On the Fault Testing for Reversible Circuits

Satoshi Tayu, Shigeru Ito, and Shuichi Ueno

Department of Communications and Integrated Systems Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan {tayu,ueno}@lab.ss.titech.ac.jp

Abstract. This paper shows that it is NP-hard to generate a minimum complete test set for stuck-at faults on the wires of a reversible circuit. We also show non-trivial lower bounds for the size of a minimum complete test set.

1 Introduction

Reversible circuits, which permute the set of input vectors, have potential applications in nanocomputing [3], low power design [1], digital signal processing [6], and quantum computing [4]. This paper shows that given a reversible circuit C, it is NP-hard to generate a minimum complete test set for stuck-at faults which fix the values of wires in C to either 0 or 1. This is the first result on the complexity of fault testing for reversible circuits, as far as the authors know. We also show non-trivial lower bounds for the size of a minimum complete test set.

A gate is *reversible* if the Boolean function it computes is bijective. If a reversible gate has k input and output wires, it is called a $k \times k$ gate. A circuit is *reversible* if all gates are reversible and are interconnected without funout or feedback. If a reversible circuit has n input and output wires, it is called an $n \times n$ circuit.

We shall focus our attention to detecting faults in a reversible circuit C which cause wires to be stuck-at-0 or stuck-at-1. Let W(C) be the set of all wires of C. W(C) consists of all output wires of C and input wires to the gates in C. W(C)is the set of all possible fault locations in C. For an $n \times n$ reversible circuit C, a test is an input vector in $\{0,1\}^n$. A test set is said to be *complete* for C if it can detect all possible single and multiple stuck-at faults on W(C). Patel, Hayes, and Markov [5] showed that for any reversible circuit C, there exists a complete test set for C. Let $\tau(C)$ be the minimum cardinality of a complete test set for C.

We first show that it is NP-hard to compute $\tau(C)$ for a given reversible circuit C. Let MTS (Minimum Test Size) be a problem of deciding if $\tau(C) \leq B$ for a given reversible circuit C and integer B. We show in Section 3 that MTS is NP-complete.

Patel, Hayes, and Markov [5] showed a general upper bound for $\tau(C)$ as follows. They showed that

$$\tau(C) = O(\log|W(C)|) \tag{1}$$

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 812–821, 2007.

[©] Springer-Verlag Berlin Heidelberg 2007

for any reversible circuit C. We show the first non-trivial existential lower bound for $\tau(C)$. We show in Section 4 that there exists a reversible circuit C such that

$$\tau(C) = \Omega(\log \log |W(C)|).$$
(2)

A k-CNOT gate is a $(k + 1) \times (k + 1)$ reversible gate. It passes some k inputs, referred to as control bits, to the outputs unchanged, and inverts the remaining input, referred to as target bit, if the control bits are all 1. The 0-CNOT gate is just an ordinary NOT gate. A CNOT gate is a k-CNOT gate for some k. Some CNOT gates are shown in Fig. 1, where a control bit and target bit are denoted by a black dot and ring-sum, respectively. A *CNOT circuit* is a reversible circuit consisting of only CNOT gates. A k-CNOT circuit is a CNOT circuit consisting of only k-CNOT gates. Any Boolean function can be implemented by a CNOT circuit since the 2-CNOT gate can implement the NAND function.

$$t \longrightarrow \overline{t} \qquad \begin{array}{c} c & & c \\ t & & c \\ \end{array} \qquad \begin{array}{c} c & & c \\ t & & c \\ \end{array} \qquad \begin{array}{c} c & & c \\ c \oplus t \\ \end{array} \qquad \begin{array}{c} c_1 & & c_1 \\ c_2 & & c_2 \\ \end{array} \qquad \begin{array}{c} c_1 & & c_1 \\ c_2 & & c_2 \\ \end{array} \qquad \begin{array}{c} c_1 & & c_1 \\ c_2 & & c_2 \\ \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \\ \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & & c_2 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & c_1 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1 & c_1 \end{array} \qquad \end{array} \qquad \begin{array}{c} c_1$$

Fig. 1. CNOT gates

Chakraborty [2] showed that

$$\tau(C) \le n \tag{3}$$

if C is an $n \times n$ CNOT circuit with no 0-CNOT or 1-CNOT gate. We show in Section 5 that there exists an $n \times n$ 2-CNOT circuit C such that

$$\tau(C) = \Omega(\log n). \tag{4}$$

It is an interesting open problem to close the gaps between the upper bounds (1) and (3), and our lower bounds (2) and (4), respectively.

