
Information Processing Letters 112 (2012) 411–417
Contents lists available at SciVerse ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Bandwidth of convex bipartite graphs and related graphs ✩

Anish Man Singh Shrestha ∗, Satoshi Tayu, Shuichi Ueno

Department of Communications and Integrated Systems, Tokyo Institute of Technology, 2-12-1-S3-57 Ookayama, Meguro-ku, Tokyo, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 October 2011
Received in revised form 22 January 2012
Accepted 7 February 2012
Available online 28 February 2012
Communicated by R. Uehara

Keywords:
Approximation algorithms
Bandwidth problem
(Bi)convex bipartite graphs
2-Directional orthogonal ray graphs

We show that the bandwidth problem is NP-complete for convex bipartite graphs. We
provide an O (n)-time, 4-approximation algorithm and an O (n log2 n)-time, 2-approximation
algorithm to compute the bandwidth of convex bipartite graphs with n vertices. We also
consider 2-directional orthogonal ray graphs, a superclass of convex bipartite graphs, for
which we provide an O (n2 log n)-time, 3-approximation algorithm, where n is the number
of vertices.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

A linear layout of an undirected graph G with vertex
set V (G) and edge set E(G) is a bijection π : V (G) →
{1,2, . . . , |V (G)|}. The bandwidth of (G,π) is defined as

bπ (G) = max
{∣∣π(u) − π(v)

∣∣ ∣∣ uv ∈ E(G)
}
.

The bandwidth of G , denoted b(G), is the smallest band-
width over all linear layouts of G . A linear layout π of
G is said to be optimal if bπ (G) = b(G). The bandwidth
problem is to decide for a given graph G and k whether
b(G) � k. The bandwidth of a disconnected graph is the
maximum bandwidth of its connected components. There-
fore, we will consider only connected graphs.

Let G be a bipartite graph with bipartition (X, Y). An
ordering ≺ of X is said to fulfill the adjacency property if
for each y ∈ Y , the set of neighbors of y consists of ver-
tices that are consecutive in ≺. G is said to be convex if
there is an ordering of X that fulfills the adjacency prop-
erty. G is said to be biconvex if there is an ordering of
X and an ordering of Y that fulfill the adjacency prop-

✩ A preliminary version of this article was presented at the 17th Inter-
national Computing and Combinatorics Conference (COCOON), 2011.

* Corresponding author.
E-mail address: anish@lab.ss.titech.ac.jp (A.M.S. Shrestha).
0020-0190/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2012.02.012
erty. A bipartite graph which is also a permutation graph
is called a bipartite permutation graph. For the definition of
permutation graphs, we refer to [13]. A bipartite graph G is
said to be chordal if G contains no induced cycles of length
greater than 4. A tree is a chordal bipartite graph. A bipar-
tite graph G with bipartition (X, Y) is called a 2-directional
orthogonal ray graph if, in the xy-plane, there exist a fam-
ily {Ra | a ∈ X} of horizontal rays (half-lines) extending in
the positive x-direction and a family {Rb | b ∈ Y } of ver-
tical rays extending in the positive y-direction, such that
two rays Ra and Rb intersect if and only if a and b are
adjacent in G . The following relationship between these
classes of graphs is known [3,12]: {Bipartite Permutation
Graphs} ⊂ {Biconvex Bipartite Graphs} ⊂ {Convex Bipar-
tite Graphs} ⊂ {2-Directional Orthogonal Ray Graphs} ⊂
{Chordal Bipartite Graphs}.

