On the Three-Dimensional Channel Routing

Satoshi Tayu, Patrik Hurtig, Yoshiyasu Horikawa, and Shuichi Ueno Department of Communications and Integrated Systems, Tokyo Institute of Technology Tokyo 152-8552-S3-57, Japan Email: {tayu, ueno}@lab.ss.titech.ac.jp

Abstract— The 3-D channel routing is a fundamental problem on the physical design of 3-D integrated circuits. The 3-D channel is a 3-D grid G and the terminals are vertices of G located in the top and bottom layers. A net is a set of terminals to be connected. The object of the 3-D channel routing problem is to connectply rag replacements terminals in each net with a tree (wire) in G using as few layers as possible and as short wires as possible in such a way that wires for distinct nets are disjoint. This paper shows that any set of n 2-terminal nets can be routed in a 3-D channel with $O(\sqrt{n})$ layers using wires of length $O(\sqrt{n})$. We also show that there exists a set of n 2-terminal nets that requires a 3-D channel with $\Omega(\sqrt{n})$ layers to be routed.

I. INTRODUCTION

The three-dimensional (3-D) integration is an emerging technology to implement large circuits, and currently being extensively investigated. (See [1]–[6], [8], for example.) In this paper, we consider a problem on the physical design of 3-D integrated circuits.

The 3-D channel routing is a fundamental problem on the physical design of 3-D integrated circuits. In the 3-D channel routing, the channel is a 3-D grid G consisting of columns, rows, and layers which are planes defined by fixing x-, y-, and z-coordinates, respectively. (See Fig. 1.) A terminal is a vertex of G located in the top or bottom layer. A net is a set of terminals to be connected. A net containing k terminals is called a k-net. A tree connecting the terminals in a net is called a wire. The object of the 3-D channel routing problem is to connect the terminals in each net with a wire in G using as few layers as possible and as short wires as possible in such a way that wires for distinct nets are disjoint. The number of layers is called the height of the 3-D channel. The purpose of this paper is to show the following two theorems.

Theorem 1: If the layers are square 2-D grids of area 4n, the terminals are located on vertices with even x- and ycoordinates, and each net has terminals both in top and bottom layers, then any set of n 2-nets can be routed in a 3-D channel of height $O(\sqrt{n})$ using wires of length $O(\sqrt{n})$.

Theorem 2: There exists a set of n 2-nets that requires a 3-D channel of height $\Omega(\sqrt{n})$ to be routed.

Theorem 1 implies that any set of n 2-nets can be routed in a 3-D channel of volume $O(n^{3/2})$. It should be noted that for the ordinary 2-D channel routing there exists a set of n 2-nets requiring a 2-D channel of area $\Omega(n^2)$ to be routed [7].

Other models for the 3-D channel routing can be found in the literature [3], [5], [8].

Fig. 1. The three-dimensional channel.

II. PRELIMINALIES

We consider a 3-D channel of height h + 1, which is a $2\sqrt{n} \times 2\sqrt{n} \times (h+1)$ 3-D grid. Each grid point is denoted by (x, y, z) with $0 \le x, y \le 2\sqrt{n} - 1$ and $0 \le z \le h$. The column, row, and layer defined by x = i, y = j, and z = kare called the *i*-column, *j*-row, and *k*-layer, respectively. The *h*-layer and 0-layer are corresponding to the top and bottom layers, respectively. Let $\mathcal{N} = \{N_i | 0 \le i \le n - 1\}$ be a set of *n* 2-nets, and let $(X_i^{(h)}, Y_i^{(h)}, h)$ and $(X_i^{(0)}, Y_i^{(0)}, 0)$ be the terminals of N_i ($0 \le i \le n - 1$), where $X_i^{(h)}, Y_i^{(h)}, X_i^{(0)}$, and $Y_i^{(0)}$ are even, and $(X_i^{(h)}, Y_i^{(h)}, h) \ne (X_j^{(h)}, Y_j^{(h)}, h)$ and $(X_i^{(0)}, Y_i^{(0)}, 0) \ne (X_j^{(0)}, Y_j^{(0)}, 0)$ if $i \ne j$.

