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1 Introduction

The hypercube has been known as one of the most important network architectures for parallel computing, and exten-
sively studied in the literature. This paper shows an efficient 3-D layout of the hypercube.

The n-cube (n-dimensional cube) Q(n) is the graph with N = 2" vertices labeled 0 through NV —1 such that two vertices
are jointed by an edge if and only if their labels in the binary representation differ by exactly one bit. R(m,, m,, m.) is
a 3-D grid with m,, m,, and m_ vertices along z, y and =z dimensions, respectively. R(m, m,,2) is also called a 2-D
grid.

An embedding (¢, p) of a graph G into a graph H consists of a one-to-one mapping ¢ : V(G) — V(H), together
with a mapping p that maps each edge (u,v) € E(G) onto a path p(u, v) in H that connects vertices ¢(u) and ¢(v). An
embedding (¢, p) of a graph G into a 3-D grid R is called a 3-D layout of G if routing paths p(e) and p(e2) are internally
disjoint for any distinct e1, eo € E(G). |V (R)| is called the volume of the 3-D layout, and vol(G) is the minimum volume
of a 3-D layout of G. If R is a 2-D grid then the layout is also called a 2-D layout.

The bisection width bw(G) of a graph G is the minimum number of edges that must be removed from G in order to
partition G into two equal-sized subgraphs to within one vertex. It is well-known that vol(G) > bw(G)?3/? for any graph
G [5]. Since it is also well-known that bw(Q(n)) = ©(V) [2],

vol(Q(n)) = QN?/2).

This paper shows that
vol(Q(n)) = O(N®/?),

which is obtained by an explicit 3-D layout of Q(n) based on an embedding of Q(n) into a 3-D grid introduced in [6],
and an efficient 2-D linear layout considered in [1], [3] and [4]. This is the first explicit 3-D layout of Q(n) with optimal
volume, as far as the authors know.

2 2-DLinear Laoyut of Q(n)

In the 2-D layout of Q(n), each vertex is represented by a 2-D grid R(l,(,2), where I > n = log N. In the 2-D linear
layout of Q(n), all 2-D grids representing vertices of Q(n) are laid out in a linear array, side by side. The following
theorem was proved in [1], [3] and [4].

Theorem | Q(n) canbelinearlylaid outina2-D grid R(I x N,l+ N, 2). 1
Such a layout of Q(3) is shown in Fig. 1.

3 3-DLinear Layout of Q(n)

In the 3-D linear layout of Q(n), each vertex is represented by a 3-D grid R([N'/2], [N'/?],[N'/2]), and all such
grids are laid out in a linear array, side by side. We can prove the following theorem by using Theorem 1.

Theorem 1 Q(n) canbelinearlylaid outina3-D grid R([N'/2] x N, [N'/2] + [N1/2],[N1/2]). |
Such a layout of Q(3) is shown in Fig. 2.

4 3-D Layout of Q(n)

In the 3-D layout of Q(n), each vertex is represented by a 3-D grid R([N1/6], [N1/6], [N/67). The binary represen-
tation of a vertex of Q(n) is trisected to obtain its coordinates. Let a = |(n + 1)/3], and b = n — 2a. The value of the
least significant a bits represents the z-coordinate, the value of the next a bits represents the y-coordinate, and the value
of the most significant b bits represents the z-coordinate. Using the coordinates, we arrange the 3-D grids representing
the vertices of Q(n) in a 2% by 2¢ by 2° array with [ N''/6] spacing in between. Such an arrangement of vertices for Q(5)
is illustrated in Fig. 3.
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The vertices with the same y- and z-coordinate values induce an a-cube, which is laid out in a 3-D grid R(([A'/?] +
[NV/6]) x A, [AY?] + [AY/2],[A'/2]), using the 3-D linear layout in the previous section, where A = 2. Since
A = O(N'/3), we couclude that the a-cube can be laid out in a 3-D grid R(O(N'/2), O(N'/6), O(N'/6)). Similarly,
an a-cube induced by the vertices with the same z- and z-coordinate values can be laid out in a 3-D grid R(O(N1/9),
O(N'/2), O(N'/6)) and a b-cube induced by the vertices with the same z- and y-coordinate values can be laid out in a
3-D grid R(O(N'/6), O(N'/%), O(N'/?)).

By combining all such 3-D linear layouts of subcubes, Q(n) can be laid out in a 3-D grid R(O(N'/2), O(N'/?),

O(N'/?)). Fig. 4 illustrates such a 3-D layout of Q(5), where shaded cubes represent vertices, and the remaining region
is used for wiring. Thus we obtain the following theorem.

Theorem 2 vol(Q(n)) = O(N3/2). |
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Fig. 1. 2-D linear layout of Q(3).
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Fig. 3. Arrangement of vertices for Q(5).

Fig. 4. 3-D layout of Q(5).
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