Papadimitriou showed that the bandwidth problem is
NP-complete for general graphs [11]. Monien showed that
it is NP-complete even for caterpillars of hair length at
most 3, which are very special trees [10]. This implies
that it is also NP-complete for chordal bipartite graphs.
On the other hand, Heggernes, Kratsch, and Meister re-
cently showed that the bandwidth of bipartite permu-
tation graphs can be computed in polynomial time [6].
Uehara proposed a faster algorithm for the same prob-
lem [15]. Polynomial-time algorithms are also known for

http://dx.doi.org/10.1016/j.ipl.2012.02.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:anish@lab.ss.titech.ac.jp
http://dx.doi.org/10.1016/j.ipl.2012.02.012

412 A.M.S. Shrestha et al. / Information Processing Letters 112 (2012) 411–417
Fig. 1. Reduction from the multiprocessor scheduling problem to the bandwidth problem.
chain graphs [8], interval graphs [7], and caterpillars of
hair length at most 2 [1]. To the best of our knowledge,
there are no prior results ascertaining the complexities
of the bandwidth problem for 2-directional orthogonal
ray graphs, convex bipartite graphs, or biconvex bipartite
graphs. We show in Section 2 that the bandwidth problem
is NP-complete even for convex trees and therefore also for
2-directional orthogonal ray graphs. In Section 4, we show
that the problem can be solved in polynomial time for bi-
convex trees.

Several results regarding approximation algorithms for
computing bandwidth are known for general and special
graph classes. Dubey, Feige, and Unger showed that even
for generalized caterpillars (and therefore for chordal bi-
partite graphs), it is NP-hard to approximate the band-
width within any constant factor [5]. Polynomial-time,
constant-factor approximation algorithms are known for
few special graph classes such as AT-free graphs and its
subclasses as shown by Kloks, Kratsch, and Müller [9]. Con-
vex bipartite graphs or 2-directional orthogonal ray graphs
are not contained in any of these classes. We provide in
Section 3.1 an O (n)-time 4-approximation algorithm and
an O (n log2 n)-time 2-approximation algorithm for convex
bipartite graphs, and in Section 3.2 an O (n2 logn)-time 3-
approximation algorithm for 2-directional orthogonal ray
graphs, where n is the number of vertices of a graph.

2. NP-completeness result

A caterpillar is a tree in which all the vertices of degree
greater than one are contained in a single path called a
body. An edge incident to a vertex of degree one is called
a hair. A generalized caterpillar is a tree obtained from a
caterpillar by replacing each hair by a path. A path re-
placing a hair is also called a hair. Monien showed the
following [10]:

Theorem I. The bandwidth problem is NP-complete for gener-
alized caterpillars of hair length at most 3. �

A convex tree is a convex bipartite graph that is a tree.
We show the following.

Theorem 1. The bandwidth problem is NP-complete for convex
trees.

Proof (Sketch). Except for a small modification in the con-
struction of the convex tree, the proof is exactly the same
as that of Theorem I in [10] (where it appears as Theo-
rem 1). Therefore we will provide only a proof sketch. As in
the proof of Theorem I, we reduce the multiple processor
scheduling problem, which is known to be strongly NP-
complete, to our problem. Given a set T = {t1, t2, . . . , tn}
of tasks (ti being the execution time of task i), a dead-
line D , and the size m of a set {1,2, . . . ,m} of processors,
the multiple processor schedule problem asks whether the
tasks in T can be scheduled on the m processors satisfy-
ing the deadline D . Corresponding to an instance of this
problem, a convex tree C is constructed as follows.

Each task ti is represented by a caterpillar Ti shown
in Fig. 1(a). Each processor i is represented by a path
Pi of length D − 1. Special components called “barrier”
and “turning point” are constructed as shown in Figs. 1(b)
and 1(c), respectively. C is constructed from these com-
ponents as shown in Fig. 1(d), where p and � are integers
whose values we will fix later. Task caterpillars Ti and Ti+1
are separated by a path Li of length �. Processor paths Pi
and Pi+1 are separated by a (p + 1)-barrier Bi . A turning

A.M.S. Shrestha et al. / Information Processing Letters 112 (2012) 411–417 413
point of height p + 2n + 1 separates the upper task portion
and the lower processor portion. A (p + 2n + 1)-barrier B0
is attached to the left of P1.

If we remove from C the degree-1 vertices of the turn-
ing point, the remaining tree is a caterpillar. It is easy
to see that a caterpillar is biconvex, and therefore both
partitions of C have an ordering satisfying the adjacency
property. If we restore the degree-1 vertices, irrespective
of their position in the ordering of their partition, they do
not disturb the adjacency property of the ordering of the
other partition. Thus C is a convex tree.

