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1 Introduction

Reversible circuits, which permute the set of input vec-
tors, have potential applications in nanocomputing [4],
low power design [1], digital signal processing [7], and
quantum computing [5]. It is shown in [3] that given
a reversible circuit C and a set of wires F of C, it is
NP-hard to generate a minimum complete test set for
stuck-at faults on F . This paper shows that given a
reversible circuit C, it is NP-hard to generate a mini-
mum complete test set for stuck-at faults on the set of
wires of C.

A gate is reversible if the Boolean function it com-
putes is bijective. If a reversible gate has k input and
output wires, it is called a k × k gate, or a gate on k

wires. A circuit is reversible if all gates are reversible
and are interconnected without fanout or feedback. If

a reversible circuit has n input and output wires, it is
called an n× n circuit, or a circuit on n wires.

We shall focus our attention to detecting faults in
a reversible circuit C which cause wires to be stuck-
at-0 or stuck-at-1. Let L(C) be the set of all possible
fault locations in C. L(C) consists of all input and
output wires of C, and input wires to gates in C. For
an n× n reversible circuit C, a test is an input vector
in {0, 1}n. A set of tests is said to be complete for C
if it can detect all possible single and multiple stuck-at
faults on L(C). Patel, Hayes, and Markov showed that
for any reversible circuit C, there exists a complete test
set for C [6]. Let τ(C) be the minimum cardinality of
a complete test set for C.

A k-CNOT gate is a reversible gate on k + 1 wires.
It passes some k inputs, referred to as control bits,
to the outputs unchanged, and inverts the remaining
input, referred to as target bit, if the control bits are
all 1. The 0-CNOT gate is just an ordinary NOT gate.
A CNOT gate is a k-CNOT gate for some k. Some
CNOT gates are shown in Fig. 1, where a control bit
and target bit are denoted by a black dot and ring-sum,
respectively. A CNOT circuit is a reversible circuit
consisting of only CNOT gates. Since the 2-CNOT
gate can implement the NAND function, any Boolean
function can be implemented by a CNOT circuit.

Patel, Hayes and Markov showed that

τ(C) = O(log |L(C)|)

for any reversible circuit C [6], and Chakraborty

showed that
τ(C) ≤ n

if C is an n × n CNOT circuit with no 0-CNOT or
1-CNOT gate [2].

We show in this paper that it is NP-hard to compute
τ(C) for a given CNOT circuit C. Let MTS (Minimum
Test Size) be a problem of deciding if τ(C) ≤ B for a
given CNOT circuit C and integer B. The purpose of
this paper is to prove the following:

Theorem 1 MTS is NP-complete. �

2 Proof Sketch of Theorem 1

To prove the theorem, we need the following charac-
terization for a complete test set shown in [6].

Lemma I For a reversible circuit, a test set is com-

plete if and only if every wire can be set to both 0 and

1 by the test set. �

MTS is in NP since a complete test set of size
O(log |L(C)|) can be verified in polynomial time.

We will show a polynomial time reduction from
3SAT, a well-known NP-complete problem, to MTS.
Let

φ(x1, x2, . . . , xn) =

k∧

i=1

Pi

be a Boolean function in conjunctive normal form in
which each clause Pi has 3 literals for 1 ≤ i ≤ k. For a
Boolean variable x, literals x and x are denoted by x0

and x1, respectively.
We use generalized CNOT gates for simplicity.

A generalized k-CNOT gate has k control bits
x1, x2, . . . , xk and a target bit t. The output of the
target bit is defined as

(xα1

1
∧ xα2

2
∧ · · · ∧ xαk

k ) ⊕ t.

A control bit xi is said to be positive if αi = 1, and
negative if αi = 0. Notice that a CNOT gate is a
generalized CNOT gate with no negative control bit.
Notice also that a negative control bit is equivalent to
a positive control bit with a 0-CNOT gate on the input
and output wires.

We first construct a generalized CNOT gate Gi for
each clause Pi. Let

Pi = xσi1

i1 ∨ xσi2

i2 ∨ xσi3

i3 ,
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where σij ∈ {0, 1} for 1 ≤ j ≤ 3. We construct a
generalized 3-CNOT gate Gi for Pi as follows. The
gate Gi has 3 control bits xi1, xi2, xi3, and a target
bit yi. A control bit xij is defined to be positive if
σij = 0, and negative if σij = 1. The following lemma
is immediate from the definition of Gi.

Lemma 1 The output vector of Gi for an input vector

(xi1, xi2, xi3, yi) is (xi1, xi2, xi3, Pi ⊕ yi). �

Let G′

i be a copy of Gi with control bits x′

i1, x
′

i2, x
′

i3,
and a target bit y′

i for any i ∈ {1, 2, . . . , k}. For any
i, h ∈ {1, 2, . . . , k}, Gih is a generalized 6-CNOT gate
with control bits xi1, xi2, xi3, x

′

h1
, x′

h2
, x′

h3
, and a target

bit tih. A control bit xij [x
′

hj ] is positive in Gih if and
only if xij [x

′

hj ] is positive in Gi[G
′

h]. We construct a

CNOT circuit C1(φ) on 2n+k2 wires which is a cascade
consisting of gates Gih (1 ≤ i, h ≤ k). As an example,
C1(ψ) for a Boolean function

ψ(x1, x2, x3) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

is shown in Fig. 2, where a negative control bit is de-
noted by an empty circle. We can prove the following
by using Lemma 1.

Lemma 2 The output vector of C1(φ) for an in-

put vector (x1, x2, . . . , xn, x
′

1
, x′

2
, . . . , x′

n, y1, y2, . . . , y
2

k)
is also (x1, x2, . . . , xn, x

′

1
, x′

2
, . . . , x′

n, y1, y2, . . . , yk2) if

and only if φ(x1, x2, . . . , xn) = 1 or φ(x′

1
, x′

2
, . . . , x′

n) =
1. �

We finally construct a CNOT circuit C2(φ), which is
obtained from C1(φ) as shown in Fig. 3. We can prove
the following by using Lemmas I and 2.

Lemma 3 φ is satisfiable if and only if τ(C2(φ)) = 2.

Since C2(φ) can be constructed in polynomial time,
we complete the proof of the theorem.
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Figure 1: CNOT gates.
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Figure 2: CNOT circuit C1(ψ).
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Figure 3: CNOT circuit C2(φ)
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