2 Complete Test Sets

A wire w of a reversible circuit C is said to be *controllable* by a test set T if the value of w can be set to both 0 and 1 by T. A set of wires $S \subseteq W(C)$ is said to be *controllable* by T if each wire of S is controllable by T. The following characterization for a complete test set is shown in [5].

Theorem I. A test set T for a reversible circuit C is complete if and only if W(C) is controllable by T.

3 NP-Completeness of MTS

The purpose of this section is to prove the following:

Theorem 1. MTS is NP-complete.

Proof. A minimum complete test set T for a reversible circuit C can be verified in polynomial time, since $|T| = O(\log |W(C)|)$ by (1). Thus MTS is in NP.

We show a polynomial time reduction from 3SAT, a well-known NP-complete problem, to MTS. Let $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ and

$$\phi(\boldsymbol{x}) = \bigwedge_{j=1}^{m} \rho_j$$

be a Boolean function in conjunctive normal form in which each clause ρ_j has 3 literals for $j \in [m] = \{1, 2, ..., m\}$. For a Boolean variable x, literals \overline{x} and x are denoted by x^0 and x^1 , respectively.

We use generalized CNOT gates for simplicity. A generalized k-CNOT gate has k control bits x_1, \ldots, x_k and a target bit t. The output of the target bit is defined as

$$(x_1^{\alpha_1} \wedge x_2^{\alpha_2} \wedge \cdots \wedge x_k^{\alpha_k}) \oplus t.$$

A control bit x_i is said to be positive if $\alpha_i = 1$, and negative if $\alpha_i = 0$. Notice that a CNOT gate is a generalized CNOT gate with no negative control bit. Notice also that a negative control bit is equivalent to a positive control bit with a 0-CNOT gate on the input and output wires. A generalized CNOT [k-CNOT] circuit is a reversible circuit consisting of only generalized CNOT [k-CNOT] gates.

We first construct a generalized CNOT gate G_i for each clause ρ_i . Let

$$\rho_j = x_{j1}^{\sigma_{j1}} \lor x_{j2}^{\sigma_{j2}} \lor x_{j3}^{\sigma_{j3}},$$

where $\sigma_{jl} \in \{0, 1\}$ and $x_{jl} \in \{x_i | i \in [n]\}$ for $l \in [3]$. We construct a generalized 3-CNOT gate G_j for ρ_j as follows. The gate G_j has 3 control bits x_{j1}, x_{j2}, x_{j3} , and a target bit t. A control bit x_{jl} is defined to be positive if $\sigma_{jl} = 0$, and negative if $\sigma_{jl} = 1$. For an $n \times n$ circuit C and an input vector $v \in \{0, 1\}^n$, we denote by C(v) the output vector of C for v. The following lemma is immediate from the definition of G_j .

Lemma 1.
$$G_j(x_{j1}, x_{j2}, x_{j3}, t) = (x_{j1}, x_{j2}, x_{j3}, \overline{\rho_j} \oplus t).$$

Lemma 1 means that G_j changes the target bit t for input vector $(x_{j1}, x_{j2}, x_{j3}, t)$ if and only if $\rho_j(x_{j1}, x_{j2}, x_{j3}) = 0$. As an example, for a Boolean function:

$$\psi(x_1, x_2, x_3) = \rho_1 \wedge \rho_2, \rho_1 = x_1 \vee \overline{x_2} \vee x_3, \text{ and} \rho_2 = \overline{x_1} \vee \overline{x_2} \vee x_3,$$

$$\left. \right\}$$

$$(5)$$

Fig. 2. Generalized 3-CNOT gates and 6-CNOT circuit

generalized 3-CNOT gates G_1 and G_2 are shown in Fig. 2(a) and (b), where a negative control bit is denoted by an empty circle.