We will set the values of � and p such that � =
2 × (m(D + 2) − 2) and p > 2n(D + 4). Then C can be
constructed in time polynomial in n, m, and D . It re-
mains to be shown that the tasks in T can be scheduled
on the m processors if and only if C has a bandwidth of
k = p + 1 + 2n. In fact, apart from the difference in the
structure of the turning point, this part of the proof is ex-
actly the same as Lemmas 2 and 3 of [10]. Therefore, we
shall only briefly describe the idea of the proof here. For a
detailed treatment, we refer to Monien [10].

If there exists a scheduling of the tasks in T such that
tasks ti1 , ti2 , . . . , ti j are assigned to processor i, then C has
bandwidth k and an optimal layout can be achieved by

(a) laying out the vertices of the body of Ti1 , Ti2 , . . . , Ti j

between barriers Bi−1 and Bi (between Bm−1 and
turning point, for i = m) and

(b) laying out the vertices of B0 at the extreme left and
those of the turning point at the extreme right.

Conversely, if C has bandwidth k, then in any optimal
layout of C ,

(a) the turning point must be laid out at one of the ex-
treme ends, and barrier B0 must be laid out at the
other,

(b) all the vertices of the body of each T j must be laid
out between two barriers Bi and Bi+1 for some i (or
Bm−1 and the turning point for i = m − 1), and

(c) for each i, if between Bi and Bi+1 (or between
Bm−1 and turning point for i = m − 1), bodies of
Ti1 , Ti2 , . . . , Ti j are laid out, then ti1 + ti2 + · · · +
ti j < D .

This gives us a scheduling of the tasks in T . �
Since the set of convex bipartite graphs is a proper sub-

set of the set of 2-directional orthogonal ray graphs, we
have the following corollary.

Corollary 1. The bandwidth problem is NP-complete for 2-
directional orthogonal ray graphs.

3. Approximation algorithms

3.1. Approximation algorithms for convex bipartite graphs

We will present two algorithms that approximate the
bandwidth of convex graphs with worst-case performance
ratios of 2 and 4.
1 Compute m(i) for each vertex i ∈ Y . Add a dummy vertex
|Y | + 1 to Y with m(|Y | + 1) = |X | + 1.

2 Let σ(1), . . . , σ (|Y + 1|) be the vertices of Y sorted in the
non-decreasing order of m(i) value, where σ is a permutation
on {1, . . . , |Y | + 1}.

3 Initialize i ← 1, j ← 1, k ← 1.
4 while (j � |X |)
5 if j < m(σ (i))
6 π(x j) = k; j ← j + 1; k ← k + 1.

7 else if j = m(σ (i))
8 π(σ (i)) = k; i ← i + 1; k ← k + 1.

9 return π

Fig. 2. Algorithm 1.

Let G be a convex bipartite graph with bipartition
(X, Y) and an ordering ≺ of X satisfying the adjacency
property with X = {x1, x2, . . . , x|X |} and x1 ≺ · · · ≺ x|X |.
Assume Y = {1,2, . . . , |Y |}. Define mappings s : Y →
{1,2, . . . ,n} and l : Y → {1,2, . . . ,n} such that for y ∈ Y ,
xs(y) and xl(y) are, respectively, the smallest and largest
vertices in ≺ adjacent to y. For each vertex y ∈ Y , let
m(y) = �(s(y) + l(y))/2	.

3.1.1. Algorithm 1
Our first algorithm is described in Fig. 2. Algorithm 1

takes as input G along with the mappings s and l and out-
puts a linear layout π of G . The idea of the algorithm is
to lay out the vertices of X in the same order as they ap-
pear in ≺ and insert the vertices of y between them, such
that for each y ∈ Y ,
|NG(y)|/2� vertices of the set NG(y)

of its neighbors are onto its left and the remaining to its
right. Algorithm 1 starts by computing m(y) for each ver-
tex of Y and sorting the vertices according to their m(i)
values (lines 1 and 2). It incrementally assigns labels to
the vertices of X in the order in which they appear in ≺;
stopping at each x j to check whether there is a vertex in
y with m(y) value equal to j, in which case it assigns the
current label to y. The process is repeated until all vertices
have been labeled (lines 3 through 8).

