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We consider a problem of cost-constrained minimum-delay multicasting in a network, which 
is to find a Steiner tree spanning the source and destination nodes such that the maximum 
total delay along a path from the source node to a destination node is minimized, while 
the sum of link costs in the tree is bounded by a constant. The problem is NP-hard even 
if the network is series-parallel. We present a fully polynomial time approximation scheme 
for the problem if the network is series-parallel. 

Keywords: Bicriteria Steiner tree problem; Fully polynomial time approximation scheme 
(FPTAS); Multicasting; NP-hardness; Series-parallel graph. 

1. In troduct ion 

The multicasting is the simultaneous transmission of da ta from a source node to 
multiple destination nodes in a network. The multicasting involves the generation of 
a multicast tree, which is a Steiner tree spanning the source and destination nodes. 
The performance of multicasting is determined by both the cost of the multicast 
tree and the maximum delay between the source node and a destination node in 
the tree. Therefore, constructing efficient multicasting is formulated as a bicriteria 
Steiner tree problem. 

In connection with the problem, the following problem has been considered in 
the literature 1>4>6>7>10. The delay-constrained minimum cost multicast tree problem 
(DCMCMT) is to construct a multicast tree such that the cost of the tree is mini­
mized while the delay between the source node and a destination node in the tree 
is bounded by a constant integer. DCMCMT is NP-hard since it reduces to the 
Steiner tree problem, which is well-known to be NP-hard. Chen and Xue proposed a 
fully polynomial time approximation scheme (FPTAS) for DCMCMT if the number 
of destination nodes is bounded by a constant 1 , while many heuristic algorithms 
have been proposed in 4>6>7>10. We present a pseudo-polynomial time algorithm for 
DCMCMT if the network is series-parallel. 

We also consider the following problem, which is another variant of the problem 
of constructing efficient multicasting. The cost-constrained minimum delay multicast 
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tree problem (CCMDMT) is to construct a multicast tree such that the maximum 
delay between the source node and a destination node in the tree is minimized while 
the cost of the tree is bounded by a constant integer. CCMDMT is NP-hard since 
it reduces to the cost-constrained shortest path problem (CCSP) which is known 
to be NP-hard 3 . In fact, CCMDMT is NP-hard even for series-parallel networks, 
since CCSP is NP-hard for series-parallel networks as mentioned by Chen and Xue 
2 . We present in this paper a pseudo-polynomial time algorithm and an FPTAS 
for CCMDMT if the network is series-parallel. This paper is the first to consider 
CCMDMT, as far as the authors know. 

2. P r o b l e m s 

We consider a connected graph G with vertex set V(G) and edge set E(G). Each 
edge e is assigned a cost 7(e) and a delay <5(e) which are assumed to be non-
negative integers. The cost of a subgraph H of G, denoted by j(H), is defined 
as 7(H) = ^ee-E(-ff) 7( e)- The delay of a path P in G, denoted by 6(P), is de­
fined as S(P) = ^2eeE(P) <Ke)- A vertex s is designated as the source and a set D 

of vertices is designated as the destinations. A tree T is called a multicast tree if 
{s} U D C V(T). The delay of a multicast tree T, denoted by S(T), is defined as 
S(T) = max{5(P(s,d))\d £ D,P(s,d): (s, d)-path in T}. Let T and A be positive in­
tegers. The delay-constrained minimum cost multicast tree problem (DCMCMT) is 
to construct a multicast tree T such that 5(T) < A and 7(T) is minimized, while the 
cost-constrained minimum delay multicast tree problem (CCMDMT) is to construct 
a multicast tree T such that 7(T) < T and 6(T) is minimized. 

3. P s e u d o - P o l y n o m i a l T i m e A l g o r i t h m s 

A graph is said to be series-parallel if it contains no subdivision of K4 as a sub­
graph. A maximal series-parallel graph is called a 2-tree. The 2-trees can be defined 
recursively as follows: (1) K2 is a 2-tree on two vertices; (2) Given a 2-tree on n 

vertices (n > 2), a graph obtained from G by adding a new vertex adjacent to the 
ends of an edge of G is a 2-tree on n + 1 vertices. A 2-tree on n > 2 vertices has 
2n — 3 edges by definition. 