If $f: A \to B$ is a mapping, $f(A') = \{f(a) | a \in A'\}$ is the image of $A' \subseteq A$ and $f^{-1}(B') = \{a | f(a) = B'\}$ is the preimage of $B' \subseteq B$. We denote by $f|_{A'}$ the restriction of f to A'. That is, $f|_{A'}: A' \to B$ and $f|_{A'}(a') = f(a')$ for $\forall a' \in A'$. If $g: B \to C$ is also a mapping, $g \circ f$ is a composite mapping from A to C defined as $g \circ f(a) = g(f(a))$ for $\forall a \in A$. A bijection $\pi: A \to A$ is called a permutation on A.

For a positive integer *I*, let $[I] = \{0, 1, ..., I - 1\}$.

III. 2-D CHANNEL ROUTING

We consider in this section a 2-D channel of height m + 1, which is a $2m \times 2 \times (m + 1)$ 3-D grid G'. Let $\mathcal{N}' = \{N'_i | i \in [m]\}$ be a set of m 2-nets, and let $(X_i^{(m)}, 0, m)$ and $(X_i^{(0)}, 0, 0)$ be the terminals of N'_i ($i \in [m]$), where $X_i^{(m)}$ and $X_i^{(0)}$ are even, and $X_i^{(m)} \neq X_j^{(m)}$ and $X_i^{(0)} \neq X_j^{(0)}$ if $i \neq j$. Lemma 1: \mathcal{N}' can be routed in G' so that no wire passes through the top layer.

Proof: Let p_0, p_1, \ldots, p_k be grid points of G' such that p_i and p_{i+1} differ in just one coordinate, $i \in [k]$. Then, we denote

$$\left[\left(X_0^{(m)}, 0, m \right), \left(X_0^{(m)}, 0, m - 1 \right), \left(X_0^{(m)} + 1, 0, m - 1 \right), \left(X_0^{(m)} + 1, 0, 0 \right), \left(X_0^{(m)} + 1, 1, 0 \right), \left(X_0^{(0)}, 0, 0 \right) \right]$$

$$\underline{PSfrag \ replacements} \qquad \qquad \left(X_0^{(0)}, 1, 0 \right), \left(X_0^{(0)}, 0, 0 \right) \right]$$

$$(1)$$

$$\begin{bmatrix} \left(X_{1}^{(m)}, 0, m\right), \left(X_{1}^{(m)}, 0, 1\right), \left(X_{1}^{(m)}, 1, 1\right), \left(X_{1}^{(0)}, 1, 1\right), \left(X_{1}^{(0)}, 0, 1\right), \left(X_{1}^{(0)}, 0, 0\right) \end{bmatrix}$$
(2)

$$\begin{bmatrix} \left(X_{i}^{(m)}, 0, M_{3}^{N_{2}}, \left(X_{i}^{(m)}, 0, i\right), \left(X_{i}^{(m)}, 1, i\right), \left(X_{i}^{(0)} + 1, 1, i\right), \left(X_{i}^{(0)} + 1, 0, i\right), \left(X_{i}^{(0)} + 1, 0, 0\right), \left(X_{i}^{(0)}, 0, 0\right) \end{bmatrix}$$
(3)

Fig. 2. A routing for a set of two 2-nets.

Fig. 3. A τ -routing for a set of six 2-nets.

by $[p_0, p_1, \ldots, p_k]$ a wire connecting p_0 and p_k obtained by connecting p_i and p_{i+1} by an axis-parallel line segment, $i \in [k]$. Suppose without loss of generality that $X_0^{(m)} = X_1^{(0)}$. Then, if $m \ge 3$, \mathcal{N}' can be routed in G' using a wire defined by (1) for N'_0 , a wire defined by (2) for N'_1 , and wires defined by (3) for N'_i , $2 \le i \le m$. It is not difficult to see that the wires defined above are disjoint. If m = 2, \mathcal{N}' can be routed in G' as shown in Fig. 2. In either case, no wire passes through the top layer.

The routing defined in the proof of Lemma 1 is called a τ -routing for \mathcal{N}' . It is easy to see that a τ -routing can be computed in linear time. An example of τ -routing is shown in Fig. 3.

