Three-Dimensional Channel Routing is in \mathcal{NP}

Satoshi TAYU and Shuichi UENO

Department of Communications and Integrated Systems, Tokyo Institute of Technology

1 Introduction

It is mentioned in our previous paper [4] that the 3-D channel routing is \mathcal{NP} -complete, and the proof of the \mathcal{NP} hardness is outlined there. The purpose of this paper is to show that the 3-D channel routing is in \mathcal{NP} , complementing the previous paper.

The 3-D channel is a 3-D grid G consisting of columns, rows, and layers which are rectilinear grid planes defined by fixing x-, y-, and z-coordinates at integers, respectively. The numbers of columns, rows, and layers are called the width, depth, and height of G, respectively. (See Fig. 1.) G is called a (W, D, H)-channel if the width is W, depth is D, and height is H. A vertex of G is a grid point with integer coordinates. We assume without loss of generality that the vertex set of a (W, D, H)-channel is $\{(x, y, z) | x \in$ $[W], y \in [D], z \in [H]\}$, where $[n] = \{1, 2, ..., n\}$ for a positive integer n. Layers defined by z = H and z = 1 are called the top and bottom layers, respectively.

A *terminal* is a vertex of G located in the top or bottom layer. A net is a set of terminals to be connected. A net containing k terminals is called a k-net. The object of the 3-D channel routing problem is to connect the terminals in each net with a tree in G using as few layers as possible and as short wires as possible in such a way that trees spanning distinct nets are vertex-disjoint. A set of nets is said to be routable in G if G has vertex-disjoint trees spanning the nets. A set of nets of a (W, D, H)-channel is said to be *routable* with height H if it is routable in the (W, D, H)channel.

We consider the following decision problem.

3-D CHANNEL ROUTING

INSTANCE: Positive integers W, D, H, p, q, a set of

QUESTION: Is the set of nets $\mathcal{N} = \{N_1, \overline{N_2, \ldots, N_\nu}\}$ routable in a (W, D, H)-channel G?

The purpose of this paper is to show the following.

Theorem 1 3-D CHANNEL ROUTING is in \mathcal{NP} . PSfrag replacements

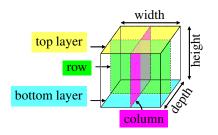


Figure 1: The three-dimensional channel.

Proof Outline of Theorem 1 2

Suppose that \mathcal{N} is routable in G. Let $\tau_i = |N_i|$, and $\tau =$ $\sum_{i=1}^{\nu} \tau_i$. Notice that $\tau = |T| = p + q$. A tree connecting the terminals in each net N_i is a rectilinear Steiner tree S_i spanning the terminals in N_i . S_i can be represented by the coordinates of terminals, Steiner points, and bends. Notice that the number of Steiner points of S_i is at most $\tau_i - 1$. Thus, in order to prove that 3-D CHANNEL ROUTING is in \mathcal{NP} , it suffices to show that \mathcal{N} is routable in G with polynomially bounded number of bends.

We first show that if \mathcal{N} is routable with a finite height, \mathcal{N} is also routable with a polynomially bounded height.

2.1 **Routability with Polynomial Height**

2.1.1 The Case of 2-Nets

We first consider the problem for 2-nets such that a terminal of each net is on the top layer and the other on the bottom layer. The 3-D channel routing for 2-nets is closely related to the $(r \times s)$ -puzzle defined below.

The $(r \times s)$ -puzzle is a generalization of the well-known 15-puzzle [1]. The $(r \times s)$ -puzzle is played on an $r \times s$ board. There are rs distinct tiles on the board: one blank *tile* and rs - 1 tiles numbered from 1 to rs - 1. Each of the rs square locations of the board is occupied by exactly one tile. An instance of $(r \times s)$ -puzzle consists of two board configurations B_1 (the *initial configuration*) and B_2 (the *fi*nal configuration). A move is an exchange of the blank tile with a tile located on a horizontally or vertically adjacent location. The goal of the puzzle is to find a sequence of moves that transforms B_1 to B_2 . The configuration B_2 is terminals $T \subseteq \{(a_i, a'_i, H) | a_i \in [w], a_i \in [\omega], \dots \in [p]\}$, and a of moves. Notice that B_2 is reachable from ω_1 if ω_2 is reachable from ω_1 if ω_2 is reachable from ω_1 . The set of T into nets N_1, N_2, \dots, N_{ν} . partition of T into nets N_1, N_2, \dots, N_{ν} . PSfrag replacements configurations of (4×4) -puzzle. This is the original form $M = \{N, \frac{N_2, \dots, N_{\nu}\}}{N_2, \dots, N_{\nu}\}}$ able configurations of (4×4) -puzzle. This is the original form N_1 and a shortest sequence of moves that transforms B_1 to B_2 if B_1 and B_2 are reachable. The corresponding decision problem is described as follows.