In this section, we will show an 0 ( n A 3 ) time algorithm and an 0 ( n 4 # m a x ) time 
algorithm to solve DCMCMT and CCMDMT, respectively, for a series-parallel graph 
G with n vertices, where 5 m a x = max{5(e)|e G E(G)}. We use methods similar to 
those used in 2 . We first augment a connected series-parallel graph with n vertices to 
a 2-tree on n vertices using a linear time algorithm presented in 8 . Each added edge 
has infinite cost and delay so that the added edges are never chosen in an optimal 
multicast tree. We next find an optimal multicast tree in the 2-tree. The algorithms 
are based on the dynamic programming. 
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3 . 1 . Preliminaries 

Let G be a 2-tree and C%{G) be the set of triangles of G. A tree TQ is defined as 
follows: V(TG) = E(G) U C3(G); for any e G E(G) and V G C3(G), (e, V) G £ ( T G ) 
if and only if e G E(V). It is easy to see that Tg thus defined is indeed a tree since G 
is a 2-tree. Tg is considered as a rooted tree with root r, where r is an edge incident 
to s in G. Figure 1 shows a 2-tree G with root r and destinations do, d\, and G?2, 
and i/ie corresponding rooted tree TQ-

(b) TG. 

Fig. 1. 2-tree G and TG. 

Let C(j?) be the set of all children of p G E{G) in TQ- Notice that a child of p is a 

triangle in G. Let P ( V ) be the set of triangles which are descendants of V G C3{G) 

in TQ. For C'(p) C C(j>), G[p, C'(p)] is a subgraph of G induced by the edges of 

triangles in Uvgc(p) ^ ( ^ ) together with edge p. 
Let -< be a partial order on V(G) satisfying the following conditions: 

• s -< v for all v G V(G); 

• If V is a triangle with V(V) = {x,y, z}, and edge (x,z) is the parent of V 
with x -< z, then x <y and y < z. 

Such an order can be constructed recursively from the root of TQ as follows: First, 

we define s -< v for edge r = (s, v). For every edge p = (x, z) with x -< z, if p has 

a child triangle G, we define x -< y and y < z for vertex y G V{C) \ {x,z}. We 

continue this process until -< is defined on every pair of endvertices of an edge. Then 

the transitive reflexive closure of -< is the desired partial order. 

For any edge p 
TTW-

n0» 
IP£'(P)] and H, \P,C(P)] 

(x,y) with x -< y and C'(p) C C(p), H^C'{p)], i ^ ' C ' ( p ) 1 , 

are subgraphs of G[p, C'(p)] such that each subgraph contains 
the vertices (destinations) in D n V(G[p.,C'(p)]) and; 

jj\Pj \P)\ j g a ^ r e e i n c l u d i n g both x and y, 

HlPZip)] is a tree with x G l/(tfIP 'C ' (p)1 

tf[p.C'(p)1 is a tree with x G* V(H[p.C'{p)] 

[P,C'(P)] 

and y 0 F(if i J 

and y G F ( i ^ 

p,C'(p)h 

P,C'(p)h 

consists of vertex-disjoint two trees T \P,C(P)] and T \P,C(P)] 
y such that 
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x e V(TtC'{p)]) and y G y(rJp'C'(p)1). 

Finally, let S A = {-oo, 0 , 1 , . . . , A } . 

3.2. Functions 

Let p = (x, y) be an edge with x <y and C'(p) C C(p). 

W—(p,C'(p);tlx,tlXy) is the minimum cost of a tree H^ p>i in G[p,C'(p)} such 

that max{5(x,d)\d G -D PI V(G\p,C'(p)])} < £x and 5(x,y) < £xy, where 5(u,v) is 

the delay of (u,v)-path in tree HJ^ , and £x,£xy G § A . 

W „ ( p , C'(p); £,y,£,xy) is the minimum cost of a tree _H"„ in G\p,C'(p)] such 

that max{(5(y,d)|(i G D nV(G\p,C'(p)])} < £y and 5(x,y) < £xy, where 5(u,v) is 

the delay of (u,v)-path in tree HJ^ , and £,y,£xy G § A -

W#0(p, C'(p); £x) is the minimum cost of a tree H,0'
 W J in G[p,C'(p)} such that 

max{(5(x,e?)|<i G D f l V(G\p,C'(p)])} < £x, where S(x,d) is the delay of (x, <i)-path 

in tree H^C>(p)], and &. G § A . 

W0 . (p, C'(p); £y) is the minimum cost of a tree # ,£ ' in G[p,C'(p)} such that 

max{5(y, d)|d G D r\V(G\p,C'(p)])} < £y, where 5(x,d) is the delay of (a:, d)-path 

in tree H^C'{p)\ and £„ G § A . 

W,. (p , C'(p); £x,£y) is the minimum cost of a forest _£/"„ in G[p,C'(p)} such 

tha tmax{5(x ,d ) |d G £>ny(rJr ' C , ( p ) ] )} < £x, and max{(%,d) |d G DnF(Tj /
[ p 'C ' (p ) ])} < 

£y, where S(x,d) is the delay of (a:, d)-path in tree Tx'
 W J and S(y,d) is the delay 

of (y, (i)-path in tree Ty'
 w , and £x,£y G S A . 

