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Abstract— The 3-D channel routing is a fundamental problem
on the physical design of 3-D integrated circuits. The 3-D channel
is a 3-D grid G and the terminals are vertices of G located in the
top and bottom layers. A net is a set of terminals to be connected.
The object of the 3-D channel routing problem is to connect the
terminals in each net with a tree (wire) in G using as few layers
as possible and as short wires as possible in such a way that
wires for distinct nets are disjoint. This paper shows that any
set of n 2-terminal nets can be routed in a 3-D channel with
O

(

√

n
)

layers using wires of length O
(

√

n
)

. We also show
that there exists a set of n 2-terminal nets that requires a 3-D
channel with Ω

(

√

n
)

layers to be routed.

I. INTRODUCTION

The three-dimensional (3-D) integration is an emerging
technology to implement large circuits, and currently being
extensively investigated. (See [1]–[6], [8], for example.) In
this paper, we consider a problem on the physical design of
3-D integrated circuits.

The 3-D channel routing is a fundamental problem on the
physical design of 3-D integrated circuits. In the 3-D channel
routing, the channel is a 3-D grid G consisting of columns,
rows, and layers which are planes defined by fixing x-, y-,
and z-coordinates, respectively. (See Fig. 1.) A terminal is a
vertex of G located in the top or bottom layer. A net is a set
of terminals to be connected. A net containing k terminals
is called a k-net. A tree connecting the terminals in a net is
called a wire. The object of the 3-D channel routing problem
is to connect the terminals in each net with a wire in G using
as few layers as possible and as short wires as possible in such
a way that wires for distinct nets are disjoint. The number of
layers is called the height of the 3-D channel. The purpose of
this paper is to show the following two theorems.

Theorem 1: If the layers are square 2-D grids of area 4n,
the terminals are located on vertices with even x- and y-
coordinates, and each net has terminals both in top and bottom
layers, then any set of n 2-nets can be routed in a 3-D channel
of height O(

√
n) using wires of length O(

√
n).

Theorem 2: There exists a set of n 2-nets that requires a
3-D channel of height Ω (

√
n) to be routed.

Theorem 1 implies that any set of n 2-nets can be routed in
a 3-D channel of volume O(n3/2). It should be noted that for
the ordinary 2-D channel routing there exists a set of n 2-nets
requiring a 2-D channel of area Ω(n2) to be routed [7].

Other models for the 3-D channel routing can be found in
the literature [3], [5], [8].
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Fig. 1. The three-dimensional channel.

II. PRELIMINALIES

We consider a 3-D channel of height h + 1, which is a
2
√

n × 2
√

n × (h + 1) 3-D grid. Each grid point is denoted
by (x, y, z) with 0 ≤ x, y ≤ 2

√
n − 1 and 0 ≤ z ≤ h. The

column, row, and layer defined by x = i, y = j, and z = k
are called the i-column, j-row, and k-layer, respectively. The
h-layer and 0-layer are corresponding to the top and bottom
layers, respectively. Let N = {Ni|0 ≤ i ≤ n − 1} be a set
of n 2-nets, and let (X

(h)
i , Y

(h)
i , h) and (X

(0)
i , Y

(0)
i , 0) be the

terminals of Ni (0 ≤ i ≤ n − 1), where X
(h)
i , Y

(h)
i , X

(0)
i ,

and Y
(0)
i are even, and (X

(h)
i , Y

(h)
i , h) 6= (X

(h)
j , Y

(h)
j , h) and

(X
(0)
i , Y

(0)
i , 0) 6= (X

(0)
j , Y

(0)
j , 0) if i 6= j.

If f : A → B is a mapping, f(A′) = {f(a)|a ∈ A′} is the
image of A′ ⊆ A and f−1(B′) = {a|f(a) = B′} is the pre-
image of B′ ⊆ B. We denote by f |A′ the restriction of f to
A′. That is, f |A′ : A′ → B and f |A′(a′) = f(a′) for ∀a′ ∈ A′.
If g : B → C is also a mapping, g ◦f is a composite mapping
from A to C defined as g ◦ f(a) = g(f(a)) for ∀a ∈ A. A
bijection π : A → A is called a permutation on A.