We shall next analyze the performance of Algorithm 1.
Consider a layout π output by Algorithm 1. The following
lemma is easy to see.

Lemma 1. Algorithm 1 preserves the ordering ≺ of X, i.e.,
π(x1) < π(x2) < · · · < π(x|X |). �

For a vertex y ∈ Y , let G y be the subgraph of G induced
by the vertices in

V y = {
v

∣∣ π(xs(y)) � π(v) � π(y)
}

∪ {
v

∣∣ π(y) � π(v) � π(xl(y))
}
.

The diameter of a graph is the least integer k such that a
shortest path between any pair of vertices of the graph is
at most k.

Lemma 2. For any y ∈ Y , the diameter of G y is at most 4.

Proof. We will prove this by showing that any vertex in
V y is adjacent to a vertex in NG(y) ∪ {y}, where NG(y) is

414 A.M.S. Shrestha et al. / Information Processing Letters 112 (2012) 411–417
Fig. 3. (a) An example for which the approximation ratio of Algorithm 1 is asymptotically equal to 4. (b) A layout with bandwidth �(2n2 + 4n + 2)/4	. Only
the half right of y is shown as the left half contains the primed counterparts in a symmetric layout. Vertices yij can be laid out in the region indicated by
the black vertices.
the set of neighbors of y in G . For any vertex u ∈ V y ∩ X ,
we can see from Lemma 1 that u ∈ NG(y). For any vertex
v ∈ V y ∩Y , it must be that v is adjacent to at least one ver-
tex in V y ∩ X . Otherwise l(v) < s(y) or s(v) > l(y), which
means that m(v) < s(y) or m(v) > l(y), contradicting the
assumption that Algorithm 1 placed v between xs(y) and y
or between xl(y) and y. Thus any vertex in V y is adjacent
to a vertex in NG(y) ∪ {y}, and therefore the diameter of
G y is at most 4. �

The following is a well-known lower bound for the
bandwidth of a graph [1].

Lemma 3. For a graph G, b(G) � max�(N ′ −1)/D ′	, where the
maximum is taken over all connected subgraphs G ′ of G, N ′ is
the number of vertices of G ′ , and D ′ is the diameter of G ′ .

We are now ready to show the approximation ratio of
Algorithm 1.

Lemma 4. For layout π returned by Algorithm 1, bπ (G) � 4 ×
b(G).

Proof. Let xy, x ∈ X, y ∈ Y be an edge of G such that
|π(x) − π(y)| = bπ (G). Let V xy be the set of vertices v
such that v lies between x and y in π . Then bπ (G) =
|V xy| − 1. On the other hand, from Lemmas 2 and 3, we
get b(G) � �(|V y | − 1)/4	. Thus we have:

bπ (G)

b(G)
� |V xy| − 1

(|V y| − 1)/4
.

Since the order of X in ≺ is preserved in π , x must be
xs(y) or xl(y) , and therefore V xy ⊆ V y . Thus we get:

bπ (G)

b(G)
� 4. �

There exist convex bipartite graphs for which this ratio
is asymptotically equal to 4. Fig. 3(a) shows an example
of such a convex bipartite graph. Let us assume that the
mappings s and l provided to Algorithm 1 are based on
the left-to-right ordering of the vertices of the upper par-
tition as shown in Fig. 3(a). The layout π returned by
Algorithm 1 will lay out between y and xn+1 all the ver-
tices xi, x′

i, yij, y′
i j (1 � i � n,1 � j � 2n−1). Thus bπ (G) =

2n2 +2n+1. On the other hand, the diameter of this graph
is 4, and so from Lemma 3, b(G) � �(2n2 + 4n + 2)/4	. In
fact, for large values of n, there is a layout of bandwidth
�(2n2 + 4n + 2)/4	 as shown in Fig. 3(b). Thus the approx-
imation ratio bπ (G)/b(G) is asymptotically equal to 4.