IV. PROOF OF THEOREM 1

A. Technical Lemmas

For positive integers I and J, we define that $M = \{m_{i,j} | i \in [I]\}, j \in [J]\}, M_{*j} = \{m_{i,j} | i \in [I]\}$, and $M_{i*} = \{m_{i,j} | j \in [J]\}$. Let D be a set with |D| = J and $f : M \to D$ be a mapping such that

$$|f^{-1}(d)| = I \text{ for } \forall d \in D.$$
(4)

Let π_j be a permutation on M_{*j} for $\forall j \in [J]$, and $\Pi = {\pi_j | j \in [J]}$. Define that $R_{\Pi}(i) = \bigcup_{j \in [J]} \pi_j^{-1}(m_{i,j})$.

 $|R_{\Pi}(i)| = J$, by definition. For such Π and each $i \in [I]$, we define that

$$W_{\Pi}(d,i) = \begin{cases} 1 & \text{if } d \in f(R_{\Pi}(i)) \\ 0 & \text{if } d \notin f(R_{\Pi}(i)) \end{cases}$$
$$W_{\Pi}(i) = \sum_{d \in D} W_{\Pi}(d,i), \text{ and}$$
$$W(\Pi) = \sum_{i=0}^{I-1} W_{\Pi}(i).$$

By definition, $1 \le W_{\Pi}(i) \le J$ and $W_{\Pi}(i) = J$ if and only if $f|_{R_{\Pi}(i)}$ is a bijection, that is, $|f(R_{\Pi}(i))| = J$.

Lemma 2: If $W_{\Pi}(i) \leq J-1$, there exists $d \in D$ such that $\left|f\right|_{R_{\Pi}(i)}^{-1}(d) \geq 2$, and there exists an integer $i' \in [I]$ such that $d \notin f(R_{\Pi}(i'))$.

Proof: If $W_{\Pi}(i) \leq J-1$ then $f|_{R_{\Pi}(i)}$ is not a bijection, and so $\left|f|_{R_{\Pi}(i)}^{-1}(d)\right| \geq 2$ for some $d \in D$ since $|D| = |R_{\Pi}(i)| = J$. It follows that $d \notin f(R_{\Pi}(i'))$ for some $i' \in [I]$ by (4).

We need the following easy lemma on directed multigraphs.

Lemma 3: For a directed multigraph H with the vertex set D, if there exists a vertex $d_0 \in D$ with $\deg_{out}(d_0) \ge \deg_{in}(d_0) + 1$ then there exist a vertex $d_p \in D$ such that $\deg_{in}(d_p) \ge \deg_{out}(d_p) + 1$ and a directed path (d_0, d_1, \ldots, d_p) in H, where $\deg_{in}(d)$ and $\deg_{out}(d)$ is the in- and outdegrees of a vertex d in H.

Proof: Let $D_P \subseteq D$ be a set of vertices d' such that there exists a directed path from d_0 to d' in H, and let $H[D_P]$ be the induced subgraph of H on D_P . Let $\deg'_{in}(d')$ and $\deg'_{out}(d')$ be the in- and out-degrees of $d' \in D_P$ in $H[D_P]$, respectively. Notice that $\deg'_{out}(d') = \deg_{out}(d')$ and $\deg'_{in}(d') \leq \deg_{in}(d')$ for every $d' \in D_P$. Since $\deg'_{out}(d_0) = \deg_{out}(d_0) \geq \deg_{in}(d_0) + 1 \geq \deg'_{out}(d) = \deg_{out}(d') = deg'_{out}(d') = deg'_{in}(d_0) + 1$, there exists a vertex $d' \in D_P$ such that $\deg'_{out}(d') \leq \deg'_{in}(d') - 1$, which follows from the fact that $\sum_{d' \in D_P} \deg_{out}(d') = \sum_{d' \in D_P} \deg_{out}(d')$. Since $\deg'_{out}(d') = \deg_{out}(d') = \log_{out}(d')$. Since $\deg'_{out}(d') = \deg_{out}(d') = deg'_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $\deg'_{out}(d') = \deg_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $\deg'_{out}(d') = \deg_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $\deg'_{out}(d') = \deg_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $\deg'_{out}(d') = \deg_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $\deg'_{out}(d') = \deg'_{out}(d') = deg'_{out}(d')$. Since $\deg'_{out}(d') = \deg'_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $deg'_{out}(d') = deg'_{out}(d') = deg'_{out}(d') = deg'_{out}(d') = deg'_{out}(d')$. Since $deg'_{out}(d') = deg'_{out}(d') = deg'_$

