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Abstract— It has been known that every planar 4-graph has
a 2-bend 2-D orthogonal drawing with the only exception of
octahedron, every planar 3-graph has a 1-bend 2-D orthogonal
drawing with the only exception of K4, and every outerplanar
3-graph with no triangles has a 0-bend 2-D orthogonal drawing.
We show in this paper that every series-parallel 4-graph has a
1-bend 2-D orthogonal drawing.

I. INTRODUCTION

We consider the problem of generating orthogonal drawings
of graphs in the plane. The problem has obvious applications
in the design of VLSI circuits and optoelectronic integrated
systems: see for example [7], [9].

Throughout this paper, we consider simple connected graphs
G with vertex set V (G) and edge set E(G). We denote by
dG(v) the degree of a vertex v in G, and by ∆(G) the
maximum degree of vertices of G. G is called a k-graph if
∆(G) ≤ k. A graph is said to be planar if it can be drawn in
the plane so that its edges intersect only at their ends. Such
a drawing of a planar graph G is called a 2-D drawing of
G. A 2-D orthogonal drawing of a planar graph G is a 2-D
drawing of G such that each edge is drawn by a sequence of
contiguous horizontal and vertical line segments. Notice that
a graph G has a 2-D orthogonal drawing only if ∆(G) ≤ 4. A
2-D orthogonal drawing with no more than b bends per edge
is called a b-bend 2-D orthogonal drawing.

Biedl and Kant [2], and Liu, Morgana, and Simeone [5]
showed that every planar 4-graph has a 2-bend 2-D orthogonal
drawing with only exception of the octahedron shown in
Fig. 1(a), which has a 3-bend 2-D orthogonal drawing as
shown in Fig. 1(b). Moreover, Kant [4] showed that every
planar 3-graph has a 1-bend 2-D orthogonal drawing with the
only exception of K4 shown in Fig. 1(c), which has a 2-bend
2-D orthogonal drawing as shown in Fig. 1(d). Nomura, Tayu,
and Ueno [6] showed that every outerplanar 3-graph has a 0-
bend 2-D orthogonal drawing if and only if it contains no
triangle as a subgraph. On the other hand, Garg and Tamassia
proved that it is NP-complete to decide if a given planar
4-graph has a 0-bend 2-D orthogonal drawing [3]. Battista,
Liotta, and Vargiu showed that the problem can be solved in
polynomial time for planar 3-graphs and series-parallel graphs
[1].

We show in this paper the following theorem.

(a) Octahedron. (b) 3-bend 2-D orthogonal
drawing of octahedron.

(c) K4. (d) 2-bend 2-D orthogonal
drawing of K4.

Fig. 1. Octahedron, K4, and their 2-D orthogonal drawings.

Theorem 1: Every series-parallel 4-graph has a 1-bend 2-D
orthogonal drawing. �

The proof of Theorem 1 is constructive and provides an
O(n2) time algorithm to generate such a drawing for an n-
vertex series-parallel 4-graph.

II. PRELIMINARIES

A series-parallel graph is defined recursively as follows.

(1) A graph consisting of two vertices joined by a single
edge is a series-parallel graph. The vertices are the
terminals.

(2) If G1 is a series-parallel graph with terminals s1 and
t1, and G2 is a series-parallel graph with terminals
s2 and t2, then a graph G obtained by either of the
following operations is also a series-parallel graph:

(i) Series-composition: identify t1 with s2. Ver-
tices s1 and t2 are the terminals of G.
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(ii) Parallel-composition: identify s1 and s2 into
a vertex s, and t1 and t2 into t. Vertices s
and t are the terminals of G.

A series-parallel graph G is naturally associated with a
binary tree T (G), which is called a decomposition tree of G.
The nodes of T (G) are of three types, S-nodes, P -nodes, and
Q-nodes. T (G) is defined recursively as follows:

(1) If G is a single edge, then T (G) consists of a single
Q-node.

