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1 Introduction
It is mentioned in our previous paper [4] that the 3-D chan-
nel routing is NP-complete, and the proof of the NP-
hardness is outlined there. The purpose of this paper is to
show that the 3-D channel routing is in NP , complement-
ing the previous paper.

The 3-D channel is a 3-D grid G consisting of columns,
rows, and layers which are rectilinear grid planes defined
by fixing x-, y-, and z-coordinates at integers, respectively.
The numbers of columns, rows, and layers are called the
width, depth, and height of G, respectively. (See Fig. 1.)
G is called a (W,D,H)-channel if the width is W , depth
is D, and height is H . A vertex of G is a grid point with
integer coordinates. We assume without loss of generality
that the vertex set of a (W,D,H)-channel is {(x, y, z)|x ∈
[W ], y ∈ [D], z ∈ [H ]}, where [n] = {1, 2, . . . , n} for a
positive integer n. Layers defined by z = H and z = 1 are
called the top and bottom layers, respectively.

A terminal is a vertex of G located in the top or bottom
layer. A net is a set of terminals to be connected. A net
containing k terminals is called a k-net. The object of the
3-D channel routing problem is to connect the terminals in
each net with a tree inG using as few layers as possible and
as short wires as possible in such a way that trees spanning
distinct nets are vertex-disjoint. A set of nets is said to be
routable in G if G has vertex-disjoint trees spanning the
nets. A set of nets of a (W,D,H)-channel is said to be
routable with height H if it is routable in the (W,D,H)-
channel.

We consider the following decision problem.

3-D CHANNEL ROUTING
INSTANCE: Positive integers W , D, H , p, q, a set of

terminals T ⊆ {(ai, a
′

i, H)|ai ∈ [W ], a′i ∈ [D], i ∈
[p]} ∪ {(bj , b′j , 0)|bj ∈ [W ], b′j ∈ [D], j ∈ [q]}, and a
partition of T into nets N1, N2, . . . , Nν .

QUESTION: Is the set of nets N = {N1, N2, . . . , Nν}
routable in a (W,D,H)-channel G?

The purpose of this paper is to show the following.

Theorem 1 3-D CHANNEL ROUTING is in NP .
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Figure 1: The three-dimensional channel.

2 Proof Outline of Theorem 1

Suppose that N is routable in G. Let τi = |Ni|, and τ =∑ν

i=1
τi. Notice that τ = |T | = p + q. A tree connecting

the terminals in each net Ni is a rectilinear Steiner tree Si

spanning the terminals in Ni. Si can be represented by the
coordinates of terminals, Steiner points, and bends. Notice
that the number of Steiner points of Si is at most τi − 1.
Thus, in order to prove that 3-D CHANNEL ROUTING is
in NP , it suffices to show that N is routable in G with
polynomially bounded number of bends.

We first show that if N is routable with a finite height, N
is also routable with a polynomially bounded height.

2.1 Routability with Polynomial Height

2.1.1 The Case of 2-Nets

We first consider the problem for 2-nets such that a terminal
of each net is on the top layer and the other on the bottom
layer. The 3-D channel routing for 2-nets is closely related
to the (r × s)-puzzle defined below.

The (r× s)-puzzle is a generalization of the well-known
15-puzzle [1]. The (r × s)-puzzle is played on an r × s
board. There are rs distinct tiles on the board: one blank
tile and rs− 1 tiles numbered from 1 to rs− 1. Each of the
rs square locations of the board is occupied by exactly one
tile. An instance of (r × s)-puzzle consists of two board
configurations B1 (the initial configuration) and B2 (the fi-
nal configuration). A move is an exchange of the blank tile
with a tile located on a horizontally or vertically adjacent
location. The goal of the puzzle is to find a sequence of
moves that transforms B1 to B2. The configuration B2 is
said to be reachable fromB1 if there exists such a sequence
of moves. Notice that B2 is reachable from B1 if and only
if B1 is reachable from B2. Figure 2 shows two unreach-
able configurations of (4 × 4)-puzzle. This is the original
15-puzzle of Loyd [1]. Our problem is to find a shortest
sequence of moves that transforms B1 to B2 if B1 and B2

are reachable. The corresponding decision problem is de-
scribed as follows.
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Figure 2: Unreachable configurations of (4 × 4)-puzzle.

S-5

AS-1-3 2006 年電子情報通信学会基礎・境界ソサイエティ大会



(r × s)-PUZZLE
INSTANCE: Two r × s board configurations B1 and B2,

and a positive integer k.
QUESTION: Is there a sequence of at most k moves that

transforms B1 to B2?

The configurationsB1 andB2 are said to be reachable with
k moves if there exists a sequence of at most k moves that
transforms B1 to B2. It is easy to see the following.