Lemma 4: There exists a set Π of permutations π_j on M_{*j} $(j \in [J])$ such that for every $i \in [I]$, $f|_{R_{\Pi}(i)} \circ \pi_j^{-1}(m_{i,j}) \neq f|_{R_{\Pi}(i)} \circ \pi_{j'}^{-1}(m_{i,j'})$ if $j \neq j'$.

Proof: By definition, $J \leq W(\Pi) \leq IJ = |M|$ for any set Π of permutations, and $W(\Pi) = |M|$ if and only if Π satisfies the condition in the lemma. In order to prove the lemma, it suffices to show the following.

Claim 1: Let Σ be a set of permutations σ_j on M_{*j} $(j \in [J])$ with $W(\Sigma) \leq IJ - 1$. Then, there exists a set Π of permutations π_j on M_{*j} $(j \in [J])$ such that $W(\Pi) \geq W(\Sigma) + 1$.

Proof of Claim 1: Since $W(\Sigma) \leq IJ-1$, there exists $i_0 \in [I]$ such that $W_{\Sigma}(i_0) \leq J-1$. By Lemma 2, there exist $d_0 \in D$ such that

$$\left| f |_{R_{\Sigma}(i_0)}^{-1}(d_0) \right| \ge 2$$
 (5)

and an integer $i_1 \in [I]$ such that $d_0 \notin f(R_{\Sigma}(i_1))$, i.e.,

$$\left| f |_{R_{\Sigma}(i_1)}^{-1}(d_0) \right| = 0.$$
 (6)

Consider a directed multigraph H with vertex set D which has an arc $a_j = (f(\sigma_j^{-1}(m_{i_0,j})), f(\sigma_j^{-1}(m_{i_1,j})))$ for each $j \in [J]$. From (5) and (6), we have

$$\deg_{\text{out}}(d_0) \ge 2, \tag{7}$$

$$\deg_{\rm in}(d_0) = 0, \tag{8}$$

respectively, where $\deg_{in}(d)$ and $\deg_{out}(d)$ is the in- and outdegrees of a vertex d in H, respectively. From Lemma 3, there exists a vertex $d_p \in D$ with

$$\deg_{\rm in}(d_p) \geq \deg_{\rm out}(d_p) + 1, \tag{9}$$

and there exists a directed path $P = (d_0, d_1, \ldots, d_p)$ in H. Let a_{j_l} be an arc (d_l, d_{l+1}) of $P, l \in [p]$. Notice that $f(\sigma_{j_l}^{-1}(m_{i_0,j_l})) = d_l$ and $f(\sigma_{j_l}^{-1}(m_{i_1,j_l})) = d_{l+1}$ for $\forall l \in [p]$. Therefore, $f(\sigma_{j_l}^{-1}(m_{i_1,j_l})) = f(\sigma_{j_{l+1}}^{-1}(m_{i_0,j_{l+1}}))$ for $\forall l \in [p]$. Let $\mathcal{J}_P = \{j_0, j_1, \ldots, j_{p-1}\}$, and $D_P = \{d_0, d_1, \ldots, d_p\}$. For each $j \in [J]$, define that

$$\rho_j(m_{i,j}) = \begin{cases} m_{i,j} & \text{if } i \notin \{i_0, i_1\} \text{ or } j \notin \mathcal{J}_P \\ m_{i_1,j} & \text{if } i = i_0 \text{ and } j \in \mathcal{J}_P, \\ m_{i_0,j} & \text{if } i = i_1 \text{ and } j \in \mathcal{J}_P. \end{cases}$$