(2-i) If G is obtained from series-parallel graphs G1 and
G2 by the series-composition, then the root of T (G)
is an S-node, and T (G) has subtrees T (G1) and
T (G2) rooted at the children of the root of G.

(2-ii) If G is obtained from series-parallel graphs G1 and
G2 by the parallel-composition, then the root of
T (G) is a P -node, and T (G) has subtrees T (G1)
and T (G2) rooted at the children of the root of G.

Notice that the leaves of T (G) are the Q-nodes, and an
internal node of T (G) is either an S-node or P -node. Notice
also that every P -node has at most one Q-node as a child,
since G is a simple graph. If G has n vertices then T (G) has
O(n) nodes, and T (G) can be constructed in O(n) time [8].

A polygon is said to be rectilinear if every edge of the
polygon is parallel to the horizontal axis or the vertical
axis. Let Λ and Λ′ be rectilinear polygons with distinguished
vertices σ and σ′, respectively. Λ and Λ′ are said to be shape-
equivalent if walking clockwise around Λ and Λ′ from σ and
σ′, respectively, we have the same sequence of left and right
turns for Λ and Λ′.

Let Λ be a rectilinear polygon with distinguished vertices
σ and τ , and Λ′ be a rectilinear polygon with distinguished
vertices σ′ and τ ′. Λ and Λ′ are shape-equivalent if walking
clockwise around Λ and Λ′ from σ and σ′, respectively, we
have the same sequence of left turns, right turns, and the
direction at τ and τ ′ for Λ and Λ′, respectively.

Any two rectilinear rectangles are defined to be shape-
equivalent.

Let Σ and Σ′ be regions bounded by rectilinear polygons Λ
and Λ′, respectively. Σ and Σ′ are said to be shape-equivalent
if Λ and Λ′ are shape-equivalent.

Let Λ1 and Λ2 be rectilinear polygons such that Λ1 is
enclosed by Λ2, and Σ be a region bounded by Λ1 and Λ2. Let
Λ′

1 and Λ′
2 be rectilinear polygons such that Λ′

1 is enclosed
by Λ′

2, and Σ′ be a region bounded by Λ′
1 and Λ′

2. Σ and Σ′

are shape-equivalent if Λ1 and Λ′
1 are shape-equivalent, and

Λ2 and Λ′
2 are rectilinear rectangles.

A region is said to be rectilinear if it is bounded by
rectilinear polygon(s).

III. PROOF OF THEOREM 1 (SKETCH)

Let G be a series-parallel 4-graph with terminals s and t.
We assume without loss of generality that dG(s) ≤ dG(t).
We generate for G several 1-bend 2-D orthogonal drawings in
distinct shape of regions depending on dG(s) and dG(t). The
number of distinct shapes ν(dG(s), dG(t)) is no more than 4
for every pair of dG(s) and dG(t).

st

(a) N1-drawing.

s

t

(b) N2-drawing.

Fig. 3. N -drawings of an edge.

Let Σ be a rectilinear region with distinguished vertices σ
and τ . A 1-bend 2-D orthogonal drawing of G in Σ such
that s and t are mapped to σ and τ , respectively, is called
an N -drawing of G generated in Σ. We will show that G
has an N -drawing generated in a region shape-equivalent to
rectilinear region Π(dG(s), dG(t), i) shown in Fig. 2, for 1 ≤
i ≤ ν(dG(s), dG(t)). It is sufficient to prove the following
theorem.

Theorem 2: Every series-parallel 4-graph with terminals s
and t has an N -drawing generated in a region shape-equivalent
to Π(dG(s), dG(t), i) for 1 ≤ i ≤ ν(dG(s), dG(t)) with the
exception that 1 ≤ i ≤ 2 if dG(s) = dG(t) = 1 and (s, t) ∈
E(G), and i = 1 if dG(s) = dG(t) = 3 and (s, t) ∈ E(G).

Proof (Sketch): The theorem is proved by induction on
|E(G)|. An N -drawing of G in a region shape-equivalent to
Π(dG(s), dG(t), i) is called an Ni-drawing of G.