Lemma 1 If B1 andB2 are reachable then they are reach-
able with O(r2s+ rs2) moves.

The (r × s)-puzzle can be considered as a 3-D channel
routing for 2-nets. The configurations B1 and B2 are cor-
responding to the top and bottom layers. A nonblank tile is
corresponding to a 2-net. It is easy to see the following.

Theorem 2 B1 and B2 are reachable with k moves if and
only if the 2-nets corresponding to the nonblank tiles are
routable in an (r, s, k)-channel.

It should be noted that the total number of bends of the
routing for 2-nets in Theorem 2 is O(k). Thus by Lemma 1
and Theorem 2, we obtain the following.

Lemma 2 If ν = WD − 1, and N is consisting of 2-nets
and routable in G then N is routable with O(ν2) height
and O(ν2) bends.

We can easily extend Lemma 2 as follows.

Lemma 3 If ν = Ω(WD), and N is consisting of 2-nets
and routable in G then N is routable with O(ν2) height
and O(ν2) bends.

Moreover, we can prove the following by using an easy
extension of a 3-D channel routing algorithm presented in
[3].

Lemma 4 If ν ≤ bW/2cbD/2c, and N is consisting of
2-nets and routable in G then N is routable with O(ν2)
height and O(ν2) bends.

From Lemmas 3 and 4, we obtain the following.

Theorem 3 If N is consisting of ν 2-nets and routable in
G then N is routable with O(ν2) height and O(ν2) bends.

2.1.2 The General Case
Let N t

i and N b
i be the terminals of Ni on the top layer and

bottom layer, respectively. Let N t = {N t
1, N

t
2, . . . , N

t
ν}

and N b = {N b
1 , N

b
2 , . . . , N

b
ν}. We can prove that N t is

routable with O(p2) height and O(p2) bends, and N b is
routable with O(q2) height and O(q2) bends. It follows
that the general case can be reduced to the case of 2-nets.
Since p and q are O(τ), we conclude from Theorem 3 that
if N is routable in G then N is routable with O(τ 2) height
and O(τ2) bends. Thus, we obtain the following.

Theorem 4 If N is routable in G then N is routable with
height f(τ) and b(τ) bends, where f(τ) and b(τ) are some
functions of O(τ2).

Now, we are ready to prove Theorem 1.

2.2 Routability with Polynomial Number of
Bends

Suppose N is routable in G. If H ≥ f(τ) then N is
routable in G with O(τ2) bends by Theorem 4.

Assume H < f(τ). Let η1, η2, . . . , ηλ and ψ1, ψ2, . . . ,
ψλ′ be the increasing sequences of x-coordinates and y-
coordinates of terminals, respectively. By definition, if a
terminal is located at (x, y, z), x = ηi and y = ψj for some
i ∈ [λ] and j ∈ [λ′]. Let η0 = ψ0 = 1, ηλ+1 = W , and
ψλ′+1 = D. Since N is routable in G, there exist vertex-
disjoint Steiner trees Sk for Nk, k ∈ [ν]. Let S = {S1,
S2, . . . , Sν}.

For each m ∈ [λ+ 1], let GX
m be a subgrid of G induced

by the vertices in {(x, y, z)|ηm−1 ≤ x ≤ ηm, y ∈ [D], z ∈
[H ]}. If ηm−ηm−1 ≥ f(τ), we can reroute S inGX

m so that
the number of bends in GX

m is O(τ2) by using Theorem 4.
Here, the columns defined by x = ηm−1 and x = ηm are
considered as the top and bottom layers of a 3-D channel.

Similarly, for eachm′ ∈ [λ′ +1], let GY
m′ be a subgrid of

G induced by the vertices in {(x, y, z)|x ∈ [W ], ψm′−1 ≤
y ≤ ψm′ , z ∈ [H ]}. If ψm′ − ψm′−1 ≥ f(τ), we can
reroute S in GY

m′ so that the number of bends in GY
m′ is

O(τ2).
Let X be the union ofGX

m with ηm−ηm−1 ≥ f(τ), Y be
the union of GY

m′ with ψm′ − ψm′−1 ≥ f(τ), X = G \ X ,
and Y = G \ Y . After the rerouting, the total number of
bends in X ∪ Y is O(λτ2 + λ′τ2) = O(τ3). Moreover,
the number of bends in X ∩ Y is at most |V (X ∩ Y)| =
O(λλ′f(τ)2H) = O(τ8). Thus, we conclude that N is
routable with O(τ8) bends.

This completes the proof of Theorem 1.

3 Concluding Remarks
(1) Lemma 1 for a special case of r = s is mentioned in

[2].

(2) We learned recently that (n × n)-PUZZLE is NP-
complete [2] . The result and Theorems 1 and 2 indi-
cate that 3-D CHANNEL ROUTING is NP-complete
even for 2-nets.
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