Let $\pi_j = \rho_j \circ \sigma_j$, and $\Pi = {\pi_j | j \in [J]}$. Then by definition,

$$\pi_{j}^{-1}(m_{i,j}) = \begin{cases} \sigma_{j}^{-1}(m_{i,j}) & \text{if } i \notin \{i_{0}, i_{1}\} \text{ or } j \notin \mathcal{J}_{P}, \\ \sigma_{j}^{-1}(m_{i_{1},j}) & \text{if } i = i_{0} \text{ and } j \in \mathcal{J}_{P}, \\ \sigma_{j}^{-1}(m_{i_{0},j}) & \text{if } i = i_{1} \text{ and } j \in \mathcal{J}_{P}, \end{cases}$$

since $\rho_j^{-1} = \rho_j$. Since $R_{\Pi}(i) = R_{\Sigma}(i)$ if $i \notin \{i_0, i_1\}$ by (10), we have $f(R_{\Pi}(i)) = f(R_{\Sigma}(i))$ if $i \notin \{i_0, i_1\}$. Thus, by the definition of $W_{\Pi}(d, i)$,

$$\sum_{d \in D} W_{\Pi}(d, i) = \sum_{d \in D} W_{\Sigma}(d, i) \text{ if } i \notin \{i_0, i_1\}.$$
 (11)

Also, for $\forall j \notin \mathcal{J}_P$, $f(\pi_j^{-1}(m_{i,j})) = f(\sigma_j^{-1}(m_{i,j}))$ and so $W_{\Pi}(d,i) = W_{\Sigma}(d,i)$ for $\forall d \notin D_P$. Thus, we have

$$\sum_{d \in D - D_P} W_{\Pi}(d, i) = \sum_{d \in D - D_P} W_{\Sigma}(d, i).$$
(12)

For $\forall l \in [p]$, $W_{\Sigma}(d_l, i_0) = 1$, since $f(\sigma_{j_l}^{-1}(m_{i_0, j_l})) = d_l$. Thus, we have

$$\sum_{d \in D_P} W_{\Sigma}(d, i_0) = \sum_{l=0}^{p-1} W_{\Sigma}(d_l, i_0) + W_{\Sigma}(d_p, i_0)$$
$$= p + W_{\Sigma}(d_p, i_0).$$
(13)

For $\forall l \in [p]$, $W_{\Sigma}(d_{l+1}, i_1) = 1$, since $f(\sigma_{j_l}^{-1}(m_{i_1, j_l})) = d_{l+1}$. On the other hand, $W_{\Sigma}(d_0, i_1) = 0$ from (6). Therefore,

$$\sum_{d \in D_P} W_{\Sigma}(d, i_1) = p.$$
(14)

For $\forall l \in [p]$, $W_{\Pi}(d_{l+1}, i_0) = 1$, since $f(\pi_{j_l}^{-1}(m_{i_1, j_l})) = f(\sigma_{j_l}^{-1}(m_{i_0, j_l})) = d_{l+1}$ by the definitions of π_j and ρ_j . By the definition of d_0 , there is an integer $j \notin \mathcal{J}_P$ such that $f(\sigma_j^{-1}(m_{i_0, j})) = d_0$. Since $f(\sigma_j^{-1}(m_{i_0, j})) = f(\pi_j^{-1}(m_{i_0, j})) = d_0$ for such j, $W_{\Pi}(d_0, i_0) = 1$. Thus, we have

$$\sum_{d \in D_P} W_{\Pi}(d, i_0) = W_{\Pi}(d_0, i_0) + \sum_{l \in [p]} W_{\Pi}(d_{l+1}, i_0)$$

= $p + 1.$ (15)

For $\forall l \in [p], W_{\Pi}(d_l, i_1) = 1$ since $f(\pi_{j_l}^{-1}(m_{i_1, j_l})) = f(\sigma_{j_l}^{-1}(m_{i_0, j_l})) = d_l$, and we have

$$\sum_{d \in D_P} W_{\Pi}(d, i_1) = \sum_{l \in [p]} W_{\Pi}(d_l, i_1) + W_{\Pi}(d_p, i_1)$$
$$= p + W_{\Pi}(d_p, i_1).$$
(16)