For a positive integer I , let [I ] = {0, 1, . . . , I − 1}.

III. 2-D CHANNEL ROUTING

We consider in this section a 2-D channel of height m +
1, which is a 2m × 2 × (m + 1) 3-D grid G′. Let N ′ =

{N ′

i |i ∈ [m]} be a set of m 2-nets, and let (X
(m)
i , 0, m) and

(X
(0)
i , 0, 0) be the terminals of N ′

i (i ∈ [m]), where X
(m)
i and

X
(0)
i are even, and X

(m)
i 6= X

(m)
j and X

(0)
i 6= X

(0)
j if i 6= j.

Lemma 1: N ′ can be routed in G′ so that no wire passes
through the top layer.

Proof: Let p0, p1, . . . , pk be grid points of G′ such that pi

and pi+1 differ in just one coordinate, i ∈ [k]. Then, we denote
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[(

X
(m)
0 , 0, m

)

,
(

X
(m)
0 , 0, m − 1

)

,
(

X
(m)
0 + 1, 0, m− 1

)

,
(

X
(m)
0 + 1, 0, 0

)

,
(

X
(m)
0 + 1, 1, 0

)

,
(

X
(0)
0 , 1, 0

)

,
(

X
(0)
0 , 0, 0

)]

(1)
[(

X
(m)
1 , 0, m

)

,
(

X
(m)
1 , 0, 1

)

,
(

X
(m)
1 , 1, 1

)

,
(

X
(0)
1 , 1, 1

)

,
(

X
(0)
1 , 0, 1

)

,
(

X
(0)
1 , 0, 0

)]

(2)
[(

X
(m)
i , 0, m

)

,
(

X
(m)
i , 0, i

)

,
(

X
(m)
i , 1, i

)

,
(

X
(0)
i + 1, 1, i

)

,
(

X
(0)
i + 1, 0, i

)

,
(

X
(0)
i + 1, 0, 0

)

,
(

X
(0)
i , 0, 0

)]

(3)
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Fig. 2. A routing for a set of two 2-nets.
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Fig. 3. A τ -routing for a set of six 2-nets.

by [p0, p1, . . . , pk] a wire connecting p0 and pk obtained by
connecting pi and pi+1 by an axis-parallel line segment, i ∈
[k]. Suppose without loss of generality that X

(m)
0 = X

(0)
1 .

Then, if m ≥ 3, N ′ can be routed in G′ using a wire defined
by (1) for N ′

0, a wire defined by (2) for N ′

1, and wires defined
by (3) for N ′

i , 2 ≤ i ≤ m. It is not difficult to see that the
wires defined above are disjoint. If m = 2, N ′ can be routed
in G′ as shown in Fig. 2. In either case, no wire passes through
the top layer.

The routing defined in the proof of Lemma 1 is called a
τ -routing for N ′. It is easy to see that a τ -routing can be
computed in linear time. An example of τ -routing is shown
in Fig. 3.

IV. PROOF OF THEOREM 1

A. Technical Lemmas

For positive integers I and J , we define that M = {mi,j |i ∈
[I ], j ∈ [J ]}, M∗j = {mi,j |i ∈ [I ]}, and Mi∗ = {mi,j |j ∈
[J ]}. Let D be a set with |D| = J and f : M → D be a
mapping such that

|f−1(d)| = I for ∀d ∈ D. (4)

Let πj be a permutation on M∗j for ∀j ∈ [J ], and
Π = {πj |j ∈ [J ]}. Define that RΠ(i) =

⋃

j∈[J] π
−1
j (mi,j).

|RΠ(i)| = J , by definition. For such Π and each i ∈ [I ], we
define that

WΠ(d, i) =

{

1 if d ∈ f(RΠ(i)),
0 if d 6∈ f(RΠ(i)),

WΠ(i) =
∑

d∈D

WΠ(d, i), and

W (Π) =

I−1
∑

i=0

WΠ(i).