If we use a linear-time sorting algorithm like bucket
sort, Algorithm 1 can be implemented to run in O (|X | +
|Y |) time. So it follows from Lemma 4 that:

Theorem 2. Algorithm 1 computes a linear layout π of a convex
bipartite graph G with bipartition (X, Y) in O (|X | + |Y |) time
such that bπ (G) � 4 × b(G). �

If only G , and not s and l, is given, we can compute
an ordering satisfying the adjacency property (and thus s
and l) in time linear to the number of vertices and edges of
the graph, as shown by Booth and Lueker [2]. In that case,
the time complexity would be O (|X | + |Y | + |E|), where
E is the edge set of G . In the next subsection, we show
a different algorithm that runs slower but improves the
approximation ratio to 2.

3.1.2. Algorithm 2
Let G be a convex bipartite graph with bipartition

(X, Y) and an ordering ≺ of X satisfying the adjacency
property with X = {x1, x2, . . . , x|X |} and x1 ≺ · · · ≺ x|X | . Let
s and l be mappings defined at the beginning of Sec-
tion 3.1. Let G I be the graph obtained from G by adding
to it an edge y1 y2 for each pair y1, y2 ∈ Y having a com-
mon neighbor. A graph is said to be an interval graph if for
every vertex of the graph, there exists an interval on the

A.M.S. Shrestha et al. / Information Processing Letters 112 (2012) 411–417 415
real line, such that two intervals intersect if and only if
their corresponding vertices are adjacent.

Lemma 5. G I is an interval graph.

Proof. We can see that G I is an interval graph by defining
interval [i, i] for each vertex xi ∈ X , and interval [s(y), l(y)]
for each vertex y ∈ Y . �
Lemma 6. b(G I) � 2b(G).

Proof. Let π be an optimal layout of G . Consider the same
layout of G I . For edge uv ∈ E(G I) ∩ E(G),π(u) − π(v) �
b(G). For edge uv ∈ E(G I) \ E(G), there exists a common
neighbor of u and v in G , and therefore π(u) − π(v) �
2b(G). Thus bπ (G I) � 2b(G). Since b(G I) � bπ (G I), we get
b(G I) � 2b(G). �

Sprague showed that given an interval model of an n-
vertex interval graph G and a positive integer k, a layout
of bandwidth at most k, if one exists, can be constructed
in O (n log n) time [14]. Thus by doing a binary search be-
tween 1 and n, we can compute an optimal layout of G ,
and therefore we have the following lemma.

Lemma 7. An optimal layout of an n-vertex interval graph
can be computed in O (n log2 n) time, if its interval model is
given. �

Given a convex bipartite graph G and mappings s and l,
Algorithm 2 simply constructs the interval model of G I

and applies the algorithm for interval graphs. The interval
model of G I can be constructed from s and l in time lin-
ear to the number of vertices in G , and therefore we have
from Lemmas 6 and 7 the following theorem:

Theorem 3. Algorithm 2 computes a linear layout π of a convex
graph G with n vertices in O (n log2 n) time such that bπ (G) �
2 × b(G). �

For a path of length 3, whose bandwidth is 1, Algo-
rithm 2 may return a layout of bandwidth 2. Therefore this
bound is tight.

3.2. Approximation algorithm for 2-directional orthogonal ray
graphs

We will show a 3-approximation algorithm for 2-
directional orthogonal ray graphs. Let G be a bipartite
graph with bipartition (X, Y), and let (≺X ,≺Y) be a pair
of orderings of X and Y , respectively. Two edges x1 y1 and
x2 y2 of G are said to cross in (≺X ,≺Y) if x2 ≺X x1 and
y1 ≺Y y2. If for every pair x1 y1 and x2 y2 that cross, x2 y1
is also an edge of G , then (≺X ,≺Y) is said to be a weak
ordering of G . If for every pair x1 y1 and x2 y2 of crossing
edges, both x1 y2 and x2 y1 are edges of G , then (≺X ,≺Y)

is said to be a strong ordering of G .
Spinrad, Brandstädt, and Stewart gave the following

characterization of bipartite permutation graphs [13].
Lemma 8. A graph G is a bipartite permutation graph if and
only if G has a strong ordering. �
In an earlier work, we showed the following characteriza-
tion of 2-directional orthogonal ray graphs [12].