N00(p) is defined to be 0 if G[p,C(p)} has no destination and oo otherwise. 
For an edgep = (x,y) G E(G) with x <y and C(p) C C(p), the ta&Ze W(p, C'(p)) 

for p and C'(p) is the list of values of W^(p,C'(p);^x^xy), W„(p,C'(p);£y,£xy), 

W.o{p, C (p) \£x),W0m{p, C (p); iy), and W..(p, C (p); £x, £y) for every £x,£y, £xy G § A • 
The following is immediate from the definition of functions above. 

L e m m a 3 .1 . For any £ G { 0 , 1 , . . . , A } , mm{W.0(r,C(r);{,), W„(r,C{r);£, A)} is 

the minimum cost of a multicast tree T of G with 5(T) < £, where r = (s, y) G E{G) 

is the root of To- • 

L e m m a 3.2. Any function in W(p,C'(p)) is non-increasing for £x, £y, and £xy. • 

3 .3 . Basic Algorithm B A ( G , s, D, 7 , 5, A ) 

We describe in this subsection a basic algorithm BA(G, s, D, 7 ,5, A) which computes 
W{r,C{r)) for a 2-tree G with n vertices in 0 ( n A 3 ) time. 

BA(G, s, D, 7,8, A) first computes TQ and chooses an edge incident with s in G 

as the root of TQ. 

Then, BA(G, s, . 0 ,7 , S, A) recursively computes tables W(p, C'(p)) for all p G 
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E(G). When we compute functions in each table, we distinguish three cases. 

Case 1 : C'(p) = 0. 
For every p = (x,y) G E{G) with x -< y, and £x,€y,€xy G SA, 

' l(p) if t n e following conditions are satisfied: 
(i) if y G D then Cx > 6(p); 
(ii) if x G D then ^ > 0; 
(hi) £xy >S(p), 

oo otherwise. 

W„(p,$;Zx,i. xyj 

W„(p,®;£y,ZXy) 

W.0(p,<b;^) 

W0.(p,$;tiy) 

W..(p,<b;^,Q 

' l(p) if the following conditions are satisfied: 
(i) if y G D then fy > 0; 
(ii) if x G D then ^ > 5(p); 

(iii) ixy >$(p), 
oo otherwise. 

0 if y G- D, and ii x e D then £x > 0, 
oo otherwise. 

0 if x 0 D, and if y G £> then £y > 0, 
oo otherwise. 

0 if the following conditions are satisfied: 
(i) if x G D then £x > 0, 
(ii) if y G D then £y > 0, 

oo otherwise. 

Case 2 : C'(p) = {V} for some V G C(p). 
For every p = (x,z) G E(G) with C(p) ^ 0 and x -< z, for every V G C(p) with 
1^(V) = {x,y, z}, E(V) = {p = (x,z), q = (x,y),t = (y, z)}, and x ~< y ~< z, and for 
every £,x,£,y,£,xy G §AJ the functions are computed as follows. 

W„(p,{V};Zx,Zxz) = 

( min {1(p) + W.o(q,C(qyiQ + W0.(tJC(tyiQ \ Sxz>6(p),) 

6 > max{£,<J(p) + ££}, (&,£ ') e § A } , 

min{7(p) + W ^ ( g , C ( g ) ; ^ , ^ I / ) + W . . ( t , C ( t ) ; C ^ ) I 
6 , > <*(p), 6* > max{^ , &j, + ££, <*(p) + £}, 

mm < miii{7(p) + ^ . . ( 9 , C ( g ) ; ^ , 0 + ^ ~ ( * , C ( t ) ; e " , C ) 
6 * > <*(p), £* > max{^ , S(p) + £', 5(p) + $z + C;}, 

m i n l W ^ ^ C ^ ^ ^ ^ + ^ j t , ^ ) ; ^ , ^ ) | 

SI2 — <,xy + Sj/z> « - m a x l S x ) Sxy ' Sj/J) 
G § A } 

, (3-1) 

(£' £' £" £" 
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W„(p,{V};£z^Xz) = 
( mm^ip) + W.0(q,C(q);Q + W0.(t,C(t);O \ Zxz>6(p),) 