By definition, 1 ≤ WΠ(i) ≤ J and WΠ(i) = J if and only if
f |RΠ(i) is a bijection, that is, |f(RΠ(i))| = J .

Lemma 2: If WΠ(i) ≤ J − 1, there exists d ∈ D such that
∣

∣

∣
f |−1

RΠ(i)(d)
∣

∣

∣
≥ 2, and there exists an integer i′ ∈ [I ] suth that

d 6∈ f(RΠ(i′)).
Proof: If WΠ(i) ≤ J − 1 then f |RΠ(i) is not a bijection,

and so
∣

∣

∣
f |−1

RΠ(i)(d)
∣

∣

∣
≥ 2 for some d ∈ D since |D| =

|RΠ(i)| = J . It follows that d 6∈ f(RΠ(i′)) for some i′ ∈ [I ]
by (4).

We need the following easy lemma on directed multigraphs.
Lemma 3: For a directed multigraph H with the vertex

set D, if there exists a vertex d0 ∈ D with degout(d0) ≥
degin(d0) + 1 then there exist a vertex dp ∈ D such that
degin(dp) ≥ degout(dp) + 1 and a directed path (d0, d1, . . . ,
dp) in H , where degin(d) and degout(d) is the in- and out-
degrees of a vertex d in H .

Proof: Let DP ⊆ D be a set of vertices d′ such
that there exists a directed path from d0 to d′ in H , and
let H [DP ] be the induced subgraph of H on DP . Let
deg′in(d′) and deg′

out(d
′) be the in- and out-degrees of

d′ ∈ DP in H [DP ], respectively. Notice that deg′

out(d
′) =

degout(d
′) and deg′

in(d
′) ≤ degin(d′) for every d′ ∈

DP . Since deg′out(d0) = degout(d0) ≥ degin(d0) + 1 ≥
deg′in(d0) + 1, there exists a vertex d′ ∈ DP such that
deg′out(d

′) ≤ deg′in(d′) − 1, which follows from the fact that
∑

d′∈DP
degout(d

′) =
∑

d′∈DP
degin(d′). Since deg′out(d

′) =
degout(d

′) and deg′in(d′) ≤ degin(d′), we have degout(d
′) ≤

degin(d′)− 1. By the definition of DP , there exists a directed
path from d0 to d′.

Lemma 4: There exists a set Π of permutations πj on M∗j

(j ∈ [J ]) such that for every i ∈ [I ], f |RΠ(i) ◦ π−1
j (mi,j) 6=

f |RΠ(i) ◦ π−1
j′ (mi,j′) if j 6= j′.

Proof: By definition, J ≤ W (Π) ≤ IJ = |M | for any
set Π of permutations, and W (Π) = |M | if and only if Π
satisfies the condition in the lemma. In order to prove the
lemma, it suffices to show the following.
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Claim 1: Let Σ be a set of permutations σj on M∗j (j ∈
[J ]) with W (Σ) ≤ IJ − 1. Then, there exists a set Π of
permutations πj on M∗j (j ∈ [J ]) such that W (Π) ≥ W (Σ)+
1.

Proof of Claim 1: Since W (Σ) ≤ IJ−1, there exists i0 ∈ [I ]
such that WΣ(i0) ≤ J − 1. By Lemma 2, there exist d0 ∈ D
such that

∣

∣

∣
f |−1

RΣ(i0)(d0)
∣

∣

∣
≥ 2 (5)

and an integer i1 ∈ [I ] such that d0 6∈ f(RΣ(i1)), i.e.,
∣

∣

∣
f |−1

RΣ(i1)(d0)
∣

∣

∣
= 0. (6)

Consider a directed multigraph H with vertex set D which has
an arc aj = (f(σ−1

j (mi0,j)), f(σ−1
j (mi1,j))) for each j ∈ [J ].