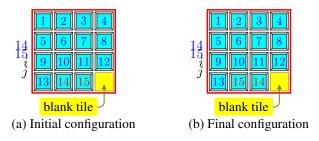


Figure 2: Unreachable configurations of (4×4) -puzzle.

 $(r \times s)$ -PUZZLE

- INSTANCE: Two $r \times s$ board configurations B_1 and B_2 , and a positive integer k.
- QUESTION: Is there a sequence of at most k moves that transforms B_1 to B_2 ?

The configurations B_1 and B_2 are said to be *reachable* with k moves if there exists a sequence of at most k moves that transforms B_1 to B_2 . It is easy to see the following.

Lemma 1 If B_1 and B_2 are reachable then they are reachable with $\mathcal{O}(r^2s + rs^2)$ moves.

The $(r \times s)$ -puzzle can be considered as a 3-D channel routing for 2-nets. The configurations B_1 and B_2 are corresponding to the top and bottom layers. A nonblank tile is corresponding to a 2-net. It is easy to see the following.

Theorem 2 B_1 and B_2 are reachable with k moves if and only if the 2-nets corresponding to the nonblank tiles are routable in an (r, s, k)-channel.

It should be noted that the total number of bends of the routing for 2-nets in Theorem 2 is O(k). Thus by Lemma 1 and Theorem 2, we obtain the following.

Lemma 2 If $\nu = WD - 1$, and \mathcal{N} is consisting of 2-nets and routable in G then \mathcal{N} is routable with $\mathcal{O}(\nu^2)$ height and $\mathcal{O}(\nu^2)$ bends.

We can easily extend Lemma 2 as follows.

Lemma 3 If $\nu = \Omega(WD)$, and \mathcal{N} is consisting of 2-nets and routable in G then \mathcal{N} is routable with $\mathcal{O}(\nu^2)$ height and $\mathcal{O}(\nu^2)$ bends.

Moreover, we can prove the following by using an easy extension of a 3-D channel routing algorithm presented in [3].

Lemma 4 If $\nu \leq \lfloor W/2 \rfloor \lfloor D/2 \rfloor$, and \mathcal{N} is consisting of 2-nets and routable in G then \mathcal{N} is routable with $\mathcal{O}(\nu^2)$ height and $\mathcal{O}(\nu^2)$ bends.

From Lemmas 3 and 4, we obtain the following.

Theorem 3 If \mathcal{N} is consisting of ν 2-nets and routable in G then \mathcal{N} is routable with $\mathcal{O}(\nu^2)$ height and $\mathcal{O}(\nu^2)$ bends.

2.1.2 The General Case

Let N_i^t and N_i^b be the terminals of N_i on the top layer and bottom layer, respectively. Let $\mathcal{N}^t = \{N_1^t, N_2^t, \dots, N_{\nu}^t\}$ and $\mathcal{N}^b = \{N_1^b, N_2^b, \dots, N_{\nu}^b\}$. We can prove that \mathcal{N}^t is routable with $\mathcal{O}(p^2)$ height and $\mathcal{O}(p^2)$ bends, and \mathcal{N}^b is routable with $\mathcal{O}(q^2)$ height and $\mathcal{O}(q^2)$ bends. It follows that the general case can be reduced to the case of 2-nets. Since p and q are $\mathcal{O}(\tau)$, we conclude from Theorem 3 that if \mathcal{N} is routable in G then \mathcal{N} is routable with $\mathcal{O}(\tau^2)$ height and $\mathcal{O}(\tau^2)$ bends. Thus, we obtain the following.

Theorem 4 If \mathcal{N} is routable in G then \mathcal{N} is routable with height $f(\tau)$ and $b(\tau)$ bends, where $f(\tau)$ and $b(\tau)$ are some functions of $\mathcal{O}(\tau^2)$.