£x > max{^ , S(p) + £ '} , (&, £') G § A } , 

niin{1{p) + W^{q1C(q)]i'y^'xy) + W..{t.lC(t)^lO \ 
txz > 8(p),£x > max{&, &j, + £,', S(p) + ££}, 

mm < mm{7(p) + W..(q,C(q);C,tiy) + W„(t,C(ty,e:,tiyz) \ 
ixz > 5(pUx > m a x ^ i , <J(p) + £', <J(p) + ^ + ^ } , 

(sy)Sj/)S^)Sj/z) G »A j , 

minlW^^C^);^,^) +W„(t,C(t);^,e;,J | 
S12 — Sxj/ + sj/z) sz^ m a x i s y + Sj,z> sJz j) 
(W £/ £// £// ^ 
vsy) S x y Sz J Syz^ 

G S A } 

mm < 

W.0(p,{V};ex) = 
fmin{^ . 0 (g ,C( 9 ) ; ( ; ) + iV00(t) | ^ U U S A } -

m i i J min{^((z ,C((z) ;£Us y ) + ^ . ° (* ,C(* ) ;0 | 
I & > max{&, £ * + ^ } , (&, Z'xy, %) G § A } 

W>.(p,{V};&) = 

C min {iV00(g) + ^ 0 . ( t , C ( t ) ; ^ ) | &>£" ,£ ' G M -

m h J min{W 0 . ( g ,C( g ) ;^) + ^ ~ ( * , C ( t ) ; ^ , C ) I 

W..(p,{V}; £*,&) = 

f min{W.o(g,C(g);^) + Tyo.(t,C(t);^) | &>£,£*>£", 
(CU^Si}, 

mii i{W„( g ,C( g ) ;^ ,^ j , ) + W » ( * , C ( t ) ; C O | 
( i > m a x { ( x , 4 j / + C y J ^ z ^ C z i (Cx i Cxy J £y i £z ) G § A j , 

miii{W..(g,C(g);^,4)+WM(t,C(t);^,0 | £*>&, 
e,> max{c ̂ + e ; i , (&, exy, & &) G §1} 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Case 3 : C'{p) = C"{p) U {V} for some C"{p) C C(p) and V G C(p) - C"(p). 
For every p = (x,y) G £(G), C'(p) C C(p), V G C » , and 6 , ^ , ^ G §A: 
functions are computed as follows: 

w„(p,c'(p);Zx,Zxy) = 
{nw{w„(p,c"(py,&,? ) + w„(p,{vy,£,0 I ^y>Cy, 

Cx> max{£ , £ , £ + C™}) (sx)C™>sx)C«) G a A j , mm < » » » » < - ' - ' 
min { W . . ( p , C " ( p ) ; a ; ) + WB(p, { V } ; C Q | £xy > Cy, 

( x ^ m a x j ^ , ^ , ^ + £ X ; / } J {£xi€yi€xi£xy) G § A j 

the 
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W„(p,Cf(p)-£,y,£,xy) = 

'mm{W„(p,C"(Py,C'y,Cy 
Sy — m a x \ S y iSj/iSa; + Sicj/} ? VSy J Szy J Sic J Sy 

W..(p,{V};C,Q 

mm < 
£}> 

min {W..(p, C"(p);t'x, £y) + W„(p, {V}; £,', Q | 
^J,^ I E a X { ^ , ^ , ^ j , + ? X y) , \Qy, Qy, Zyl^Xy) ^ ^ A J 

W.0(PjC
,(P)^x) = W.0(p,C"(P)^x) + W.0(Pj{V}^x)J 

Wom(p,C'(p)^y) = W0.(p,C"(P);ty) + W0.(p,{V};Zy), 

W..(p,C'(p)^x,Cy) = W..(p,C"(p)^x^y) + W..(p,{V}^x,Cy). 

The computation of the tables for functions proceeds as follows. We first compute 
W(p,C(p)) = W(p, 0) for every leaf p of TQ as in Case 1 above. 

For every triangle V with parent p and children q and t, W(p, {V}) is computed 
using tables W(q,C(q)) and W(t,C(t)) as in Case 2. 

For every p G E(G) with C(p) = {Vi , V2, • • •, ^\C(p)\}i W(jPiC(p)) i s computed as 
follows. Let CW(p) = { V i , V 2 , . . . , V i } for 1 < i < \C(p)\. W(p,C{l)(p)) is computed 
using W(p,C( i _ 1)(p)) and W(p, {V,}) as in Case 3 for 2 < i < \C(p)\. 

Finally, BA(G,s,D,~f,8,A) outputs W(r,C(r)). 

3 .4. Analysis of B A ( G , s , -D, 7 , <5, A ) 

We use the following lemmas to prove Theorem 3.1 below. Lemmas 3.3 and 3.4 are 
rather obvious. 