Lemma 9. A graph G is a 2-directional orthogonal ray graph if
and only if G has a weak ordering. �

Given a 2-directional orthogonal ray graph G with bi-
partition (X, Y), edge set E , and a weak ordering (≺X ,≺Y)

of G , we can construct a graph G B P having vertex set
V B P = X ∪ Y and edge set E B P = E ∪ E ′ , where E ′ is the
set consisting of an edge x1 y2 for every pair of edges x1 y1
and x2 y2 that cross in (≺X ,≺Y).

Lemma 10. G B P is a bipartite permutation graph.

Proof. We will show that G B P is a bipartite permutation
graph by showing that (≺X ,≺Y) is a strong ordering of
G B P .

Let e1 = x1 y1 and e2 = x2 y2 be two edges of G B P that
cross in (≺X ,≺Y). We distinguish three cases: (Case 1)
both e1, e2 ∈ E , (Case 2) one each of e1, e2 is in E ′ \ E
and E , and (Case 3) both e1, e2 ∈ E ′ \ E .

Case 1: Since (≺X ,≺Y) is a weak ordering of G , x2 y1 ∈ E .
By definition of E ′ , x1 y2 ∈ E ′ . Hence both x2 y1, x1 y2 ∈
E B P .

Case 2: Without loss of generality, assume e1 ∈ E ′ \ E and
e2 ∈ E . By definition of E ′ , e1 ∈ E ′ \ E implies that there
exist y′

1 ≺Y y1 and x′
1 ≺X x1 such that x1 y′

1, x′
1 y1 ∈ E

and they cross. Since x1 y′
1 and x2 y2 also cross, x1 y2

must be in E ′ and therefore in E B P . To see that x2 y1 ∈
E B P , we further distinguish three cases depending on
the order of x′

1 and x2 in ≺X .
Case 2.1. x′

1 = x2: x2 y1 = x′
1 y1 and hence x2 y1 ∈ E ⊆ E B P .

Case 2.2. x2 ≺X x′
1: since x′

1 y1 and x2 y2 cross, x2 y1 ∈ E ⊆
E B P .

Case 2.3. x′
1 ≺X x2: since x1 y′

1 and x2 y2 cross, x2 y′
1 ∈ E;

and x2 y′
1 and x′

1 y1 cross, implying that x2 y1 ∈ E ′ ⊆
E B P .

Case 3: By definition of E ′ , e1 ∈ E ′ \ E implies that there
exist y′

1 ≺Y y1 and x′
1 ≺X x1 such that x1 y′

1, x′
1 y1 ∈ E

and they cross. Again by definition of E ′ , e2 ∈ E ′ \ E
implies that there exist y′

2 ≺Y y2 and x′
2 ≺X x2 such

that x2 y′
2, x′

2 y2 ∈ E and they cross. Since x1 y′
1 and

x′
2 y2 also cross, x1 y2 must be in E ′ and therefore in

E B P . To see that x2 y1 ∈ E B P , we further distinguish
three cases depending on the order of x′

1 and x2 in
≺X .

Case 3.1. x′
1 = x2: since x2 y1 = x′

1 y1, we have x2 y1 ∈ E ⊆
E B P .

Case 3.2. x2 ≺X x′
1: since x′

1 y1 ∈ E and x2 y2 ∈ E ′ \ E cross,
we have x2 y1 ∈ E B P from Case 2.

Case 3.3. x′
1 ≺X x2: we further distinguish three cases, de-

pending on the order of y′
2 and y1 in ≺Y .

Case 3.3.1. y′
2 = y1: since x2 y1 = x2 y′

2, we have x2 y1 ∈
E ⊆ E B P .