From (5) and (6), we have

degout(d0) ≥ 2, (7)
degin(d0) = 0, (8)

respectively, where degin(d) and degout(d) is the in- and out-
degrees of a vertex d in H , respectively. From Lemma 3, there
exists a vertex dp ∈ D with

degin(dp) ≥ degout(dp) + 1, (9)

and there exists a directed path P = (d0, d1, . . . , dp) in
H . Let ajl

be an arc (dl, dl+1) of P , l ∈ [p]. Notice that
f(σ−1

jl
(mi0,jl

)) = dl and f(σ−1
jl

(mi1,jl
)) = dl+1 for ∀l ∈ [p].

Therefore, f(σ−1
jl

(mi1,jl
)) = f(σ−1

jl+1
(mi0,jl+1

)) for ∀l ∈ [p].
Let JP = {j0, j1, . . . , jp−1}, and DP = {d0, d1, . . . , dp}. For
each j ∈ [J ], define that

ρj(mi,j) =







mi,j if i 6∈ {i0, i1} or j 6∈ JP ,
mi1,j if i = i0 and j ∈ JP ,
mi0,j if i = i1 and j ∈ JP .

Let πj = ρj ◦ σj , and Π = {πj |j ∈ [J ]}. Then by definition,

π−1
j (mi,j) =







σ−1
j (mi,j) if i 6∈ {i0, i1} or j 6∈ JP ,

σ−1
j (mi1,j) if i = i0 and j ∈ JP ,

σ−1
j (mi0,j) if i = i1 and j ∈ JP ,

(10)

since ρ−1
j = ρj . Since RΠ(i) = RΣ(i) if i 6∈ {i0, i1} by (10),

we have f(RΠ(i)) = f(RΣ(i)) if i 6∈ {i0, i1}. Thus, by the
definition of WΠ(d, i),

∑

d∈D

WΠ(d, i) =
∑

d∈D

WΣ(d, i) if i 6∈ {i0, i1}. (11)

Also, for ∀j 6∈ JP , f(π−1
j (mi,j)) = f(σ−1

j (mi,j)) and so
WΠ(d, i) = WΣ(d, i) for ∀d 6∈ DP . Thus, we have

∑

d∈D−DP

WΠ(d, i) =
∑

d∈D−DP

WΣ(d, i). (12)

For ∀l ∈ [p], WΣ(dl, i0) = 1, since f(σ−1
jl

(mi0,jl
)) = dl.

Thus, we have

∑

d∈DP

WΣ(d, i0) =

p−1
∑

l=0

WΣ(dl, i0) + WΣ(dp, i0)

= p + WΣ(dp, i0). (13)

For ∀l ∈ [p], WΣ(dl+1, i1) = 1, since f(σ−1
jl

(mi1,jl
)) = dl+1.

On the other hand, WΣ(d0, i1) = 0 from (6). Therefore,
∑

d∈DP

WΣ(d, i1) = p. (14)

For ∀l ∈ [p], WΠ(dl+1, i0) = 1, since f(π−1
jl

(mi1,jl
)) =

f(σ−1
jl

(mi0,jl
)) = dl+1 by the definitions of πj and ρj .

By the definition of d0, there is an integer j 6∈ JP

such that f(σ−1
j (mi0,j)) = d0. Since f(σ−1

j (mi0,j)) =

f(π−1
j (mi0,j)) = d0 for such j, WΠ(d0, i0) = 1. Thus, we

have
∑

d∈DP

WΠ(d, i0) = WΠ(d0, i0) +
∑

l∈[p]

WΠ(dl+1, i0)

= p + 1. (15)

For ∀l ∈ [p], WΠ(dl, i1) = 1 since f(π−1
jl

(mi1,jl
)) =

f(σ−1
jl

(mi0,jl
)) = dl, and we have

∑

d∈DP

WΠ(d, i1) =
∑

l∈[p]

WΠ(dl, i1) + WΠ(dp, i1)

= p + WΠ(dp, i1). (16)

From (9), if WΣ(dp, i0) = 1 then there exists j 6∈ JP such
that f(σ−1

j (mi1 ,j)) = f(πj(mi1,j)) = dp. This implies that
WΠ(dp, i1) = 1 if WΣ(dp, i0) = 1, i.e.,

WΠ(dp, i1) ≥ WΣ(dp, i0). (17)

From (12)–(17), we obtain

WΠ(i0) + WΠ(i1) ≥ WΣ(i0) + WΣ(i1) + 1. (18)

From (11) and (18), we have W (Π) ≥ W (Σ) + 1. This
completes the proof of the claim and the lemma.

