a wire defined by (2) for N7, and wires defined
by (3) for N/, 2 < i < m. It is not difficult to see that the
wires defined above are disjoint. If m = 2, A/ can be routed
in G’ as shown in Fig. 2. In either case, no wire passes through
the top layer. ]

The routing defined in the proof of Lemma 1 is called a
T-routing for N'. It is easy to see that a 7-routing can be
computed in linear time. An example of 7-routing is shown
in Fig. 3.

IV. PROOF OF THEOREM 1

A. Technical Lemmas

For positive integers I and J, we define that M = {m, ;|i €
[1],j € [J]}, My = {mi,li € [I]}, and M;, = {mi;|j €
[J]}. Let D be a set with |[D| = J and f : M — D be a
mapping such that

@] =

Let m; be a permutation on M,; for Vj € [J], and
Il = {r;|j € [J]}. Define that Rri(i) = U,cpy 7 ' (mij).

I for Vd € D. )
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(X 0,m) (X6 0,m = 1), (X0 +1,0,m 1), (X +1,0,0), (X5 +1,1,0)

(Xéo), 1, 0) , (Xéo), 0, 0)} (1

:<X{’”>,o,m) : (X{’”),o, 1) : (Xf’"), 1, 1) : (X{m, 1, 1) : (Xfo),o, 1) : (X{O),o,o } )
:<X§m>,o,m) : (Xfm%o,i) : (Xf"”, 1,2') : (Xfo) +1, 1,2') , (X§0) + 1,072') : (X§0) + 1,070) : (X§°),07o)} 3)

|Rri(i)| = J, by definition. For such II and each ¢ € [I], we
define that

L1 ifde f(Rn(i),
Wu(d,i) = {o it d ¢ f(Ra(i)).
Wa(i) = > Wa(d,q), and
debD
I-1
=0

By definition, 1 < Wr(¢) < J and Wry(¢) = J if and only if
flRu(i) is a bijection, that is, | f(Rm(i))| = J.

Lemma 2: If Wii(i) < J — 1, there exists d € D such that
‘ ! |§;(i)(d)‘ > 2, and there exists an integer ¢’ € [I] suth that

d & f(Ru(1)).

Proof: 1f Wri(i) < J —1 then f|g, ;) is not a bijection,
and so f|};111(1.)(d) > 2 for some d € D since |D| =
|Rr(7)| = J. It follows that d ¢ f(Rm(i")) for some i’ € [[]
by (4).

We need the following easy lemma on directed multigraphs.

Lemma 3: For a directed multigraph H with the vertex
set D, if there exists a vertex dy € D with deg,(do) >
deg;, (do) + 1 then there exist a vertex d, € D such that
deg;,(d,) > deg, . (dp) + 1 and a directed path (do, dq, ...,
dy) in H, where deg;,(d) and deg,,(d) is the in- and out-
degrees of a vertex d in H.

Proof: Let Dp C D be a set of vertices d’ such
that there exists a directed path from dg to d' in H, and
let H[Dp| be the induced subgraph of H on Dp. Let
deg! (d') and deg) (d’) be the in- and out-degrees of
d" € Dp in H[Dp], respectively. Notice that deg, (d') =
deg, . (d) and degi (d') < deg,(d') for every d €
Dp. Since deg. (do) = deg,,.(do) > deg;,(do) +1 >
deg! (do) + 1, there exists a vertex d € Dp such that
deg! . (d") < deg! (d') — 1, which follows from the fact that
> aeny 408oui(d) =X e p,, degiy(d'). Since degoue(d') =
degout (dl) and deg:n(d/) S degin (dl)’ we have degout (dl) S
deg;,,(d’) — 1. By the definition of Dp, there exists a directed
path from dg to d’. [ |

Lemma 4: There exists a set II of permutations 7; on M,
(j € [J]) such that for every i € [I], f|gy() © 7Tj_l(mi7j) #
Flrny o m5  (ma o) if 5 # 5,

Proof: By definition, J < W(II) < I.J = |M| for any
set IT of permutations, and W(II) = |M| if and only if TI
satisfies the condition in the lemma. In order to prove the
lemma, it suffices to show the following.



Claim 1: Let X be a set of permutations o; on M,; (j €
[J]) with W(X) < IJ — 1. Then, there exists a set II of
permutations 7; on M,; (j € [J]) such that W(II) > W (X)+
1.

