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1 Introduction
The hypercube has been known as one of the most important network architectures for parallel computing, and exten-

sively studied in the literature. This paper shows an efficient 3-D layout of the hypercube.
The n-cube (n-dimensional cube) Q(n) is the graph with N = 2n vertices labeled 0 through N−1 such that two vertices

are jointed by an edge if and only if their labels in the binary representation differ by exactly one bit. R(mx, my, mz) is
a 3-D grid with mx, my and mz vertices along x, y and z dimensions, respectively. R(mx, my, 2) is also called a 2-D
grid.

An embedding 〈φ, ρ〉 of a graph G into a graph H consists of a one-to-one mapping φ : V (G) → V (H), together
with a mapping ρ that maps each edge (u, v) ∈ E(G) onto a path ρ(u, v) in H that connects vertices φ(u) and φ(v). An
embedding 〈φ, ρ〉 of a graph G into a 3-D grid R is called a 3-D layout of G if routing paths ρ(e1) and ρ(e2) are internally
disjoint for any distinct e1, e2 ∈ E(G). |V (R)| is called the volume of the 3-D layout, and vol(G) is the minimum volume
of a 3-D layout of G. If R is a 2-D grid then the layout is also called a 2-D layout.

The bisection width bw(G) of a graph G is the minimum number of edges that must be removed from G in order to
partition G into two equal-sized subgraphs to within one vertex. It is well-known that vol(G) ≥ bw(G)3/2 for any graph
G [5]. Since it is also well-known that bw(Q(n)) = Θ(N) [2],

vol(Q(n)) = Ω(N3/2).

This paper shows that
vol(Q(n)) = O(N3/2),

which is obtained by an explicit 3-D layout of Q(n) based on an embedding of Q(n) into a 3-D grid introduced in [6],
and an efficient 2-D linear layout considered in [1], [3] and [4]. This is the first explicit 3-D layout of Q(n) with optimal
volume, as far as the authors know.

2 2-D Linear Laoyut of Q(n)

In the 2-D layout of Q(n), each vertex is represented by a 2-D grid R(l, l, 2), where l ≥ n = log N . In the 2-D linear
layout of Q(n), all 2-D grids representing vertices of Q(n) are laid out in a linear array, side by side. The following
theorem was proved in [1], [3] and [4].

Theorem I Q(n) can be linearly laid out in a 2-D grid R(l × N, l + N, 2).

Such a layout of Q(3) is shown in Fig. 1.

3 3-D Linear Layout of Q(n)

In the 3-D linear layout of Q(n), each vertex is represented by a 3-D grid R(dN 1/2e, dN1/2e, dN1/2e), and all such
grids are laid out in a linear array, side by side. We can prove the following theorem by using Theorem I.

Theorem 1 Q(n) can be linearly laid out in a 3-D grid R(dN 1/2e × N, dN1/2e + dN1/2e, dN1/2e).

Such a layout of Q(3) is shown in Fig. 2.

4 3-D Layout of Q(n)

In the 3-D layout of Q(n), each vertex is represented by a 3-D grid R(dN 1/6e, dN1/6e, dN1/6e). The binary represen-
tation of a vertex of Q(n) is trisected to obtain its coordinates. Let a = b(n + 1)/3c, and b = n − 2a. The value of the
least significant a bits represents the x-coordinate, the value of the next a bits represents the y-coordinate, and the value
of the most significant b bits represents the z-coordinate. Using the coordinates, we arrange the 3-D grids representing
the vertices of Q(n) in a 2a by 2a by 2b array with dN1/6e spacing in between. Such an arrangement of vertices for Q(5)
is illustrated in Fig. 3.
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The vertices with the same y- and z-coordinate values induce an a-cube, which is laid out in a 3-D grid R((dA1/2e +
dN1/6e) × A, dA1/2e + dA1/2e, dA1/2e), using the 3-D linear layout in the previous section, where A = 2a. Since
A = O(N1/3), we couclude that the a-cube can be laid out in a 3-D grid R(O(N 1/2), O(N1/6), O(N1/6)). Similarly,
an a-cube induced by the vertices with the same z- and x-coordinate values can be laid out in a 3-D grid R(O(N 1/6),
O(N1/2), O(N1/6)) and a b-cube induced by the vertices with the same x- and y-coordinate values can be laid out in a
3-D grid R(O(N1/6), O(N1/6), O(N1/2)).

By combining all such 3-D linear layouts of subcubes, Q(n) can be laid out in a 3-D grid R(O(N 1/2), O(N1/2),
O(N1/2)). Fig. 4 illustrates such a 3-D layout of Q(5), where shaded cubes represent vertices, and the remaining region
is used for wiring. Thus we obtain the following theorem.

Theorem 2 vol(Q(n)) = O(N 3/2).
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Fig. 1. 2-D linear layout of Q(3).
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Fig. 2. 3-D linear layout of Q(3).
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Fig. 3. Arrangement of vertices for Q(5).
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Fig. 4. 3-D layout of Q(5).
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