416 A.M.S. Shrestha et al. / Information Processing Letters 112 (2012) 411–417
Case 3.3.2. y′
2 ≺Y y1: since x2 y′

2 and x′
1 y1 cross, x2 y1 ∈

E ′ ⊆ E B P .
Case 3.3.3. y1 ≺Y y′

2: since x1 y1 ∈ E ′ \ E and x2, y′
2 ∈ E

cross, we have x2 y1 ∈ E B P from Case 2.

In all the above subcases of Case 3, we have shown that
x1 y1 ∈ E B P , and hence both x2 y1, x1 y2 ∈ E B P .

Thus we have shown that for every e1 = x1 y1 and e2 =
x2 y2 of G B P that cross in (≺X ,≺Y), both x2 y1 and x1 y2
are also edges of G B P ; and therefore from Lemma 8, G B P

is a bipartite permutation graph. �
Lemma 11. b(G B P) � 3 × b(G).

Proof. Let π be an optimal layout of G . Consider the
same layout of G B P . For an edge xy of E(G B P) ∩ E(G),
|π(x) − π(y)| � b(G). For an edge xy of E(G B P) \ E(G),
there exist vertices x′ ∈ X and y′ ∈ Y such that yx′, x′ y, y′x
are edges of G , and therefore |π(x) − π(y)| � 3 × b(G).
Thus we have bπ (G B P) � 3b(G). Since b(G B P) � bπ (G B P),
we get b(G B P) � 3 × b(G). �

We shall assume that along with a 2-directional orthog-
onal ray graph G , a weak ordering (≺X ,≺Y) is also pro-
vided as input. If not, then such an ordering can be com-
puted in O (n2) time, where n is the number of vertices
of G [12]. We can construct G B P from G in O (n2) time.
This can be done by first remembering for each x ∈ X , its
smallest neighbor yx in ≺Y and for each y ∈ Y , its smallest
neighbor xy in ≺X , and then adding to G an edge xy for
each pair x, y for which yx ≺ y and xy ≺ x. Uehara showed
that an optimal layout of an n-vertex bipartite permutation
graph having bandwidth k can be computed in O (n2 log k)

time [15]. Then it follows from Lemma 11 that:

Theorem 4. There is an O (n2 log n)-time algorithm which com-
putes a linear layout π of an n-vertex 2-directional orthogonal
ray graph G such that bπ (G) � 3 × b(G). �

Although we do not yet know of an instance for which
the ratio is 3, we show in Fig. 4(a), graph G for which the
algorithm returns a layout of bandwidth 2.5 times the op-
timal. We can see that the ordering (≺X ,≺Y) of G such
that both ≺X and ≺Y are the top-to-bottom order of the
vertices in Fig. 4(a) is a weak ordering. The correspond-
ing bipartite permutation graph G B P is shown in Fig. 4(b).
The bandwidth of G is 2. G B P contains a complete bipar-
tite graph K4,3 induced by the round vertices. Since it is
known [4] that b(Km,n) =
(m − 1)/2� + n for m � n > 0,
we have b(G B P) � 4. It can be quickly checked that if
b(G B P) = 4, then in any optimal layout, the black vertices
must be laid out as one contiguous block with two of the
remaining round vertices on either side of the block. The
square vertex, which is adjacent to three round vertices,
cannot be placed anywhere without increasing the band-
width of the layout. Thus b(G) > 4. On the other hand,
a layout of bandwidth 5 can be easily obtained.
Fig. 4. 2-Directional orthogonal ray graph G for which the approximation
ratio is 2.5.

4. Bandwidth of biconvex graphs

Although we do not yet know the complexity of band-
width problem for biconvex graphs, we have a partial re-
sult. We show that it can be solved in polynomial time for
biconvex trees. The 2-claw is a graph obtained from the
complete bipartite graph K1,3 by replacing each edge by a
path of length 2. The following lemma can be quickly ver-
ified.

Lemma 12. The 2-claw is not a biconvex tree. �
Biconvex trees can be characterized as follows:

Lemma 13. A tree T is biconvex if and only if T is a caterpillar.