Proof of Claim 1: Since W (X) < I.J—1, there exists ig € [I]
such that Wx(ig) < J — 1. By Lemma 2, there exist dg € D
such that

[l o) = 2 )
and an integer i1 € [I] such that dy & f(Rx(i1)), i.e.,
i) = 0. (©)

Consider a directed multigraph H with vertex set D which has

an arc a; = (f(o';l(mio)j)),f( o; ~*(my, 4))) foreach j € [J].
From (5) and (6), we have

degout (do) Z 27 (7)
deg;,(dp) = 0, (8)

respectively, where deg;,(d) and deg,,(d) is the in- and out-
degrees of a vertex d in H, respectively. From Lemma 3, there
exists a vertex d, € D with

degin(dp) 2 degout (dp) + 17 (9)

and there exists a directed path P = (do,dq,...,dp) in
H. Let aj, be an arc (dl,dl+1) of P, 1 € [p]. Notice that
f( gll(miodz)) =d; and f( (mll,]z)) =di4 for Vi e [p]
Therefore, f(o; (mi, 5,)) = £(05, ], (i 501,)) for VI € [p).
Let Jp = {]0;]17 . ,jp 1}, and Dp = {do,dl, . ,dp}. For
each j € [J], define that

mi j if 7 € {io,il} Ol'j ¢ jp,
pj(miyj) = My 5 if i =19 andj e Jp,
My 5 if i =1, and j € Jp.

Let m; = pj o 0;, and I = {7;|j € [J]}. Then by definition,

o;(maiy) if i & {io,ir} or j & Tp,
; 1(mw) = o; (my, ;) ifi=1ipand j € Jp, (10)
U;l(mimj) if t =141 and j € Jp,

since p; ' = p;. Since R (i) = Rx(i) if i & {io, i1} by (10),
we have f(Rp(i)) = f(Rx(?)) if ¢ &€ {io,?1}. Thus, by the
definition of Wr(d, ),

> Wul(d, i)

deD

Z Ws(d, i) if i & {ig,i1}. (11)

deD

Also, for Vj € Jp, f(W;l(miyj)) = f(gfl

(m;,;)) and so

Wi (d,i) = Wx(d, i) for Vd ¢ Dp. Thus, we have
> Wuldi) = > We(di).  (12)
deD—Dp deD—Dp
For VI € [p], Wx(di,i0) = 1, since f(o}, Ymiy ) = di.
Thus, we have
p—1
> Waldio) = Y Walds,io) + We(dy, io)
deDp 1=0
= p+ Wx(dp,io). (13)

For Vi € [p], Ws(di41,41) = 1, since f(o, Ymiy ) = dig1.
On the other hand, W (dp,i1) = 0 from (6) Therefore,

> Ws(din) = p. (14)
deDp
For VI € [p], Wn(di+1,70) = 1, since f(m; (m“ i) =

f(o Jll(mmm)) = dj41 by the definitions of 7; and p;.
By the definition of dy, there is an integer j & Jp
such that f(oj_l(mio_,j)) = dp. Since f(aj_l(mioyj))
f(w]-*l(mioyj)) = dy for such j, Wii(do,i9) = 1. Thus, we
have

> Wa(d,io) =

Wi(do, io) + Y Wii(dig1, o)

deDp le[p]
= p+1. (15)
For VI € [p], Wn(d;,i1) = 1 since f( (m“,]l))
f(o Jll(mmm)) = d;, and we have
> Waldi) = Y Wadi,in) + Wa(dy, ir)
deDp le[p]
= p+ Wn(dp,il). (16)

From (9), if Wx(dp,i9) = 1 then there exists j ¢ Jp such

that f(o; " (mi, ;) = f(mj(mi, ;)) = dp. This implies that
Wn(dp,i1) = 1 if Wx(dp,io) =1, i.e.,
Wi(dp,i1) > Ws(dp,io). (17)
From (12)-(17), we obtain
Wn(io) + Wn(in) > Ws(io) + Ws(in) + 1. (18)

From (11) and (18), we have W(II) > W(X) + 1. This
completes the proof of the claim and the lemma. [ ]
A set of permutations II satisfying the condition in Lemma
4 is called a set of shuffle permutations. It is easy to see that
a set of shuffle permutations can be obtained from a set of
identity mappings idys,, on M,;j, j € [J], in O(|M|?) time.

B. 3-D Channel Routing Algorithm

Now, we are ready to show a polynomial time algorithm
for computing a routing for A in a 3-D channel with height
3yv/n + 1. We use two virtual terminals (X(l) Y(l) ,1) and
(xm™, Y(m) m) for each net N; such that X" S _ = x0,

YO =y and X0 = XO where h = 37, 1 = 27,
and m = \/_ In order to obtain such virtual terminals, we
only need to determine Yi(l) = Y;(m) for Vi € [n] since Xl-(h),
Y(h) X; ) , and Y(O) are given as the problem instance. The
algonthm con51sts of three phases and each of which uses
v/n + 1 layers. For each net Nj, we connect (X(h) Y(h)
h) with (X7, ¥V 1) in the first phase, (X,E”,Yk(l),l) with
(X™ v '™ m) in the second phase, and (X\™, V™ m)
with (X ,50), Yk(o), 0) in the last phase. Each phase is performed
by applying 7-routing for \/n 2-D channels of height /n+ 1.

