On the Three-Dimensional Layout of Hypercubes

Toshihiro KUBO, Satoshi TAYU, and Shuichi UENO Department of Communications and Integrated Systems, Tokyo Institute of Technology

1 Introduction

The hypercube has been known as one of the most important network architectures for parallel computing, and extensively studied in the literature. This paper shows an efficient 3-D layout of the hypercube.

The *n*-cube (*n*-dimensional cube) Q(n) is the graph with $N = 2^n$ vertices labeled 0 through N-1 such that two vertices are jointed by an edge if and only if their labels in the binary representation differ by exactly one bit. $\mathcal{R}(m_x, m_y, m_z)$ is a 3-D grid with m_x, m_y and m_z vertices along x, y and z dimensions, respectively. $\mathcal{R}(m_x, m_y, 2)$ is also called a 2-D grid.

An embedding $\langle \phi, \rho \rangle$ of a graph \mathcal{G} into a graph \mathcal{H} consists of a one-to-one mapping $\phi : V(\mathcal{G}) \to V(\mathcal{H})$, together with a mapping ρ that maps each edge $(u, v) \in E(\mathcal{G})$ onto a path $\rho(u, v)$ in \mathcal{H} that connects vertices $\phi(u)$ and $\phi(v)$. An embedding $\langle \phi, \rho \rangle$ of a graph \mathcal{G} into a 3-D grid \mathcal{R} is called a 3-D *layout* of \mathcal{G} if routing paths $\rho(e_1)$ and $\rho(e_2)$ are internally disjoint for any distinct $e_1, e_2 \in E(\mathcal{G})$. $|V(\mathcal{R})|$ is called the *volume* of the 3-D layout, and $vol(\mathcal{G})$ is the minimum volume of a 3-D layout of \mathcal{G} . If \mathcal{R} is a 2-D grid then the layout is also called a 2-D layout.

The *bisection width* $bw(\mathcal{G})$ of a graph \mathcal{G} is the minimum number of edges that must be removed from \mathcal{G} in order to partition \mathcal{G} into two equal-sized subgraphs to within one vertex. It is well-known that $vol(\mathcal{G}) \ge bw(\mathcal{G})^{3/2}$ for any graph \mathcal{G} [5]. Since it is also well-known that $bw(Q(n)) = \Theta(N)$ [2],

$$\operatorname{vol}(Q(n)) = \Omega(N^{3/2}).$$

This paper shows that

$$\operatorname{vol}(Q(n)) = O(N^{3/2}),$$

which is obtained by an explicit 3-D layout of Q(n) based on an embedding of Q(n) into a 3-D grid introduced in [6], and an efficient 2-D linear layout considered in [1], [3] and [4]. This is the first explicit 3-D layout of Q(n) with optimal volume, as far as the authors know.

2 2-D Linear Laoyut of Q(n)

In the 2-D layout of Q(n), each vertex is represented by a 2-D grid $\mathcal{R}(l, l, 2)$, where $l \ge n = \log N$. In the 2-D linear layout of Q(n), all 2-D grids representing vertices of Q(n) are laid out in a linear array, side by side. The following theorem was proved in [1], [3] and [4].

Theorem I Q(n) can be linearly laid out in a 2-D grid $\mathcal{R}(l \times N, l + N, 2)$.

Such a layout of Q(3) is shown in Fig. 1.

3 3-D Linear Layout of Q(n)

In the 3-D linear layout of Q(n), each vertex is represented by a 3-D grid $\mathcal{R}(\lceil N^{1/2} \rceil, \lceil N^{1/2} \rceil, \lceil N^{1/2} \rceil)$, and all such grids are laid out in a linear array, side by side. We can prove the following theorem by using Theorem I.

Theorem 1 Q(n) can be linearly laid out in a 3-D grid $\mathcal{R}(\lceil N^{1/2} \rceil \times N, \lceil N^{1/2} \rceil + \lceil N^{1/2} \rceil, \lceil N^{1/2} \rceil)$.

Such a layout of Q(3) is shown in Fig. 2.

4 3-D Layout of Q(n)

In the 3-D layout of Q(n), each vertex is represented by a 3-D grid $\mathcal{R}(\lceil N^{1/6} \rceil, \lceil N^{1/6} \rceil, \lceil N^{1/6} \rceil)$. The binary representation of a vertex of Q(n) is trisected to obtain its coordinates. Let $a = \lfloor (n+1)/3 \rfloor$, and b = n - 2a. The value of the least significant a bits represents the x-coordinate, the value of the next a bits represents the y-coordinate, and the value of the most significant b bits represents the z-coordinate. Using the coordinates, we arrange the 3-D grids representing the vertices of Q(n) in a 2^a by 2^b array with $\lceil N^{1/6} \rceil$ spacing in between. Such an arrangement of vertices for Q(5) is illustrated in Fig. 3.

The vertices with the same y- and z-coordinate values induce an a-cube, which is laid out in a 3-D grid $\mathcal{R}(\lceil A^{1/2} \rceil + \lceil N^{1/6} \rceil) \times A, \lceil A^{1/2} \rceil + \lceil A^{1/2} \rceil, \lceil A^{1/2} \rceil)$, using the 3-D linear layout in the previous section, where $A = 2^a$. Since $A = O(N^{1/3})$, we couclude that the a-cube can be laid out in a 3-D grid $\mathcal{R}(O(N^{1/2}), O(N^{1/6}), O(N^{1/6}))$. Similarly, an a-cube induced by the vertices with the same z- and x-coordinate values can be laid out in a 3-D grid $\mathcal{R}(O(N^{1/2}), O(N^{1/6}))$ and a b-cube induced by the vertices with the same x- and y-coordinate values can be laid out in a 3-D grid $\mathcal{R}(O(N^{1/2}), O(N^{1/6}))$.

By combining all such 3-D linear layouts of subcubes, Q(n) can be laid out in a 3-D grid $\mathcal{R}(O(N^{1/2}), O(N^{1/2}), O(N^{1/2}))$. Fig. 4 illustrates such a 3-D layout of Q(5), where shaded cubes represent vertices, and the remaining region is used for wiring. Thus we obtain the following theorem.

Theorem 2 $vol(Q(n)) = O(N^{3/2}).$

References

- [1] R.I. Greenberg and L. Guan, On the Area of Hypercube Layouts, Information Processing Letters, 84:41-46, 2002.
- [2] F.T. Leighton, Introduction to Parallel Algorithms and Architectures, Morgan Kaufman, 1992.
- [3] A. Patel and A. Kusalik and C. McCrosky, Area-Efficient VLSI Layouts for Binary Hypercubes, *IEEE Transactions* on Computers, 49(2):160-169, 2000.
- [4] A.G.Ranade and S.L. Johnsson, The communication efficiency of meshes, Boolean cubes and cube connected cycles for wafer scale integration, *International Conference on Parallel Processing*, 479-482, 1987.
- [5] A.L. Rosenberg, Three-Dimensional VLSI: A Case Study, Journal of ACM, 30:397-416, 1983.
- [6] S.L. Scott and J.W. Baker, Embedding the Hypercube into the 3-Dimension Mesh, Proc. of the 4th Symposium on the Frontiers of Massively Parallel Computation, 577-578, 1992.

Fig. 2. 3-D linear layout of Q(3).