A set of permutations Π satisfying the condition in Lemma
4 is called a set of shuffle permutations. It is easy to see that
a set of shuffle permutations can be obtained from a set of
identity mappings idM∗j

on M∗j , j ∈ [J ], in O(|M |2) time.

B. 3-D Channel Routing Algorithm

Now, we are ready to show a polynomial time algorithm
for computing a routing for N in a 3-D channel with height
3
√

n + 1. We use two virtual terminals (X
(l)
i , Y

(l)
i , l) and

(X
(m)
i , Y

(m)
i , m) for each net Ni such that X

(h)
i = X

(l)
i ,

Y
(l)
i = Y

(m)
i , and X

(m)
i = X

(0)
i , where h = 3

√
n, l = 2

√
n,

and m =
√

n. In order to obtain such virtual terminals, we
only need to determine Y

(l)
i = Y

(m)
i for ∀i ∈ [n] since X

(h)
i ,

Y
(h)
i , X

(0)
i , and Y

(0)
i are given as the problem instance. The

algorithm consists of three phases and each of which uses√
n + 1 layers. For each net Nk, we connect (X

(h)
k , Y

(h)
k ,

h) with (X
(l)
k , Y

(l)
k , l) in the first phase, (X

(l)
k , Y

(l)
k , l) with

(X
(m)
k , Y

(m)
k , m) in the second phase, and (X

(m)
k , Y

(m)
k , m)

with (X
(0)
k , Y

(0)
k , 0) in the last phase. Each phase is performed

by applying τ -routing for
√

n 2-D channels of height
√

n+1.
The virtual terminals can be computed in polynomial time as

follows. Let I = J =
√

n and let M = {mi,j |i ∈ [I ], j ∈ [J ]}
be the set defined as mi,j = Nk if j = X

(h)
k /2 and i =
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Input N = {Nk|k ∈ [n]} with terminals (X
(0)
k , Y

(0)
k , 0) and (X

(h)
k , Y

(h)
k , h) for ∀k ∈ [n].

Output Routing for N .
Step 0 for ∀k ∈ [n],

Compute virtual terminals (X
(l)
k , Y

(l)
k , l) and (X

(m)
k , Y

(m)
k , m).

Step 1 for ∀j ∈ [
√

n],
Apply τ -routing to connect (X

(h)
k , Y

(h)
k , h) and (X

(l)
k , Y

(l)
k , l) with Y

(h)
k = Y

(l)
k = 2j in Gl

∗j .
Step 2 for ∀i ∈ [

√
n],

Apply τ -routing to connect (X
(l)
k , Y

(l)
k , l) and (X

(m)
k , Y

(m)
k , m) with X

(l)
k = X

(m)
k = 2i in Gm

i∗.
Step 3 for ∀j ∈ [

√
n],

Apply τ -routing to connect (X
(m)
k , Y

(m)
k , m) and (X

(0)
k , Y

(0)
k , 0) with Y

(m)
k = Y

(0)
k = 2j in G0

∗j .
Step 4 for ∀k ∈ [n],

Output a wire for Nk by concatenating three wires for Nk above.

Fig. 4. 3-D Channel Routing Algorithm

Y
(h)
k /2. Define that D =

⋃

i∈[n]{X
(0)
i } = {0, 2, . . . , 2

√
n−2}

and f(Nk) = X
(0)
k for ∀k ∈ [n]. Since f satisfies (4), we can

obtain in polynomial time a set Π of shuffle permutations πj

on M∗j , j ∈ [J ], by Lemma 4. For an integer i such that
mi,j = πj(Nk) for j = X

(h)
k /2, we define that Y

(l)
k = 2i for

any k ∈ [n].
Let Gr

∗j be a 2×2
√

n× (
√

n+1)-subgrid induced by a set
of grid points:

{

(x, y, z)|x ∈ {2j, 2j + 1}, y ∈
[

2
√

n
]

, r ≤ z ≤ r +
√

n
}

,

and Gr
i∗ be a subgrid induced by a set of grid points:

{

(x, y, z)|x ∈
[

2
√

n
]

, y ∈ {2i, 2i + 1}, r ≤ z ≤ r +
√

n
}

.