L e m m a 3.3 . BA(G,s,D,j,S,A) computes W(r,C(r)), correctly. m 

L e m m a 3.4. W(p, 0) is computed in 0(A'2) time for any leaf p of To- • 

L e m m a 3.5. Let V be a triangle with parent p and children q and t. Given 

W(q,C(q)) andW{t,C(t)), W(p, {V}) is computed in O(A3) time. 

Proof. We only show the computational time for (3.1) in W(p, {V}), that is, we 
show how to compute W „ ( p , {V};£x ,£Xz) from tables W(q,C(q)) and W(t,C(t)). 

Those for (3.2)-(3.5) in VV(p, {V}) can be shown similarly. 

Let E(V) = {p = (x,z),q = (x,y),t = (y,z)}. By definition, G\p, {V}] = 
G[q,C(q)] U G[t,C(t)] U {p} (See Fig. 2). Let Dq = D n V(G[q,C(q)]), Dt = D D 

V(G[t,C(t)]), and Dv = D n V(G\p, {V}]). Then, Dv = DqU Dt, by definition. 

For any tree M <Z G and u,-u G F ( M ) , let 5M(u,v) = J2e£E(pM(u,v))S(e)' 
where PM(U,V) is the path of M connecting u and v, and let 5M(U) = 
m-axd€Dnv(Mu) ^Mu(

u,d), where Mu is the connected component of M including 
u and we define SM(U) = —00 if D n y (M M ) = 0. 

We show the computational time of (3.1) to be 0 ( A ) for any (£x,£xz) £ § A -

Case 1: There exists an i7 [p,{v>] 

Let H be an i j £ ' { v } 1 with the minimum cost. Then, H includes both x and y, 
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G[q,C(q)] V G[t,C(t)] 

Fig. 2. G\p, {V}] = G[q, C(q)] U G[t, C(t)\ U {p}. 

p , -

fjiifiii) H[t,C(t)] 

(a) i ^ V « = H\%CM] u H[tm] u {p} ( b ) H[MV}] = H^C(q)] u H[tfiW] u {p} 

)dz\ i 

Hkfi(q) rr[<l,C(q) 11 •» 
H[t,C(t)] 

(c)H, b,{v}] 
H\*CM]uHMW]u{p}. 

Fig. 3. H, 

(d)H^m]=H^C{q)]UH^. 

b,{v}] 

SH(X) < £*, M * , * ) < ̂ , and 7 ( i f ) = W„(p,{V};Zx,Zxz). Let if, = HnG[q,C(q)] 
and iff = HnG[t,C(t)]. Since if C G[p, {V}] is a tree including both x and y, there 
exists exactly one path connecting x and y on if. We distinguish the proof into the 
following four cases. 

Case 1-1: p G E{H^{V}]) and y <£ V(H^{V}]). 

In this case, Hq is an tf I9
0'

C(?)1, Ht is an if&c(t)1, <J(p) < £xz, and 

^ ^ ( ^ { V } ; ^ , ^ ) = mm{W.0(q,C(q);C) + W0.(t,C(t);O + 1(P) | 

^ > m a x { C , ^ + 6(p)Uxz > S(p)} (3.6) 

(See Fig. 3 (a)). Let dx G Dq be a destination satisfying 8HQ{X) = ^Hq(x,dx) if 
Dq y^ 0 and dz G -Dt be a destination satisfying <5#t(z) = Sfjt(z, dz) if Dt ^ 0. Since 
p G E(H) and y G" T^(if), we have 

SH(X) = max{ max 5JJ (x, dx), max 5fjt(z, dz) + 5(p)} 
d'x GDq d'z G_Dt 

= max{5H (x, dx), 5Ht(z, dz) + 5(p)}, (3.7) 

where 5Hq(x,dx) = — oo if such dx does not exists and 5HL(z,dz) = — oo if such dz 

does not exists. 
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Since Hq is an Hl9o ^ and SHq(x) < £x, we have W.0{q,C(q);£x) < ^y{Hq). 
By the similar arguments, we also have W0»(t,C(t);£x — 7(p)) < ^(Ht). Thus from 
Lemma 3.2 and (3.7), for ^x = £x and £" = £x — ^(p), we have 

W„(p,{V};Zx,Zxz)=rtH) 

= 1(Hq) + 1(Ht)+7(p) 

>W.0(q,C(q);Q + W0.(t,C(t);O+l(p)-

From (3.6), the optimality of H, the inequality holds with equality, that is, 

w„(p,{v}-zx,zxz) = w.0(q,c(qy,Q + w0.(t,c(ty,o + I(P)- (3.8) 
Therefore, W+,(p,{V};£x,£xz) can be computed in 0(1) time by computing (3.8). 