From (9), if $W_{\Sigma}(d_p, i_0) = 1$ then there exists $j \notin \mathcal{J}_P$ such that $f(\sigma_j^{-1}(m_{i_1,j})) = f(\pi_j(m_{i_1,j})) = d_p$. This implies that $W_{\Pi}(d_p, i_1) = 1$ if $W_{\Sigma}(d_p, i_0) = 1$, i.e.,

$$W_{\Pi}(d_p, i_1) \geq W_{\Sigma}(d_p, i_0). \tag{17}$$

From (12)–(17), we obtain

$$W_{\Pi}(i_0) + W_{\Pi}(i_1) \geq W_{\Sigma}(i_0) + W_{\Sigma}(i_1) + 1.$$
 (18)

From (11) and (18), we have $W(\Pi) \ge W(\Sigma) + 1$. This completes the proof of the claim and the lemma.

A set of permutations Π satisfying the condition in Lemma 4 is called *a set of shuffle permutations*. It is easy to see that a set of shuffle permutations can be obtained from a set of identity mappings $\operatorname{id}_{M_{*j}}$ on M_{*j} , $j \in [J]$, in $O(|M|^2)$ time.

B. 3-D Channel Routing Algorithm

Now, we are ready to show a polynomial time algorithm for computing a routing for \mathcal{N} in a 3-D channel with height $3\sqrt{n} + 1$. We use two virtual terminals $(X_i^{(l)}, Y_i^{(l)}, l)$ and $(X_i^{(m)}, Y_i^{(m)}, m)$ for each net N_i such that $X_i^{(h)} = X_i^{(l)}$, $Y_i^{(l)} = Y_i^{(m)}$, and $X_i^{(m)} = X_i^{(0)}$, where $h = 3\sqrt{n}$, $l = 2\sqrt{n}$, and $m = \sqrt{n}$. In order to obtain such virtual terminals, we only need to determine $Y_i^{(l)} = Y_i^{(m)}$ for $\forall i \in [n]$ since $X_i^{(h)}$, $Y_i^{(h)}$, $X_i^{(0)}$, and $Y_i^{(0)}$ are given as the problem instance. The algorithm consists of three phases and each of which uses $\sqrt{n} + 1$ layers. For each net N_k , we connect $(X_k^{(h)}, Y_k^{(h)}, h)$ with $(X_k^{(m)}, Y_k^{(m)}, m)$ in the first phase, $(X_k^{(l)}, Y_k^{(m)}, m)$ with $(X_k^{(m)}, Y_k^{(0)}, 0)$ in the last phase. Each phase is performed by applying τ -routing for \sqrt{n} 2-D channels of height $\sqrt{n} + 1$.

The virtual terminals can be computed in polynomial time as follows. Let $I = J = \sqrt{n}$ and let $M = \{m_{i,j} | i \in [I], j \in [J]\}$ be the set defined as $m_{i,j} = N_k$ if $j = X_k^{(h)}/2$ and $i = N_k$

Input	$\mathcal{N} = \{N_k k \in [n]\}$ with terminals $(X_k^{(0)}, Y_k^{(0)}, 0)$ and $(X_k^{(h)}, Y_k^{(h)}, h)$ for $\forall k \in [n]$.
Output	Routing for \mathcal{N} .
Step 0	for $\forall k \in [n]$,
	Compute virtual terminals $(X_k^{(l)}, Y_k^{(l)}, l)$ and $(X_k^{(m)}, Y_k^{(m)}, m)$.
Step 1	for $\forall j \in [\sqrt{n}]$, (1) (1) (1)
	Apply τ -routing to connect $(X_k^{(h)}, Y_k^{(h)}, h)$ and $(X_k^{(l)}, Y_k^{(l)}, l)$ with $Y_k^{(h)} = Y_k^{(l)} = 2j$ in G_{*j}^l .
Step 2	for $\forall i \in [\sqrt{n}]$,
	Apply τ -routing to connect $(X_k^{(l)}, Y_k^{(l)}, l)$ and $(X_k^{(m)}, Y_k^{(m)}, m)$ with $X_k^{(l)} = X_k^{(m)} = 2i$ in G_{i*}^m .
Step 3	for $\forall j \in [\sqrt{n}]$,
	Apply τ -routing to connect $(X_k^{(m)}, Y_k^{(m)}, m)$ and $(X_k^{(0)}, Y_k^{(0)}, 0)$ with $Y_k^{(m)} = Y_k^{(0)} = 2j$ in G_{*j}^0 .
Step 4	for $\forall k \in [n]$,
	Output a wire for N_k by concatenating three wires for N_k above.