We next construct a $(2n + 1) \times (2n + 1)$ generalized 6-CNOT circuit $C(\phi)$ for ϕ . For $\boldsymbol{x} = (x_1, x_2, \ldots, x_n), \boldsymbol{y} = (y_1, y_2, \ldots, y_n) \in \{0, 1\}^n$, and $t \in \{0, 1\}$, let $\overline{\boldsymbol{x}} = (\overline{x}_1, \overline{x}_2, \ldots, \overline{x}_n)$ and $(\boldsymbol{x}, \boldsymbol{y}, t) = (x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n, t)$. Let G'_j be a copy of G_j with control bits $x'_{j1}, x'_{j2}, x'_{j3}$, and a target bit t for any $j \in [m]$. For any $j, h \in [m], G_{jh}$ is a generalized 6-CNOT gate with control bits $x_{j1}, x_{j2}, x_{j3}, x'_{h1}, x'_{h2}, x'_{h3}$, and a target bit t. A control bit $x_{jl}[x'_{hl}]$ is positive in G_{jh} if and only if $x_{jl}[x'_{hl}]$ is positive in $G_j[G'_h]$. We construct a $(2n + 1) \times (2n + 1)$ generalized 6-CNOT circuit $C(\phi)$ which is a cascade consisting of m^2 gates G_{jh} $(j, h \in [m])$. As an example, $C(\psi)$ for the Boolean function ψ defined in (5) is shown in Fig. 2(c). We have the following by Lemma 1.

Lemma 2. $G_{jh}((\boldsymbol{x}, \boldsymbol{x}', t)) = (\boldsymbol{x}, \boldsymbol{x}', (\overline{\rho_j(\boldsymbol{x})} \land \overline{\rho_h(\boldsymbol{x}')}) \oplus t).$

Lemma 2 implies that G_{jh} changes the target bit if and only if $\rho_j(\boldsymbol{x}) = 0$ and $\rho_h(\boldsymbol{x}') = 0$.

We now show that ϕ is satisfiable if and only if $\tau(C(\phi)) \leq 2$. For a gate G of C, $G[\boldsymbol{v}]$ is the output vector of G generated by an input vector \boldsymbol{v} of C. Also, $w[\boldsymbol{v}]$ is the value of a wire w in C generated by \boldsymbol{v} .

Lemma 3. A test set $T = \{v_1, v_2\}$ of a generalized CNOT circuit C with no 0-CNOT gate is complete if and only if T satisfies the following conditions:

- (i) $\boldsymbol{v}_2 = \overline{\boldsymbol{v}_1}$, and
- (ii) $G[\boldsymbol{v}_i] = \boldsymbol{v}_i \ (i \in [2])$ for every gate G of C.

Proof. It is easy to see that if T satisfies (i) and (ii), then W(C) is controllable by T. Thus T is complete for C by Theorem I.

Suppose T is complete for C. Then W(C) is controllable by T by Theorem I. Since the input wires of C are controllable by T, we have $v_2 = \overline{v_1}$. Thus, T satisfies (i). Suppose T does not satisfy (ii), that is $G[v_i] \neq v_i$ for some generalized k-CNOT gate G and some i, say i = 1. That is, if w_{ti} and w_{to} are the input and output wires of the target bit of G, we have

$$w_{\rm to}[\boldsymbol{v}_1] = \overline{w_{\rm ti}[\boldsymbol{v}_1]}.\tag{6}$$

Since the input wires of G are controllable by T, we have

$$w_{\rm in}[\boldsymbol{v}_2] = \overline{w_{\rm in}[\boldsymbol{v}_1]} \tag{7}$$

for every input wire w_{in} of G. Thus we conclude that

$$w_{\rm ti}[\boldsymbol{v}_2] = \overline{w_{\rm ti}[\boldsymbol{v}_1]}.\tag{8}$$

