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1 Introduction
We show lower bounds for the quantum query complex-
ity of the all-pairs shortest paths problem (APSP) for
non-negatively weighted directed graphs (digraphs),
both in the adjacency matrix model and in an adja-
cency list-like array model.

For the single-source shortest paths problem (SSSP)
for a weighted digraph with n vertices and m directed
edges (arcs), the classical complexity of Θ(m+n log n)
has been known in the literature. The upper bound
is derived from an implementation of Dijkstra’s algo-
rithm [1] with Fibonacci heaps, and the lower bound
is shown by Pettie [5]. It has been also known that the
classical complexity of APSP is O(mn + n2 log log n)
[5] and Ω(mn) [4].

For SSSP for a weighted digraph with n ver-
tices and m arcs, the quantum query complexity is
O(n3/2 log2 n) and Ω(n3/2) in the matrix model, and
O(

√
mn log2 n) and Ω(

√
mn) in the array model [2].

From the bounds for SSSP, we have trivial bounds
for the query complexity of APSP as follows:
O(n5/2 log2 n) and Ω(n3/2) in the matrix model, and

O(
√

mn3 log2 n) and Ω(
√

mn) in the array model. Fur-
row improved the upper bounds to O(n5/2 logn) in the

matrix model and O(
√

mn3 log n+n2 log3 n) in the ar-
ray model [3].

This paper shows non-trivial lower bounds for the
quantum query complexity of APSP by proving the
following theorem.

Theorem 1 APSP requires Ω(n2) queries in the ma-

trix model, and Ω(
√

m3/n2) queries in the array
model.

It should be noted that our lower bound in the array
model is better than the trivial one if m = ω(n3/2). It
is an interesting open question to close the gap between
the upper and lower bounds.

2 Preliminaries
The query complexity of a graph problem is the min-
imum number of queries to the graph required for
solving the problem. We consider two query models
for a non-negatively weighted digraph G with vertices
{v0, v1, . . . , vn−1}. In the matrix model, G is given
as the weight matrix W , where Wi,j is the weight of
arc (vi, vj) if exists, and ∞ if (vi, vj) is not an arc of
G. In the array model, G is given by a sequence of
functions fi : [deg+

G(vi)] −→ [n] × R
+, i ∈ [n], such

that if fi(j) = (k, w), then there is an arc (vi, vk) with
weight w, where deg+

G(vi) is the out-degree of vi, [n]
denotes the set {0, 1, . . . , n − 1}, and R

+ is the set of
non-negative real numbers.

We use the following theorem shown in [2].

Theorem I: The problem of finding the minimum en-
try in every row of an r × c matrix with non-negative
entries requires Ω(r

√
c) queries.

3 Proof of Theorem 1
Let M be a d2 × c matrix with non-negative entries.
From Theorem I, Ω(d2

√
c) queries are required to find

the minimum entry in every row of M .
We construct a weighted digraph G with n vertices

and m arcs from M as follows. The vertex set of G is

{ui|i ∈ [d]} ∪ {ui,j |i ∈ [d], j ∈ [c]} ∪ {v i,j |i ∈ [d], j ∈ [c]}
∪{vi|i ∈ [d]},

the arc set of G is

{(ui, ui,j)|i ∈ [d], j ∈ [c]} ∪ {(u i,j , vk,j)|i, k ∈ [d], j ∈ [c]}
∪{(vi,j , vi)|i ∈ [d], j ∈ [c]},

the weight of arc (ui,j , vk,j) is

Mdi+k,j (i, k ∈ [d], j ∈ [c]),

and the weight of any other arc is 0.
It is easy to see that the weight of the shortest

(ui, vk)-path is corresponding to the minimum entry
of the (di + k)-th row of M , i, k ∈ [d]. Since

n = d + cd + cd + d = Θ(cd), and

m = cd + cd2 + cd = Θ(cd2),

we conclude that APSP requires Ω(
√

m3/n2) queries
in the array model, and so Ω(n2) queries in the matrix
model.
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