Proof. The sufficiency is easy. To prove the necessity, sup-
pose T is a biconvex tree. Let P be a longest path in T . If
the length of P is less than five, T is trivially a caterpil-
lar, and so we assume that it is greater than five. Suppose
there exists a vertex not in P having degree greater than 1.
This implies that T contains the 2-claw as a subtree, con-
tradicting the assumption that T is biconvex graph. There-
fore T is a caterpillar. �

Since a caterpillar is an interval graph, bandwidth of
biconvex trees can be computed in polynomial time.

5. Concluding remarks

We note that the complexity of bandwidth problem
for biconvex graphs remains an interesting open ques-
tion. Also, the analysis we presented for our approximation
algorithm for 2-directional orthogonal ray graphs is not
tight, and closing the gap is another open question.

References

[1] S.F. Assmann, G.W. Peck, M.M. Sysło, J. Zak, The bandwidth of cater-
pillars with hairs of length 1 and 2, SIAM J. Algebraic Discrete Meth-
ods 2 (4) (1981) 387–393.

[2] K.S. Booth, G.S. Lueker, Testing for the consecutive ones property, in-
terval graphs, and graph planarity using PQ-tree algorithms, J. Com-
put. Syst. Sci. 13 (3) (1976) 335–379.

[3] A. Brandstädt, V.B. Le, J.P. Spinrad, Graph Classes: A Survey, Society
for Industrial and Applied Mathematics, 1999.

[4] V. Chvátal, A remark on a problem of Harary, Czechoslovak Math.
J. 20 (1) (1970) 109–111.

[5] C. Dubey, U. Feige, W. Unger, Hardness results for approximating the
bandwidth, J. Comput. Syst. Sci. 77 (2011) 62–90.

A.M.S. Shrestha et al. / Information Processing Letters 112 (2012) 411–417 417
[6] P. Heggernes, D. Kratsch, D. Meister, Bandwidth of bipartite permu-
tation graphs in polynomial time, J. Discrete Algorithms 7 (4) (2009)
533–544.

[7] D. Kleitman, R. Vohra, Computing the bandwidth of interval graphs,
SIAM J. Discrete Math. 3 (1990) 373–375.

[8] T. Kloks, D. Kratsch, H. Müller, Bandwidth of chain graphs, Inf. Pro-
cess. Lett. 68 (6) (1998) 313–315.

[9] T. Kloks, D. Kratsch, H. Müller, Approximating the bandwidth for as-
teroidal triple-free graphs, J. Algorithms 32 (1999) 41–57.

[10] B. Monien, The bandwidth minimization problem for caterpillars
with hair length 3 is NP-complete, SIAM J. Algebraic Discrete Meth-
ods 7 (4) (1986) 505–512.
[11] C. Papadimitriou, The NP-completeness of the bandwidth minimiza-
tion problem, Computing 16 (1976) 263–270.

[12] A.M.S. Shrestha, S. Tayu, S. Ueno, On orthogonal ray graphs, Discrete
Appl. Math. 158 (2010) 1650–1659.

[13] J. Spinrad, A. Brandstädt, L. Stewart, Bipartite permutation graphs,
Discrete Appl. Math. 18 (3) (1987) 279–292.

[14] A.P. Sprague, An O (n logn) algorithm for bandwidth of interval
graphs, SIAM J. Discrete Math. 7 (2) (1994) 213–220.

[15] R. Uehara, Bandwidth of bipartite permutation graphs, in: 19th
Annual International Symposium on Algorithms and Computation,
in: Lecture Notes in Computer Science, vol. 5369, 2008, pp. 824–
835.

	Bandwidth of convex bipartite graphs and related graphs
	1 Introduction
	2 NP-completeness result
	3 Approximation algorithms
	3.1 Approximation algorithms for convex bipartite graphs
	3.1.1 Algorithm 1
	3.1.2 Algorithm 2

	3.2 Approximation algorithm for 2-directional orthogonal ray graphs

	4 Bandwidth of biconvex graphs
	5 Concluding remarks
	References