By (6), (7), and $k \ge 1$, there exists an input wire w_{in} of control bit of G such that $w_{\text{in}}[\boldsymbol{v}_2] = 1$ if w_{in} is a negative control bit, and $w_{\text{in}}[\boldsymbol{v}_2] = 0$ otherwise. This implies that

$$w_{\rm to}[\boldsymbol{v}_2] = w_{\rm ti}[\boldsymbol{v}_2]. \tag{9}$$

By (6), (8), and (9), we have

$$w_{\rm to}[\boldsymbol{v}_1] = w_{\rm to}[\boldsymbol{v}_2],$$

which means that w_{to} is not controllable by T, a contradiction. Thus T satisfies (ii).

Now, we are ready to prove the following.

Lemma 4. ϕ is satisfiable if and only if $\tau(C(\phi)) \leq 2$.

Proof. It is easy to see from Lemmas 2 and 3 that if $\phi(\mathbf{x}) = 1$ for some $\mathbf{x} \in \{0,1\}^n$, then a test set $\{(\mathbf{x}, \overline{\mathbf{x}}, 0), (\overline{\mathbf{x}}, \mathbf{x}, 1)\}$ is complete for $C(\phi)$. Thus, $\tau(C(\phi)) \leq 2$.

Notice that $\tau(C) \geq 2$ for any reversible circuit C by Theorem I. Suppose $\tau(C(\phi)) = 2$, and let T be a complete test set of size two. By Lemma 3, $T = \{(\boldsymbol{x}, \boldsymbol{y}, 0), (\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, 1)\}$ for some $\boldsymbol{x}, \boldsymbol{y} \in \{0, 1\}^n$. Also by Lemma 3, $G_{jh}[(\boldsymbol{x}, \boldsymbol{y}, 0)] = (\boldsymbol{x}, \boldsymbol{y}, 0)$ and $G_{jh}[(\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, 1)] = (\overline{\boldsymbol{x}}, \overline{\boldsymbol{y}}, 1)$ for any $j, k \in [m]$. Thus by Lemma 2,

$$\overline{\rho_j(\boldsymbol{x})} \wedge \overline{\rho_h(\boldsymbol{y})} = 0 \text{ and } \overline{\rho_j(\overline{\boldsymbol{x}})} \wedge \overline{\rho_h(\overline{\boldsymbol{y}})} = 0$$

for any $j, h \in [m]$, that is,

$$\rho_j(\boldsymbol{x}) \lor \rho_h(\boldsymbol{y}) = 1 \text{ and } \rho_j(\overline{\boldsymbol{x}}) \lor \rho_h(\overline{\boldsymbol{y}}) = 1$$

for any $j, h \in [m]$. If $\rho_j(\boldsymbol{x}) = 1$ for any $j \in [m]$, then $\phi(\boldsymbol{x}) = 1$, and ϕ is satisfiable. If $\rho_j(\boldsymbol{x}) = 0$ for some $j \in [m]$, then $\rho_h(\boldsymbol{y}) = 1$ for any $h \in [m]$. Thus $\phi(\boldsymbol{y}) = 1$, and ϕ is satisfiable.

Since $C(\phi)$ can be constructed in polynomial time, we complete the proof of the theorem. \Box

4 Lower Bounds for 1-CNOT Circuits

The purpose of this section is to prove the following:

Theorem 2. There exists a 1-CNOT circuit C such that

$$\tau(C) = \Omega(\log \log |W(C)|).$$

Before proving the theorem, we need some preliminaries.

4.1 Preliminaries

The level of a wire of a reversible circuit is defined as follows. The input wires of the circuit are at level 0, and the output wires of a gate are at one plus the highest level of any of input wires of the gate. In cases where an input wire of a gate is at level i and the output wires are at level j > i + 1, we say the input wire is at all levels between i and j - 1 inclusively.

It is easy to see the following lemmas.

Lemma 5. If C_3 is a reversible 2×2 circuit consisting of just one 1-CNOT gate, then $\tau(C_3) = 3$.