Case 1-2: p G E(H^{V}]), y G V(H%{V}]), and H D G[q,C(q)] is connected. 
In this case, H n G[t, C(t)] is disconnected (See Fig. 3 (b)), and 

w^(P,{w}^x,^xz) = mm{w^(q,c(qy,c,Cy) + w..(t,c(ty,^,C) + -f(p) I 
£x > m a x t f U " + <*(p),&y + 0 > & - ^ 5 ( P ) } -

By the similar arguments to (3.8) in Case 1-1, assuming £'x = £x, £" = £x — 5(p), 
and £' = £x — £y, we have 

W„(p,{V};Sx,£xz) 

= mm{W„(q,C(qyC,ti'Xy) + W..(t,C(ty^,0+j(p) \ty G § A } -

VFM(p, {V}; £x,£xz) can be obtained in 0(A) time since we only need to check the 

value of W„(q,C(qyex,exy) + W„(t,C(t);%,£') + 7(p) for all ^ G §A-

Case 1-3: p e £(.ff£'{v}1), y G V(H%{V}]), and ff n G[t,C(t)] is connected. 
In this case, H n G[g,C(g)] is disconnected (See Fig. 3 (c)). Then, by the similar 
argument to Case 1-2, 

W„(p,{V}; £ , ,£„) 

> m i n { W „ ( 9 , C ( 9 ) ; ^ , 4 ) + W„(t,C(t);£,%z) + 7 ( p ) | 

£x > max{£, 5(p) + £', *(p) + C + 0 > & * > 5(p)} 

can be computed in 0(A) time. In fact, this can be done by checking W„(q,C(q); 

ZWy) + W„(t,C(t);?z',%z)+'Y(p) only for all ^ G SA by putting & = £x, £ = 

£ X - < * ( P U ; = £ X - < S ( P ) - & . 

Case 1-4: p 0 £(.ff£'{v}1) (See Fig. 3 (d)). 
In this case, we can similarly compute 

w„(P,{v};t;x,zxz) > 
mm {W„(q,C(qy^,Cy) + W„(t,C(ty^,^z) I 

£x > m a x l € x J S x y + Cj/JiSxz > Cry + Syz ) • 
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in 0 ( A ) time since we only need to consider the cases that £'x = £x, £y = £x — £' , 

and CyZ = ^xz ~ £'xy for all £'xy G S A . 
Case 2: If such H does not exist for (£x,£xz) £ §A' a u f ° u r equations in 

right hand side of (3.1) are oo and it is verified that the computational time of 
W—(p, {V}; £x,£,xz) to be 0 ( A ) as mentioned above. 

Since W—(p, {V}; £x, £xz) can be computed in 0 ( A ) time for each (£x, £xz) G § A , 

those for all (£,x,£,xz) G § A can be computed in 0 ( A 3 ) time. • 

L e m m a 3.6. Let p G E(G), C(p) = {Vi , V 2 , . . . , V|C(p)|}, andC^(p) = { V i , V 2 , 

. . . , V i } /or 1 < i < |C(p)|. Given W(p,C('~l)(p)) and W(p,{Vi}), W(p,C®(p)) is 

computed in 0 ( A 3 ) time for 2 < i < \C(p)\. • 

Lemma 3.6 can be shown in a similar way to the proof of Lemma 3.5. 

T h e o r e m 3 . 1 . For a 2-tree G on n vertices, BA(G, s,D,"f, 5, A) computes W(r, 

C(r)) in 0 ( n A 3 ) time. 

Proof. The tables W(p, 0) for all leaves p can be computed in 0 ( n A 2 ) time by 

Lemma 3.4. Since the number of triangles is 0 ( n ) , the tables W(p, {V}) for all 

triangles V can be computed in 0 ( n A 3 ) time by Lemma 3.5. By Lemma 3.6, 

W(p.,C(p)) can be computed in 0(\C(p)\A3) time. Since YlPeE(G) \^(P)\
 = ^in)i 

the tables W(p,C(p)) for all edges p can be computed in 0 ( n A 3 ) time. It follows 

that BA(G, s, D, 7, 8, A) computes W(r, C(r)) in 0(reA 3) time by Lemma 3.3. • 

By Lemma 3.1 and Theorem 3.1, BA(G, s,D,"f, 5, A) computes the minimum 
cost of a multicast tree with delay at most £ for any £ G { 0 , 1 , . . . , A } . If we perform 
some bookkeeping operations such as recording how the minimum was achieved dur­
ing the computation of the tables for functions, we can construct a delay-constrained 
minimum cost multicast tree in the same time complexity. Thus, we have the fol­
lowing. 