If |E(G)| = 1, G is a graph consisting of just an edge (s, t).
Such a graph has an N1-drawing and N2-drawing as shown
in Fig. 3.

Assume that |E(G)| ≥ 2. We distinguish two cases.

Case 1: G is a series-composition of G1 and G2. We can
prove the following lemma.

Lemma 1: For any i, 1 ≤ i ≤ ν(dG(s), dG(t)), there
exist j and k, 1 ≤ j ≤ ν(dG1(s1), dG1(t1)) and 1 ≤ k ≤
ν(dG2(s2), dG2(t2)), such that an Ni-drawing of G can be
generated by combining an Nj-drawing of G1 and Nk-drawing
of G2. �

Such a pair of j and k for each i is shown in Table I.

Case 2: G is a parallel-composition of G1 and G2. We can
prove the following lemma.

Lemma 2: For any i, 1 ≤ i ≤ ν(dG(s), dG(t)), there
exist j and k, 1 ≤ j ≤ ν(dG1(s1), dG1(t1)) and 1 ≤ k ≤
ν(dG2(s2), dG2(t2)), such that an Ni-drawing of G can be
generated by combining an Nj-drawing of G1 and Nk-drawing
of G2. �

Such a pair of j and k for each i is shown in Table II.
It is tedious but easy to check Tables I and II. The details

are omitted here due to space limitation. �

IV. ALGORITHM (EXAMPLE)

We can show that the proof of Theorem 2 in the previous
section provides an O(n2) time recursive algorithm to gen-
erate an N -drawing for an n-vertex series-parallel 4-graph.
The details are omitted here due to space limitation. As an
example, an N1-drawing of a series-parallel 4-graph G shown
in Fig. 4(a) can be generated as follows. G is a parallel-
composition of series-parallel graphs G1 and G2 shown in
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Π(3, 3, 1). Π(3, 3, 2). Π(3, 4, 1). Π(4, 4, 1).

Fig. 2. Rectilinear Regions.

TABLE I

PAIR OF Π(dG1 (s1), dG1 (t1), j) AND Π(dG2 (s2), dG2 (t2), k) FOR Π(dG (s), dG (t), i) WHEN G IS A SERIES-COMPOSITION, WHERE 1 ≤ γ ≤ 4.

Π(dG (s), dG (t), i) Π(dG1 (s1), dG1 (t1), j) Π(dG2 (s2), dG2 (t2), k)

Π(1, 1, 1) Π(1, dG1 (t1), 1) Π(dG2 (s2), 1, 1)
Π(1, 1, 2) Π(1, 1, 2) Π(dG2 (s2), 1, 1)
Π(1, 1, 2) Π(1, 2, 1) Π(dG2 (s2), 1, 2)
Π(1, 1, 2) Π(1, 3, 1) Π(1, 1, 2)
Π(1, 1, 3) Π(1, dG1 (t1), 2) Π(dG2 (s2), 1, 2)
Π(1, 2, 1) Π(1, dG1 (t1), 1) Π(dG2 (s2), 2, 1)
Π(1, 2, 2) Π(1, dG1 (t1), 2) Π(dG2 (s2), 2, 1)
Π(1, 2, 3) Π(1, 1, 1) Π(dG2 (s2), 2, 2)
Π(1, 2, 3) Π(1, 2, 3) Π(dG2 (s2), 2, 1)
Π(1, 2, 3) Π(1, 3, 2) Π(1, 2, 1)
Π(1, 2, 4) Π(1, dG1 (t1), 2) Π(dG2 (s2), 2, 2)
Π(1, 3, 1) Π(1, 1, 2) Π(dG2 (s2), 3, 1)
Π(1, 3, 1) Π(1, 2, 1) Π(dG2 (s2), 3, 1)
Π(1, 3, 1) Π(1, 3, 1) Π(1, 3, 1)
Π(1, 3, 2) Π(1, dG1 (t1), 2) Π(dG2 (s2), 3, 1)
Π(2, 2, 1) Π(2, dG1 (t1), 1) Π(dG2 (s2), 2, 1)
Π(2, 2, 2) Π(2, dG1 (t1), 1) Π(dG2 (s2), 2, 2)
Π(2, 3, 1) Π(2, dG1 (t1), 1) Π(dG2 (s2), 3, 1)
Π(2, 3, 2) Π(2, dG1 (t1), 2) Π(dG2 (s2), 3, 1)
Π(3, 3, 1) Π(3, dG1 (t1), 1) Π(dG2 (s2), 3, 1)
Π(3, 3, 2) Π(3, 1, 2) Π(dG2 (s2), 3, 1)
Π(3, 3, 2) Π(3, 2, 2) Π(dG2 (s2), 3, 1)
Π(3, 3, 2) Π(3, 3, 1) Π(1, 3, 2)
Π(γ, 4, 1) Π(γ, dG1 (t1), 1) Π(dG2 (s2), 4, 1)
Π(4, γ, 1) Π(4, dG1 (t1), 1) Π(dG2 (s2), γ, 1)