Lemma 6. If B is a 2×2 1-CNOT circuit shown in Fig. 3, then B(v) = v for any $v \in \{0, 1\}^2$.

Fig. 3. 2×2 1-CNOT circuit *B*

Lemma 7. If C is an $n \times n$ 1-CNOT circuit with g gates, then |W(C)| = n + 2g.

4.2 Proof of Theorem 2

We prove the theorem by constructing such circuits. Let C_h $(h \ge 3)$ be a 1-CNOT circuit defined as follows. Let C_3 be a 1-CNOT circuit consisting of just one 1-CNOT gate. For $h \ge 4$, C_h is recursively defined as follows. Let $C_{h-1}^{(0)}, C_{h-1}^{(1)}, \ldots, C_{h-1}^{(\varpi_{h-1})}$ be $\varpi_{h-1} + 1$ copies of C_{h-1} , where $\varpi_{h-1} = |W(C_{h-1})|$. Construct an $n_{h-1} \times n_{h-1}$ 1-CNOT circuit D_{h-1} by concatenating $C_{h-1}^{(1)}, C_{h-1}^{(2)}, \ldots, C_{h-1}^{(\varpi_{h-1})}$, where n_{h-1} is the number of input wires of C_{h-1} . Let $W(C_{h-1}^{(k)}) = \{w_1^{(k)}, w_2^{(k)}, \ldots, w_{\varpi_{h-1}}^{(k)}\}$ for $0 \le k \le \varpi_{h-1}$ such that if the level of $w_i^{(k)}$ is not greater than the level of $w_i^{(k)}$, then $i \le j$. C_h is constructed from D_{h-1} and $C_{h-1}^{(0)}$ by inserting a copy of 1-CNOT circuit B shown in Fig. 3 for each wire of $C_{h-1}^{(i)}$, $i \in [\varpi_{h-1}]$, such that the wire of $C_{h-1}^{(i)}$ is the control bit and $w_i^{(0)}$ is the target bit of the 1-CNOT gates. As an example, D_3 and C_4 are shown in Fig. 4 and Fig. 5, respectively.

Fig. 4. 1-CNOT circuit D_3

Fig. 5. 4×4 1-CNOT circuit C_4

Let g_h be the number of gates in C_h . From the definition of C_h , we have

$$n_h = 2^{h-2} (10)$$

for $h \geq 3$. We also have

$$g_{h} = (\varpi_{h-1} + 1)g_{h-1} + 2\varpi_{h-1}^{2}$$

= $(n_{h-1} + 2g_{h-1} + 1)g_{h-1} + 2(n_{h-1} + 2g_{h-1})^{2}$ (11)

$$= 10g_{h-1}^2 + g_{h-1}(9n_{h-1}+1) + 2n_{h-1}^2$$
(12)

for $h \ge 4$, where (11) follows from Lemma 7. Since each input wire of C_h is an input wire of a gate, and every 1-CNOT gate has two input wires, we have

$$n_h \le 2g_h \tag{13}$$

for $h \geq 3$.

Lemma 8. $h = \Omega(\log \log |W(C_h)|).$

Proof. By (12) and (13), we have

 $g_h \le 36g_{h-1}^2 + g_{h-1} \le 37g_{h-1}^2.$

It follows that $37g_h \leq (37g_{h-1})^2$, and so

$$\log g_h + \log 37 \le 2(\log g_{h-1} + \log 37) \le 2^{h-3}(\log g_3 + \log 37).$$

Thus, we have

$$\log g_h \le 2^{h-3} (0 + \log 37). \tag{14}$$

By Lemma 7 and (13), we have $\varpi_h = n_h + 2g_h \leq 4g_h$ for $h \geq 4$, and so

$$\log \log \varpi_h \le \log \log g_h + 1 \le h - 3 + \log \log 37 + 1$$

by (14). Thus we conclude that

$$h = \Omega(\log \log \varpi_h).$$

819

Lemma 9. $\tau(C_h) \ge h$.