Now, we are ready to prove Theorem 1.

2.2 Routability with Polynomial Number of Bends

Suppose \mathcal{N} is routable in G. If $H \geq f(\tau)$ then \mathcal{N} is routable in G with $\mathcal{O}(\tau^2)$ bends by Theorem 4.

Assume $H < f(\tau)$. Let $\eta_1, \eta_2, \ldots, \eta_\lambda$ and $\psi_1, \psi_2, \ldots, \psi_{\lambda'}$ be the increasing sequences of x-coordinates and ycoordinates of terminals, respectively. By definition, if a terminal is located at $(x, y, z), x = \eta_i$ and $y = \psi_j$ for some $i \in [\lambda]$ and $j \in [\lambda']$. Let $\eta_0 = \psi_0 = 1, \eta_{\lambda+1} = W$, and $\psi_{\lambda'+1} = D$. Since \mathcal{N} is routable in G, there exist vertexdisjoint Steiner trees S_k for $N_k, k \in [\nu]$. Let $\mathcal{S} = \{S_1, S_2, \ldots, S_\nu\}$.

For each $m \in [\lambda + 1]$, let G_m^X be a subgrid of G induced by the vertices in $\{(x, y, z) | \eta_{m-1} \le x \le \eta_m, y \in [D], z \in [H]\}$. If $\eta_m - \eta_{m-1} \ge f(\tau)$, we can reroute S in G_m^X so that the number of bends in G_m^X is $\mathcal{O}(\tau^2)$ by using Theorem 4. Here, the columns defined by $x = \eta_{m-1}$ and $x = \eta_m$ are considered as the top and bottom layers of a 3-D channel.

Similarly, for each $m' \in [\lambda' + 1]$, let $G_{m'}^Y$ be a subgrid of G induced by the vertices in $\{(x, y, z) | x \in [W], \psi_{m'-1} \leq y \leq \psi_{m'}, z \in [H]\}$. If $\psi_{m'} - \psi_{m'-1} \geq f(\tau)$, we can reroute S in $G_{m'}^Y$ so that the number of bends in $G_{m'}^Y$ is $\mathcal{O}(\tau^2)$.

Let \mathcal{X} be the union of G_m^X with $\eta_m - \eta_{m-1} \geq f(\tau)$, \mathcal{Y} be the union of $G_{m'}^Y$ with $\psi_{m'} - \psi_{m'-1} \geq f(\tau)$, $\overline{\mathcal{X}} = G \setminus \mathcal{X}$, and $\overline{\mathcal{Y}} = G \setminus \mathcal{Y}$. After the rerouting, the total number of bends in $\mathcal{X} \cup \mathcal{Y}$ is $\mathcal{O}(\lambda \tau^2 + \lambda' \tau^2) = \mathcal{O}(\tau^3)$. Moreover, the number of bends in $\overline{\mathcal{X}} \cap \overline{\mathcal{Y}}$ is at most $|V(\overline{\mathcal{X}} \cap \overline{\mathcal{Y}})| =$ $\mathcal{O}(\lambda\lambda' f(\tau)^2 H) = \mathcal{O}(\tau^8)$. Thus, we conclude that \mathcal{N} is routable with $\mathcal{O}(\tau^8)$ bends.

This completes the proof of Theorem 1.

3 Concluding Remarks

- (1) Lemma 1 for a special case of r = s is mentioned in [2].
- (2) We learned recently that (n × n)-PUZZLE is NPcomplete [2]. The result and Theorems 1 and 2 indicate that 3-D CHANNEL ROUTING is NP-complete even for 2-nets.

References

- [1] S. Loyd. Mathematical Puzzles of Sam Loyd. Dover, New York, 1959.
- [2] D. Ratner and M. Warmuth. The (n² 1)-puzzle and related relocation problems. *Journal of Symbolic Computation*, 10:111–137, 1990.
- [3] S. Tayu, P. Hurtig, Y. Horikawa, and S. Ueno. On the threedimensional channel routing. *Proc. IEEE International Symposium* on Circuits and Systems ISCAS'05, pages 180–183, 2005.
- [4] T. Yamaguchi, S. Tayu, and S. Ueno. On the complexity of threedimensional channel routing. *In Proc. the 68-th National Convention* of *IPSJ*, pages 1-193 – 1-194, 2006.