The virtual terminals can be computed in polynomial time as
follows. Let I = J = \/nand let M = {m, ;|i € [I],j € [J]}
be the set defined as m;; = Ny if j = X,gh)/2 and ¢ =
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Output Routing for N.
Step 0 for Vk € [n],

Step 1 for Vj € [\/n],

Step 2 for Vi € [\/n],

Step 3 for Vj € [\/n],
Apply 7-routing to connect (X ]gm), Yk(m),

Step 4 for Vk € [n],

Input N = {N¢|k € [n]} with terminals (X\”, ¥?,0) and (X", ¥, h) for Vk € [n].

Compute virtual terminals (X ,gl), Yk(l), l) and (X ,gm), Yk(m), m).

Apply 7-routing to connect (X,gh), Yk(h), h) and (X,gl), Yk(l), 1) with Yk( ) =
Apply 7-routing to connect (X,gl), Yk(l), [) and (X,gm), Yk(m), m) with X,gl)
m) and (X, v, 0) with ¥;'"™ =

Output a wire for IV;, by concatenating three wires for N}, above.

Y(l) 27 in G
= x™ = 2iin Gp.

(0) =2j 1nG

Fig. 4.

Y™ /2. Define that D = Uie[n}{Xl-(O)} _0,2,...2y-2}

and f(Ng) = X,EO) for Vk € [n]. Since f satisfies (4), we can
obtain in polynomial time a set II of shuffle permutations 7
on M,;, j € [J], by Lemma 4. For an integer ¢ such that
my ; = mj(Ny) for j = X,gh)/Q, we define that Yk(l) = 2i for
any k € [n].

Let G}, be a 2 x 2y/n x (y/n+1)-subgrid induced by a set
of grid pomts.

{(z,y,2)|lx € {24,2j + 1},y € [2v/n] ,r <2 <r+V/n},

and G7, be a subgrid induced by a set of grid points:
{(:c,y,z)|z S [2\/@ Y €eE{2i,2i+ 1}, r<z<r+ \/ﬁ}

Since 7; is a permutation on M., Y(l) Y, O f X(h) =
XM Therefore, for all Nj with X = 2j (X(h) Y(h) Jh)
and (X,gl),Yk(l),l) can be connected in Gij by applying -
routing, j € [/n], since X,gh) X(l) for Vk € [n].

Lemma 5: 1 Y = V! then X( b2 xY.

Proof: Let v, = k() 2%, and M =2i, v\ =
25, X\ = 2y, and XM = 2j,. Then, myj, = wjl(m“ )

and mwz = T}, (mwﬁ) “Since 7 and 7;, are permutations,
j1 # ja. Since II is a set of shuffle permutations, we have

X = flmig) = fomMmig) # fom miy,) =
flma, 4,) = X, (0) . Thus, we have the lemma. [ |
Since X(m) X(O) for k € [n], we have X, m) # X(m)
if Yk(ll) = Yk(zl) by Lemma 5. Therefore, for all Ng Wlth
v =y =21, (xP,vY 1) and (X, v,'™ m) can
be connected in G¥ by applying T-routing, i € [\/n], since
v = v for Vk € [n].

Since X, = X* for Vk € [n], ¥, # ¥, if X\ =
X™. Therefore, for all Ny with X(l) 2j, (™ Y(’”)
m) and (X,go), Y,C(O), 0) can be connected in Gl by applying
T-routing, j € [\/n], since X(m) = 0) for Vk € [n].

3-D Channel Routing Algorithm

A wire for each 2-net Ny in N can be obtained by
concatenating three wires for Ny above connecting terminals
and virtual terminals.

Our 3-D channel routing algorithm is shown in Fig. 4. Since
each of Steps 1-3 uses /n + 1 layers, and m- and [-layers
are used in two steps, A is routed in a 3-D channel of height
3y/n + 1. Since the length of every wire of a 7-routing is
at most 3y/n + O(1), the maximum wire length of our 3-
D channel routing algorithm is at most 94/n + O(1). This
completes the proof of Theorem 1.

It should be noted that the time complexity of our 3-D
channel routing algorithm is O(n?), since Step 0 takes O(n?)
time, and any other step takes O(n) time as easily seen.

V. PROOF OF THEOREM 2

Let ' = {N;|0 < i < n—1} be a set of n 2-nets such
that X"V < /n—2and X¥ > nif i < n/2, and

X"V > mand XY < \/n—2if i > n/2+ 1. Consider
an arbitrary routing of A" on a 3-D channel G and let i be
the height of G. Then a wire for every net in N must pass
across the (y/n — 1)-column. Since the area of every column

is 24/nh, we have 2h\/n > |[N| = n. Thus, h = Q (v/n).
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