 $Y_k^{(h)}/2$. Define that $D = \bigcup_{i \in [n]} \{X_i^{(0)}\} = \{0, 2, \dots, 2\sqrt{n}-2\}$ and $f(N_k) = X_k^{(0)}$ for $\forall k \in [n]$. Since f satisfies (4), we can obtain in polynomial time a set Π of shuffle permutations π_i on M_{*j} , $j \in [J]$, by Lemma 4. For an integer i such that $m_{i,j} = \pi_j(N_k)$ for $j = X_k^{(h)}/2$, we define that $Y_k^{(l)} = 2i$ for any $k \in [n]$.

Let G_{*i}^r be a $2 \times 2\sqrt{n} \times (\sqrt{n} + 1)$ -subgrid induced by a set of grid points:

$$\big\{(x, y, z) | x \in \{2j, 2j + 1\}, y \in \big[2\sqrt{n}\big], r \le z \le r + \sqrt{n}\big\},\$$

and G_{i*}^r be a subgrid induced by a set of grid points:

$$\{(x, y, z) | x \in [2\sqrt{n}], y \in \{2i, 2i+1\}, r \le z \le r + \sqrt{n}\}$$

Since π_j is a permutation on M_{*j} , $Y_{k_1}^{(l)} \neq Y_{k_2}^{(l)}$ if $X_{k_1}^{(h)} = X_{k_2}^{(h)}$. Therefore, for all N_k with $X_k^{(l)} = 2j$, $(X_k^{(h)}, Y_k^{(h)}, h)$ and $(X_k^{(l)},Y_k^{(l)},l)$ can be connected in G_{*j}^l by applying τ -

and $(X_k^{(l)}, Y_k^{(l)}, l)$ can be connected in G_{*j}^l by applying τ -routing, $j \in [\sqrt{n}]$, since $X_k^{(h)} = X_k^{(l)}$ for $\forall k \in [n]$. Lemma 5: If $Y_{k_1}^{(l)} = Y_{k_2}^{(l)}$ then $X_{k_1}^{(0)} \neq X_{k_2}^{(0)}$. Proof: Let $Y_{k_1}^{(l)} = Y_{k_2}^{(l)} = 2i$, and $Y_{k_1}^{(h)} = 2i_1, Y_{k_2}^{(h)} = 2i_2, X_{k_1}^{(h)} = 2j_1$, and $X_{k_2}^{(h)} = 2j_2$. Then, $m_{i,j_1} = \pi_{j_1}(m_{i_1,j_1})$ and $m_{i,j_2} = \pi_{j_2}(m_{i_2,j_2})$. Since π_{j_1} and π_{j_2} are permutations, $j_1 \neq j_2$. Since Π is a set of shuffle permutations, we have $X_{k_1}^{(0)} = f(m_{i_1,j_1}) = f \circ \pi_{j_1}^{-1}(m_{i,j_1}) \neq f \circ \pi_{j_2}^{-1}(m_{i,j_2}) = f(m_{i_2,j_2}) = X_{k_2}^{(0)}$. Thus, we have the lemma. Since $X_k^{(m)} = X_k^{(0)}$ for $k \in [n]$, we have $X_{k_1}^{(m)} \neq X_{k_2}^{(m)}$ if $Y_{k_1}^{(l)} = Y_{k_2}^{(l)}$ by Lemma 5. Therefore, for all N_k with $Y_k^{(l)} = Y_k^{(m)} = 2i, (X_k^{(l)}, Y_k^{(l)}, l)$ and $(X_k^{(m)}, Y_k^{(m)}, m)$ can be connected in G_{i*}^m by applying τ -routing, $i \in [\sqrt{n}]$, since $Y_k^{(l)} = Y_k^{(m)}$ for $\forall k \in [n]$. Since $X_k^{(m)} = X_k^{(0)}$ for $\forall k \in [n], Y_{k_1}^{(l)} \neq Y_{k_2}^{(0)}$ if $X_{k_1}^{(m)} = X_{k_2}^{(m)}$. Therefore, for all N_k with $Y_k^{(l)} = Y_k^{(m)}$ for $\forall k \in [n]$. Since $X_k^{(m)} = X_k^{(0)}$ for $\forall k \in [n], Y_{k_1}^{(l)} \neq Y_{k_2}^{(0)}$ if $X_{k_1}^{(m)} = X_{k_2}^{(m)}$. Therefore, for all N_k with $X_k^{(l)} = 2j, (X_k^{(m)}, Y_k^{(m)}, m)$ can be connected in G_{i*}^m by applying τ -routing, $i \in [\sqrt{n}]$, since $Y_{k_2}^{(m)}$. Therefore, for all N_k with $X_k^{(l)} = 2j, (X_k^{(m)}, Y_{k_1}^{(m)}, m_k^{(m)}, m_k^{($