Since πj is a permutation on M∗j , Y
(l)
k1

6= Y
(l)
k2

if X
(h)
k1

=

X
(h)
k2

. Therefore, for all Nk with X
(l)
k = 2j, (X

(h)
k , Y

(h)
k , h)

and (X
(l)
k , Y

(l)
k , l) can be connected in Gl

∗j by applying τ -
routing, j ∈ [

√
n], since X

(h)
k = X

(l)
k for ∀k ∈ [n].

Lemma 5: If Y
(l)
k1

= Y
(l)
k2

then X
(0)
k1

6= X
(0)
k2

.

Proof: Let Y
(l)
k1

= Y
(l)
k2

= 2i, and Y
(h)
k1

= 2i1, Y
(h)
k2

=

2i2, X
(h)
k1

= 2j1, and X
(h)
k2

= 2j2. Then, mi,j1 = πj1(mi1,j1)
and mi,j2 = πj2(mi2,j2). Since πj1 and πj2 are permutations,
j1 6= j2. Since Π is a set of shuffle permutations, we have
X

(0)
k1

= f(mi1,j1) = f ◦ π−1
j1

(mi,j1) 6= f ◦ π−1
j2

(mi,j2) =

f(mi2,j2) = X
(0)
k2

. Thus, we have the lemma.

Since X
(m)
k = X

(0)
k for k ∈ [n], we have X

(m)
k1

6= X
(m)
k2

if Y
(l)
k1

= Y
(l)
k2

by Lemma 5. Therefore, for all Nk with
Y

(l)
k = Y

(m)
k = 2i, (X

(l)
k , Y

(l)
k , l) and (X

(m)
k , Y

(m)
k , m) can

be connected in Gm
i∗ by applying τ -routing, i ∈ [

√
n], since

Y
(l)
k = Y

(m)
k for ∀k ∈ [n].

Since X
(m)
k = X

(0)
k for ∀k ∈ [n], Y

(0)
k1

6= Y
(0)
k2

if X
(m)
k1

=

X
(m)
k2

. Therefore, for all Nk with X
(l)
k = 2j, (X

(m)
k , Y

(m)
k ,

m) and (X
(0)
k , Y

(0)
k , 0) can be connected in Gl

∗j by applying
τ -routing, j ∈ [

√
n], since X

(m)
k = X

(0)
k for ∀k ∈ [n].

A wire for each 2-net Nk in N can be obtained by
concatenating three wires for Nk above connecting terminals
and virtual terminals.

Our 3-D channel routing algorithm is shown in Fig. 4. Since
each of Steps 1–3 uses

√
n + 1 layers, and m- and l-layers

are used in two steps, N is routed in a 3-D channel of height
3
√

n + 1. Since the length of every wire of a τ -routing is
at most 3

√
n + O(1), the maximum wire length of our 3-

D channel routing algorithm is at most 9
√

n + O(1). This
completes the proof of Theorem 1.

It should be noted that the time complexity of our 3-D
channel routing algorithm is O(n2), since Step 0 takes O(n2)
time, and any other step takes O(n) time as easily seen.

V. PROOF OF THEOREM 2
Let N = {Ni|0 ≤ i ≤ n − 1} be a set of n 2-nets such

that X
(h−1)
i ≤ √

n − 2 and X
(0)
i ≥ √

n if i ≤ n/2, and
X

(h−1)
i ≥ √

n and X
(0)
i ≤ √

n − 2 if i ≥ n/2 + 1. Consider
an arbitrary routing of N on a 3-D channel G and let h be
the height of G. Then a wire for every net in N must pass
across the (

√
n − 1)-column. Since the area of every column

is 2
√

nh, we have 2h
√

n ≥ |N | = n. Thus, h = Ω (
√

n).
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