Corollary 3 .1 . Given a 2-tree G on n vertices, s, D, 7, 5, A, and an integer £, 
0 < £ < A, a minimum cost multicast tree T with 5(T) < £ can be constructed in 
0 ( n A 3 ) time. m 

We denote by MT(G, s , D , 7 , S, A,£) such an 0 ( n A 3 ) time algorithm construct­
ing a minimum cost multicast tree T with 5(T) < £ for a given 2-tree G, s, D, 7, 6, 

A, and an integer £, 0 < £ < A. 

3.5. Pseudo-Polynomial Time Algorithm for DCMCMT 

Given a connected series-parallel graph G' with cost and delay functions 7 ' and 
5', we denote by E X T ( G ' , 5 ' , 7 ' ) a linear time procedure for augmenting G' to a 2-
tree G with V(G) = V{G') 8 , and extending 7 ' and 5' to 7 and 5, respectively, by 
defining 7(e) = 00 and 5(e) = 00 for each e G E(G) — E(G'), and 7(e) = 7 r(e) and 
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8(e) = 8'{e) for each e G E(G'). Then, it is easy to see that Algorithm 1 shown 
in Fig. 4. solves DCMCMT for series-parallel graphs, and we have the following by 
Theorem 3.1. 

T h e o r e m 3.2. For a series-parallel graph G with n vertices and a positive integer 
A, Algorithm 1 solves DCMCMT in 0(reA 3) time. • 

Input a series-parallel gra 
i : E(G') -»• N, 8' 

Output a minimum cost 
most A. 

begin 
E X T ( G ' , 7

/ , 5 / ) ; 

BA(G,S,D,-y,5,A) 
MT(G,s,D,-y,6,A, 
if 7(T) < oo 

return T; 
else 

return "NO"; 
endif 

end 

ph G', s € 
E(G') -+ 
multicast 

; 
A); 

V(G'), 
N, A e 

D C 
Z+. 

tree T with 

V(G'), 

delay at 

Fig. 4. Algorithm 1. 

3.6. Pseudo-Polynomial Time Algorithm for CCMDMT 

Given a cost bound T and the table W(r,C(r)) for functions, we denote by 
MlN_DELAY(r, W(r, C(r))) a linear time procedure for computing the minimum £ 
satisfying min{W«.(r, C(r); £, A) , Wmo (r, C(r); £)} < T if exists. It returns oo if there 
exists no such £. 

Since the number of edges of multicast tree is at most n — 1, the maximum delay 
of a multicast tree is at most (n — l)5max, where <5max = rnaxee-B(G') <^'(e)- Thus, it is 
easy to see that Algorithm 2 shown in Fig. 5 is a pseudo-polynomial time algorithm 
for CCMDMT, and we have the following by Theorem 3.1. 

T h e o r e m 3.3 . For a series-parallel graph G with n vertices and a non-negative 

integer V, Algorithm 2 solves CCMDMT in 0 ( n 4 5 m a x
3 ) time if 5 m a x > 1. • 

4. F P T A S for C C M D M T 

We use standard techniques 2>3>5>9 to turn BA(G, s,D,^y, 8, A) into an FPTAS for 
CCMDMT. We show in Section 4.1 a pair of upper and lower bounds U and L for 
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Input a series-parallel graph G', 

s e V(G'), D C V(G'), 
i : E{G') -+ N, 5' : E(G') -> N, T G Z+. 

O u t p u t a minimum delay multicast tree T with cost at 
most r . 

beg in 
^max := max 6'(e); 

eSS(G') 
A' := (n - l ) 5 m a x ; 

E X T ^ ' . V , * ' ) ; 

B A ( G , s , A 7 , « , A ' ) i 
MiN_DELAY(r, W(r, C(r))); 
if £ < oo 

MT(G, s ,A 7 l5,A,C); 
return T; 

else 
re turn "NO"; 

endif 
end 

Fig. 5. Algorithm 2. 

the minimum delay of a cost constrained multicast tree such that U/L < n — 1. For 
any e > 0, we show in Section 4.2 a (l + e)-approximation algorithm for CCMDMT. 
The algorithm runs in 0(n7/e3) time, provided that we have a pair of upper and 
lower bounds U and L for the delay of a cost constrained multicast tree such that 
U/L = G(n). It follows that we have an FPTAS for CCMDMT. 