A wire for each 2-net N_k in \mathcal{N} can be obtained by concatenating three wires for N_k above connecting terminals and virtual terminals.

Our 3-D channel routing algorithm is shown in Fig. 4. Since each of Steps 1–3 uses $\sqrt{n} + 1$ layers, and m- and l-layers are used in two steps, \mathcal{N} is routed in a 3-D channel of height $3\sqrt{n} + 1$. Since the length of every wire of a τ -routing is at most $3\sqrt{n} + O(1)$, the maximum wire length of our 3-D channel routing algorithm is at most $9\sqrt{n} + O(1)$. This completes the proof of Theorem 1.

It should be noted that the time complexity of our 3-D channel routing algorithm is $O(n^2)$, since Step 0 takes $O(n^2)$ time, and any other step takes O(n) time as easily seen.

V. PROOF OF THEOREM 2

Let $\mathcal{N} = \{N_i | 0 \leq i \leq n-1\}$ be a set of n 2-nets such that $X_i^{(h-1)} \leq \sqrt{n-2}$ and $X_i^{(0)} \geq \sqrt{n}$ if $i \leq n/2$, and $X_i^{(h-1)} \geq \sqrt{n}$ and $X_i^{(0)} \leq \sqrt{n-2}$ if $i \geq n/2 + 1$. Consider an arbitrary routing of \mathcal{N} on a 3-D channel G and let h be the height of G. Then a wire for every net in \mathcal{N} must pass across the $(\sqrt{n}-1)$ -column. Since the area of every column is $2\sqrt{n}h$, we have $2h\sqrt{n} \ge |\mathcal{N}| = n$. Thus, $h = \Omega(\sqrt{n})$.

REFERENCES

- [1] J. Baliga, "Chips go vertical," IEEE Spectrum, vol. 41, pp. 43-47, 2004.
- [2] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, "3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration," Proc. of the IEEE, vol. 89, pp. 602-633, 2001
- [3] M. L. Brady, D. J. Brown, and P. J. McGuinness, "The three-dimensional channel routing problem," in Algorithmic Aspects of VLSI Layout. World Scientific, 1993, pp. 213-244.
- S. Das, A. Fan, K.-N. Chen, C. S. Tan, N. Checka, and R. Reif, "Tech-[4] nology, performance, and computer-aided design of three-dimensional integrated circuits," Proc. ISPD, pp. 92-98, 2004.
- R. Enbody, G. Lynn, and K. Tan, "Routing the 3-D chip," in Proc. the [5] 28-th Design Automation Conference DAC'91, 1991.
- S. T. Obenaus and T. H. Szymanski, "Gravity: Fast placement for 3-D VLSI," ACM Trans. Design Automation of Electronic Systems, pp. 298-315, 2003.
- [7] R. Y. Pinter, "On routing two-point nets across a channel," in Proc. the 19-th Design Automation Conference DAC'82, 1982, pp. 894-902.
- [8] C. C. Tong and C.-L. Wu, "Routing in a three-dimensional chip," IEEE Trans. Computers, pp. 106-117, 1995.