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1 Introduction

It is mentioned in our previous paper [4] that the 3-D chan-
nel routing is A"P-complete, and the proof of the A'P-
hardness is outlined there. The purpose of this paper is to
show that the 3-D channel routing is in /P, complement-
ing the previous paper.

The 3-D channel is a 3-D grid G consisting of columns,
rows, and layers which are rectilinear grid planes defined
by fixing x-, y-, and z-coordinates at integers, respectively.
The numbers of columns, rows, and layers are called the
width, depth, and height of G, respectively. (See Fig. 1.)
G is called a (W, D, H)-channel if the width is W, depth
is D, and height is H. A vertex of GG is a grid point with
integer coordinates. We assume without loss of generality
that the vertex set of a (W, D, H)-channel is {(z, y, z)|z €
W,y € [D],z € [H]}, where [n] = {1,2,...,n} fora
positive integer n. Layers defined by z = H and z = 1 are
called the rop and bottom layers, respectively.

A terminal is a vertex of G located in the top or bottom
layer. A net is a set of terminals to be connected. A net
containing k terminals is called a k-net. The object of the
3-D channel routing problem is to connect the terminals in
each net with a tree in GG using as few layers as possible and
as short wires as possible in such a way that trees spanning
distinct nets are vertex-disjoint. A set of nets is said to be
routable in G if G has vertex-disjoint trees spanning the
nets. A set of nets of a (W, D, H)-channel is said to be
routable with height H if it is routable in the (W, D, H)-
channel.

We consider the following decision problem.

3-D CHANNEL ROUTING

INSTANCE: Positive integers W, D, H, p, q, a set of
terminals T' C {(a;,a, H)|a; € [W),a, € [D],i €
[p]} U{(b;,05,0)[b; € [W], b5 € [D],j € [q]}, and a
partition of 7" into nets Ny, Na, ..., N,.

QUESTION: Is the set of nets N' = {Ny, No,. ..
routable in a (W, D, H)-channel G?

N}

The purpose of this paper is to show the following.
Theorem 1 3-D CHANNEL ROUTING is in N'P. |
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Figure 1: The three-dimensional channel.

2 Proof Outline of Theorem 1

Suppose that \V is routable in G. Let 7; = |N;|, and 7 =
>, 7i- Notice that 7 = |T'| = p + ¢. A tree connecting
the terminals in each net IV; is a rectilinear Steiner tree S;
spanning the terminals in N;. S; can be represented by the
coordinates of terminals, Steiner points, and bends. Notice
that the number of Steiner points of S; is at most 7; — 1.
Thus, in order to prove that 3-D CHANNEL ROUTING is
in NP, it suffices to show that N\ is routable in G with
polynomially bounded number of bends.

We first show that if A is routable with a finite height, N
is also routable with a polynomially bounded height.

2.1 Routability with Polynomial Height

2.1.1 The Case of 2-Nets

We first consider the problem for 2-nets such that a terminal
of each net is on the top layer and the other on the bottom
layer. The 3-D channel routing for 2-nets is closely related
to the (r X s)-puzzle defined below.

The (r x s)-puzzle is a generalization of the well-known
15-puzzle [1]. The (r x s)-puzzle is played on an r X s
board. There are rs distinct tiles on the board: one blank
tile and rs — 1 tiles numbered from 1 to s — 1. Each of the
rs square locations of the board is occupied by exactly one
tile. An instance of (r x s)-puzzle consists of two board
configurations Bj (the initial configuration) and By (the fi-
nal configuration). A move is an exchange of the blank tile
with a tile located on a horizontally or vertically adjacent
location. The goal of the puzzle is to find a sequence of
moves that transforms B; to By. The configuration By is
said to be reachable from B; if there exists such a sequence
of moves. Notice that Bs is reachable from B; if and only
if Bj is reachable from B5. Figure 2 shows two unreach-
able configurations of (4 x 4)-puzzle. This is the original
15-puzzle of Loyd [1]. Our problem is to find a shortest
sequence of moves that transforms B to Bs if By and Be
are reachable. The corresponding decision problem is de-
scribed as follows.

B E( N

blank tile
(a) Initial configuration

blank tile
(b) Final configuration

Figure 2: Unreachable configurations of (4 x 4)-puzzle.
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(r x s)-PUZZLE

INSTANCE: Two r X s board configurations B; and Bs,
and a positive integer k.

QUESTION: Is there a sequence of at most £ moves that
transforms B; to By?