4 .1 . Upper and Lower Bounds for Minimum Delay 

We use a technique similar to 2 . Let u\ < V2 < • • • < fk be different edge delays, and 
7j be the cost function defined as 7j(e) = 7(e) if 5(e) < Uj, and 7j(e) = 00 otherwise. 
Let Tj be a minimum cost multicast tree of G for 7^, and J be the minimum j such 
that ij(Tj) < r . 

By the definition of J, the minimum delay of a cost constrained multicast tree 
is at least vj and at most (re — l)vj. Since such J and also Tj can be computed in 
C(relogre) time 2, we have the following. 

T h e o r e m 4 .1 . A pair of upper and lower bounds U and L for the minimum delay 
of a cost constrained multicast tree satisfying U/L = re — 1 can be computed in 
O ( n l o g n ) time. Moreover, a multicast tree Tj with cost at most V and delay at 
most U can also be computed in O(relogre) time. • 

Given a 2-tree G with source s and destinations D, cost and delay functions 7 and 
5, and a positive integer T, we denote by C O M P _ U L ( G , S, -D,7, 5, T) an O(nlogre) 
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time procedure for computing upper and lower bounds U and L with U/L < n — 1. 

4.2 . FPTAS for CCMDMT 

For any a > 0, let 8a be a delay function defined as 8a(e) = [aS(e)\ for any 
e G E(G). Let T a be a minimum delay multicast tree with cost at most V for 8a and 
OPT(# a ) = 5a(Ta). Notice that T\ is a minimum delay multicast tree with cost at 
most r for 8 = 8\. We denote by Pa a maximum delay path in Ta for 8a. 

By the definition of 8a, we have 

8(e) > -8Je) and (4.1) 
a 

5(e)<-(6a(e) + l) (4.2) 
a 

for any e G E{G). If we denote by P{ a maximum delay path of T\ for 8a 

OPT(S)= J2 <He) 
eGB(Pi) 

> E 5(e) 

> E ^ ) (4.3) 
ee£(P{) 

> E -5»(e) 
—' a 

e€E(Pa) 
> -Sa(Ta) 

a 

= - O P T O y . (4.4) 
a 

where (4.3) follows from (4.1). 
Moreover, if we set a = (n — l)/eL, and denote by P'a a maximum delay path 
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in Ta for 6, we have 

8(Ta)= J2 S(e) 

e£E(PL) 

a a ^—' 

^ n — 1 1 v-^ . , x 

a a 

1 
e£E(Pa) 

eL+-0PT{5a) 
a 

<eL + 0PT(<5) 

< ( l + e)0PT(5), 

(4.5) 

(4.6) 

(4.7) 

where inequality (4.5) and (4.7) follow from (4.2) and (4.4), respectively. 
Thus, we conclude that Algorithm 3 shown in Fig. 6 is an FPTAS for CCMDMT. 

Since Aa = {n — l)U/eL, we have the following by Theorem 3.2. 

Input a series-parallel graph G', s e V(G'), D C V(G'), 
i : E{G') -»• N, 8' : E(G') -> N, T G Z+, e > 0. 

Output a multicast tree T with cost at most T and delay 
at most ( l+e)OPT((P). 

begin 
E x T ^ y , ^ ) ; 
CoMP_UL(G,s,D,7,*,r); 
a := (n — l)/eL; 
5a(e) := M(e)J Ve e £(G); 
A a := at/ ; 
BA(G,s,£>,7,<*a,Aa); 
MiN_DELAY(r, W(r, C(r))); 

MT{G,s,D,7,Sa,Aa,0; 
return T; 

end 

Fig. 6. Algorithm 3. 

Lemma 4.1. For a series-parallel graph G with n vertices and a non-negative in­
teger A, Algorithm 3 computes a (1 + e)-approximate solution for CCMDMT in 
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O (n(nU/eL)'^ time if we are given an upper bound U and a lower bound L of 

CCMDMT. m 

If U/L = 0(n), 0(n{nU/eL)3) = 0(n7/e3). Thus, from Theorem 4.1 and 
Lemma 4.1, we have the following. 

T h e o r e m 4.2 . A (1 + e)-approximate solution for CCMDMT can be obtained in 

0{n log n + n 7 / e 3 ) time. • 

5. Conc luding R e m a r k s 

• The time complexity in Theorem 4.2 can be reduced to C ( n 4 / e 3 + n 3) by 
adopting a well-known scaling and rounding technique used in 2>3>5>9. The 
proof is rather complicated and omitted here. 

• It should be noted that our method to obtain FPTAS for CCMDMT cannot 
apply to DCMCMT in a straightforward way, since A can be exponentially 
large. 

• The approximability of DCMCMT and CCMDMT for general graphs, and 
that of DCMCMT for series-parallel graphs are interesting open problems. 
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