Proof. The proof is by induction on h. $\tau(C_3) = 3$ by Lemma 5. Suppose $\tau(C_{h-1}) \ge h-1$. We will show that $\tau(C_h) \ge h$. Suppose contrary that $\tau(C_h) = h-1$. Let $T = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_{h-1}\}$ be a complete test set for C_h , and $\boldsymbol{v}_l = (\boldsymbol{v}_l^{(1)}, \boldsymbol{v}_l^{(2)})$ for $\boldsymbol{v}_l^{(1)}, \boldsymbol{v}_l^{(2)} \in \{0, 1\}^{n_{h-1}}$ $(l \in [h-1])$. Let $T' = \{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_{h-2}\}$, and $T'_k = \{\boldsymbol{v}_1^{(k)}, \boldsymbol{v}_2^{(k)}, \ldots, \boldsymbol{v}_{h-2}^{(k)}\}$ for $k \in [2]$.

Since $\tau(C_{h-1}) \ge h-1$ by the inductive hypothesis, $W(C_{h-1})$ is not controllable by $T'_k, k \in [2]$. Thus there exists *i* such that $w_i^{(0)}$ in $C_{h-1}^{(0)}$ is not controllable by T'_2 . There also exists *j* such that $w_j^{(i)}$ in D_{h-1} is not controllable by T'_1 . Thus, we have

$$(w_j^{(i)}[\boldsymbol{v}_l^{(1)}], w_i^{(0)}[\boldsymbol{v}_l^{(2)}]) = (w_j^{(i)}[\boldsymbol{v}_m^{(1)}], w_i^{(0)}[\boldsymbol{v}_m^{(2)}])$$
(15)

for any $\boldsymbol{v}_l, \boldsymbol{v}_m \in T'$.

Let G be the left 1-CNOT gate of a copy of B whose control bit is at $w_j^{(i)}$ and target bit is at $w_i^{(0)}$, w_c be the input wire of control bit of G, and w_t be the input wire of target bit of G. Then by Lemma 6,

$$(w_c[\boldsymbol{v}_l], w_t[\boldsymbol{v}_l]) = (w_j^{(i)}[\boldsymbol{v}_l^{(1)}], w_i^{(0)}[\boldsymbol{v}_l^{(2)}])$$
(16)

for any $v_l \in T'$. By (15) and (16), we have

$$(w_c[\boldsymbol{v}_l], w_t[\boldsymbol{v}_l]) = (w_c[\boldsymbol{v}_m], w_t[\boldsymbol{v}_m])$$
(17)

for any $v_l, v_m \in T'$. By Lemma 5 and (17), we conclude that W(G) is not controllable by $T = T' \cup \{v_{h-1}\}$, a contradiction. Thus, we have $\tau(C_h) \ge h$. \Box

From Lemma 8 and 9, we obtain the theorem.

5 Lower Bounds for 2-CNOT Circuits

The purpose of this section is to prove the following.

Theorem 3. There exists an $n \times n$ 2-CNOT circuit C such that $\tau(C) = \Omega(\log n)$.

Proof. We need the following two lemmas, which can be easily seen.

Fig. 6. 3×3 2-CNOT circuits E_3 and F

Lemma 10. If E_3 is a 3×3 2-CNOT circuit shown in Fig. 6(a), then $\tau(E_3) = 3$.

Lemma 11. If F is a 3×3 2-CNOT circuit shown in Fig. 6(b), then $F(\mathbf{v}) = \mathbf{v}$ for any $\mathbf{v} \in \{0, 1\}^3$.

