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Butterfly networks have served as interconnection net-
works of parallel computers and ATM switches, and have
been extensively studied in the literature. This paper shows
an efficient 3-D layout of the butterfly network.

The n-D butterfly network B(n) is the graph defined as
follows: V (B(n)) = {0, 1, . . . , n} × {0, 1}n; E(B(n)) =
{(〈l, b〉, 〈l + 1, b′〉)|0 ≤ l ≤ n − 1, b = b′, or b and b′ dif-
fer in precisely the (l + 1)-th bit}. For each 0 ≤ l ≤ n,
the N = 2n vertices in the set {l} × {0, 1}n comprise
level l of B(n). The vertices at level 0 are called in-
puts, and those at level n are called outputs. B(n) is
also called an N -input butterfly network, and denoted by
BN . B(3) = B8 is shown in Fig. 1. The 3-D m1 ×
m2 × m3 grid R(m1, m2, m3) is the graph defined as fol-
lows: V (R(m1, m2, m3)) = {0, 1, . . . , m1 − 1} × {0, 1,
. . . , m2 − 1}× {0, 1, . . . , m3 − 1}; E(R(m1, m2, m3)) =

{(〈u1, u2, u3〉, 〈v1, v2, v3〉)|
∑3

i=1 |ui − vi| = 1}.
An embedding 〈φ, ρ〉 of a graph G into a graph H con-

sists of a one-to-one mapping φ : V (G) → V (H), to-
gether with a routing ρ that maps each edge (u, v) ∈ E(G)
onto a path ρ(u, v) in H that connects vertices φ(u) and
φ(v). An embedding 〈φ, ρ〉 of a graph G into a 3-D grid
R is called a 3-D layout of G if routing paths ρ(e1) and
ρ(e2) are internally disjoint for any distinct e1, e2 ∈ E(G).
|V (R)| is called the volume of the 3-D layout, and vol(G)
is the minimum volume of a 3-D layout of G. The bisec-
tion width bw(G) of a graph G is the minimum number of
edges that must be removed from G in order to partition G
into two equal-sized subgraphs to within one vertex. It is
well-known that vol(G) ≥ bw(G)3/2 for any graph G [3].

It is also well-known that vol(BN ) = Θ(N3/2). In fact,
vol(BN ) ≥ 0.754N3/2 + o(N3/2), (1)

since bw(BN ) = 2(
√

2 − 1)N + o(N) [1]. On the other
hand, the best previous upper bound is as follows:

vol(BN ) ≤ 723
√

2N3/2 + o(N3/2), (2)
which is derived from a result on the embedding of BN
into a 3-D grid with edge-disjoint routing [3, 4] by a naive
modification of replacing each vertex of the 3-D grid by a
copy of R(3, 3, 3) to make routing paths internally disjoint.

This paper shows that
vol(BN ) ≤ 8

√
2N3/2 + o(N3/2), (3)

which is a considerable improvement on (2). Our upper
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bound is obtained by an explicit 3-D layout of BN , which
is a modification of that introduced in [2].

Let n1 = d(n− 1)/2e and n2 = b(n− 1)/2c. Then, it is
easy to see that B(n) can be decomposed into 2n2+1 copies
of B(n1) consisting of the vertices at levels 0 through n1,
and 2n1+1 copies of B(n2) consisting of the vertices at lev-
els n1 + 1 through n by deleting every edge connecting a
vertex at level n1 and a vertex at level n1 + 1. For exam-
ple, B(7) can be decomposed into 23+1 + 23+1 copies of
B(3). Let S(n) be the graph obtained from B(n) by adding
two new pendant vertices adjacent to each output. S(3) is
shown in Fig. 2. It is easy to see that S(n) can be decom-
posed into edge-disjoint complete binary trees of height at
most n + 1. We can prove that S(n) can be laid out in
R(2b(n+1)/2c+1, 2d(n+1)/2e+1, 2bn/2c−1 + 1) using the H-
tree layout for complete binary trees. Such a layout is called
a cube-layout of S(n), and denoted by Γ(n). Γ(3) is shown
in Fig. 3.

The outline of our layout algorithm can be described as
follows:
1) Decompose B(n) into 2n2+1 copies of B(n1) and 2n1+1

copies of B(n2).
2) Pack 2n2+1 upside-down copies of Γ(n1) into G1 =
R(2n1+1, 2n2+1, 2n2−1 + 1), and 2n1+1 copies of Γ(n2)
into G3 = R(2n1+1, 2n2+1, 2n1−1 + 1).
3) Put G1, G2 = R(2n1+1, 2n2+1, 2n1 + 2n2+1) and G3

one atop another in this order, and connect the pairs of cor-
responding pendant vertices by internally disjoint paths in
G2. (See Fig. 4.)

It is easy to see that the volume of the resulting layout is
8
√

2N3/2 + o(N3/2).
It is open to close the gap between the bounds in (1) and

(3).
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