The configurations B, and By are said to be reachable with
k moves if there exists a sequence of at most £ moves that
transforms Bj to Bs. Itis easy to see the following.

Lemma 1 If By and B are reachable then they are reach-
able with O(r%s + rs*) moves. 1

The (r x s)-puzzle can be considered as a 3-D channel
routing for 2-nets. The configurations B; and B» are cor-
responding to the top and bottom layers. A nonblank tile is
corresponding to a 2-net. It is easy to see the following.

Theorem 2 B, and By are reachable with k moves if and
only if the 2-nets corresponding to the nonblank tiles are
routable in an (r, s, k)-channel. 1

It should be noted that the total number of bends of the
routing for 2-nets in Theorem 2 is O(k). Thus by Lemma 1
and Theorem 2, we obtain the following.

Lemma?2 Ifv = WD — 1, and N is consisting of 2-nets
and routable in G then N is routable with O(v?) height
and O(v?) bends. 1

We can easily extend Lemma 2 as follows.

Lemma 3 Ifv = Q(WD), and N is consisting of 2-nets
and routable in G then N is routable with O(v?) height
and O(v?) bends. 1

Moreover, we can prove the following by using an easy
extension of a 3-D channel routing algorithm presented in

[3].

Lemmad If v < |W/2]|D/2], and N is consisting of
2-nets and routable in G then N is routable with O(v?)
height and O(v?) bends.

From Lemmas 3 and 4, we obtain the following.

Theorem 3 If N is consisting of v 2-nets and routable in
G then N is routable with O(v?) height and O(v?) bends.
1

2.1.2 The General Case

Let N} and N? be the terminals of N; on the top layer and
bottom layer, respectively. Let N* = {N{ Ni ... Nt}
and N* = {N? N& ... NP’}. We can prove that N'* is
routable with O(p?) height and O(p?) bends, and N’ is
routable with O(q?) height and O(¢?) bends. It follows
that the general case can be reduced to the case of 2-nets.
Since p and ¢ are O(7), we conclude from Theorem 3 that
if \ is routable in G then N is routable with O(72) height
and O(7?) bends. Thus, we obtain the following.

Theorem 4 If \ is routable in G then N is routable with
height (1) and b(T) bends, where f(7) and b(7) are some
functions of O(1?). 1

Now, we are ready to prove Theorem 1.

2.2 Routability with Polynomial Number of
Bends

Suppose N is routable in G. If H > f(7) then N is
routable in G with O(72) bends by Theorem 4.

Assume H < f(7). Let n1,m2,...,nx and 91,9, .. .,
1 be the increasing sequences of x-coordinates and y-
coordinates of terminals, respectively. By definition, if a
terminal is located at (z,y, 2), * = 7); and y = v; for some
i€[Nandj e [N]. Letng = o = 1, nay1 = W, and
a1 = D. Since NV is routable in G, there exist vertex-
disjoint Steiner trees Sy, for Ny, k € [v]. Let S = {51,
Soy.oy Syt

For each m € [\ + 1], let G be a subgrid of G induced
by the vertices in {(z, y, 2)|m-1 < < 9,y € [D],z €
[H]}. If 9y —1m—1 > f(7), we canreroute S in G, so that
the number of bends in G;% is O(72) by using Theorem 4.
Here, the columns defined by x = 0,,,—1 and x = 7, are
considered as the top and bottom layers of a 3-D channel.

Similarly, for each m’ € [\ + 1], let G%/ be a subgrid of
G induced by the vertices in {(z,y, z)|z € [W], ¢m—1 <
y < lﬁmuz € [H]} If wm’ - '@[Jm’fl > f(T)’ we can
reroute S in GY,, so that the number of bends in G, is
O(r?).

Let X be the union of G:X with 1,, — 91 > f(7), Y be
the union of GY, with ¥,y — Y1 > f(7), X = G\ X,
andY = G \ ). After the rerouting, the total number of
bends in X UY is O(A\T? + X'7%) = O(73). Moreover,
the number of bends in X N Y is at most |V (X NY)| =
OMNf(1)2H) = O(7®). Thus, we conclude that N is
routable with O(7%) bends.

This completes the proof of Theorem 1.

3 Concluding Remarks

(1) Lemma 1 for a special case of » = s is mentioned in

[2].

(2) We learned recently that (n x n)-PUZZLE is N'P-
complete [2] . The result and Theorems 1 and 2 indi-
cate that 3-D CHANNEL ROUTING is N"P-complete
even for 2-nets.
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