We prove the theorem by constructing such circuits. Let E_h $(h \ge 3)$ be a 2-CNOT circuit defined as follows. Let E_3 be a 2-CNOT circuit shown in Fig. 6(a). For $h \ge 4$, E_h is recursively defined as follows. Let $E_{h-1}^{(i)}$ for $0 \le i \le \varpi_{h-1}$ and $E_{h-1}^{(j,k)}$ for $j, k \in [\varpi_{h-1}]$ be copies of E_{h-1} , where $\varpi_{h-1} = |W(E_{h-1})|$. Construct an $n_{h-1} \times n_{h-1}$ 2-CNOT circuit H_{h-1} by concatenating $E_{h-1}^{(1)}, E_{h-1}^{(2)}, \ldots, E_{h-1}^{(\varpi_{h-1})}$, and construct an $n_{h-1} \times n_{h-1}$ 2-CNOT circuit J_{h-1} by concatenating $E_{1}^{(1)}, E_{1}^{(2)}, \ldots, E_{1}^{(1,m_{h-1})}, E_{2}^{(2,2)}, \ldots, E_{2}^{(2,m_{h-1})}, \ldots, E_{\varpi_{h-1}}^{(\varpi_{h-1}, \varpi_{h-1})}$,

where n_{h-1} is the number of input wires of E_{h-1} . Let $W(E_{h-1}^{(i)}) = \{w_1^{(i)}, w_2^{(i)}, \ldots, w_{\varpi_{h-1}}^{(i)}\}$ and $W(E_{h-1}^{(j,k)}) = \{w_1^{(j,k)}, w_2^{(j,k)}, \ldots, w_{\varpi_{h-1}}^{(j,k)}\}$ such that if the level of $w_i^{(*)}$ is not greater than the level of $w_j^{(*)}$, then $i \leq j$. E_h is constructed from J_{h-1} , H_{h-1} , and $E_{h-1}^{(0)}$ by inserting a copy of F for each wire $w_k^{(i,j)}$ with $i, j, k \in [\varpi_{h-1}]$ such that $w_k^{(i,j)}$ of $E_{h-1}^{(i,j)}$ in J_{h-1} is the top bit of the copy of F, $w_j^{(i)}$ of $E_{h-1}^{(i)}$ in H_{h-1} is the middle bit of the copy of F, and $w_i^{(0)}$ of $E_{h-1}^{(0)}$ is the bottom bit of the copy of F.

From the definition of E_h , we have $n_h = 3^{h-2}$, and so the following.

Lemma 12. $h = \Omega(\log n_h)$.

Lemma 13. $\tau(E_h) \ge h$.

Proof (Sketch). The proof is by induction on h. $\tau(E_3) = 3$ by Lemma 10. Suppose $\tau(E_{h-1}) \geq h-1$. We will show that $\tau(E_h) \geq h$. Suppose contrary that $\tau(E_h) = h-1$, and let $T = \{v_1, v_2, \ldots, v_{h-1}\}$ be a complete test set for E_h . Since $\tau(E_{h-1}) \geq h-1$, $W(E_{h-1})$ is not controllable by $T' = \{v_1, v_2, \ldots, v_{h-2}\}$. Thus there exist $i, j, k \in [\varpi_{h-1}]$ such that none of $w_i^{(0)}, w_j^{(i)}$, and $w_k^{(i,j)}$ is controllable by T'. It follows that if $F_{i,j,k}$ is a copy of F with the top bit on $w_k^{(i,j)}$, and $E_{i,j,k}$ is a copy of E consisting of the left three gates of $F_{i,j,k}$, then $W(E_{i,j,k})$ is not controllable by Lemmas 10 and 11, a contradiction. Thus, we have $\tau(E_h) \geq h$.

From Lemmas 12 and 13, we obtain the theorem.

6 Concluding Remarks

It should be noted that (1) is merely an existential upper bound. It is an interesting open problem to find a polynomial time algorithm to construct a complete test set of such size.

We can show that $\tau(E_h) = \Omega(\log \log |W(E_h)|)$, though the proof is rather complicated.

References

- 1. Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 525-532 (1973)
- 2. Chakraborty, A.: Synthesis of reversible circuits for testing with universal test set and c-testability of reversible iterative logic array. In: Proc. of the 18th International Conference on VLSI Design (2005)
- Merkle, R.: Two types of mechanical reversible logic. Nanotechnology, 114–131 (1993)
- Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
- Patel, K., Hayes, J., Markov, I.: Fault testing for reversible circuits. IEEE Trans. Computer-Aided Design, 1220–1230 (2004)
- Shende, V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. Computer-Aided Design, 710–722 (2003)