Fig. 4(b) and Fig. 4(c), respectively. Since dG(s) = dG(t) =
3, we need an N1-drawing Γ1 of G1 and N3-drawing Γ2 of G2

by Table II. Γ1 and Γ2 are shown in Fig. 4(d) and Fig. 4(e),

respectively. Finally, an N1-drawing of G can be generated by
scaling Γ1 and Γ2 appropriately and identifying s1 with s2,
and t1 with t2 as shown in Fig. 4(f).
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TABLE II

PAIR OF Π(dG1 (s1), dG1 (t1), j) AND Π(dG2 (s2), dG2 (t2), k) FOR Π(dG (s), dG (t), i) WHEN G IS A PARALLEL-COMPOSITION.

Π(dG (s), dG (t), i) Π(dG1 (s1), dG1 (t1), j) Π(dG2 (s2), dG2 (t2), k)

Π(2, 2, 1) Π(1, 1, 2) Π(1, 1, 2)
Π(2, 2, 2) Π(1, 1, 2) Π(1, 1, 3)
Π(2, 3, 1) Π(1, 1, 2) Π(1, 2, 2)
Π(2, 3, 2) Π(1, 1, 2) Π(1, 2, 4)
Π(2, 4, 1) Π(1, 1, 2) Π(1, 3, 2)
Π(2, 4, 1) Π(1, 2, 2) Π(1, 2, 2)
Π(3, 3, 1) Π(1, 1, 2) Π(2, 2, 2)
Π(3, 3, 1) Π(1, 2, 1) Π(2, 1, 3)
Π(3, 3, 2) Π(1, 1, 3) Π(2, 2, 2)
Π(3, 3, 2) Π(1, 2, 2) Π(2, 1, 4)
Π(3, 4, 1) Π(1, 1, 2) Π(2, 3, 2)
Π(3, 4, 1) Π(1, 2, 2) Π(2, 2, 2)
Π(3, 4, 1) Π(1, 3, 2) Π(2, 1, 2)
Π(4, 4, 1) Π(1, 1, 2) Π(3, 3, 2)
Π(4, 4, 1) Π(1, 2, 1) Π(3, 2, 2)
Π(4, 4, 1) Π(1, 3, 1) Π(3, 1, 1)
Π(4, 4, 1) Π(2, 2, 2) Π(2, 2, 2)

s

t

(a) G.

s1

t1

(b) G1.

s2

t2

(c) G2.

s1

t1

(d) N1-drawing Γ1 of G1.

s2 t2

(e) N3-drawing Γ2 of G2.

s

t

(f) N1-drawing of G.

Fig. 4. Example of a Recursive Step of Algorithm.

We conclude with some remarks. We learned recently that
Zhou and Nishizeki proposed a linear time algorithm to
generate a 1-bend 2-D orthogonal drawing for a series-parallel
3-graph[10]. We can prove that every series-parallel 6-graph
has a 2-bend 3-D orthogonal drawing, which will appear in a
forthcoming paper.
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