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Abstract. This paper shows that it is NP-hard to generate a minimum
complete test set for stuck-at faults on the wires of a reversible circuit. We
also show non-trivial lower bounds for the size of a minimum complete
test set.

1 Introduction

Reversible circuits, which permute the set of input vectors, have potential ap-
plications in nanocomputing [3], low power design [I], digital signal processing
[6], and quantum computing [4]. This paper shows that given a reversible circuit
C, it is NP-hard to generate a minimum complete test set for stuck-at faults
which fix the values of wires in C' to either 0 or 1. This is the first result on the
complexity of fault testing for reversible circuits, as far as the authors know. We
also show non-trivial lower bounds for the size of a minimum complete test set.

A gate is reversible if the Boolean function it computes is bijective. If a re-
versible gate has k input and output wires, it is called a k x k gate. A circuit
is reversible if all gates are reversible and are interconnected without funout or
feedback. If a reversible circuit has n input and output wires, it is called an n xn
circusl.

We shall focus our attention to detecting faults in a reversible circuit C' which
cause wires to be stuck-at-0 or stuck-at-1. Let W (C') be the set of all wires of C.
W (C) consists of all output wires of C' and input wires to the gates in C. W (C')
is the set of all possible fault locations in C'. For an n x n reversible circuit C, a
test is an input vector in {0, 1}". A test set is said to be complete for C'if it can
detect all possible single and multiple stuck-at faults on W (C). Patel, Hayes, and
Markov [5] showed that for any reversible circuit C, there exists a complete test
set for C. Let 7(C') be the minimum cardinality of a complete test set for C'.

We first show that it is NP-hard to compute 7(C) for a given reversible circuit
C. Let MTS (Minimum Test Size) be a problem of deciding if 7(C) < B for a
given reversible circuit C and integer B. We show in Section Bl that MTS is
NP-complete.

Patel, Hayes, and Markov [5] showed a general upper bound for 7(C) as
follows. They showed that

7(C) = O(log [W(C)]) (1)
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for any reversible circuit C'. We show the first non-trivial existential lower bound
for 7(C'). We show in Section [l that there exists a reversible circuit C' such that

7(C) = £2(loglog [W (C)]). (2)

A E-CNOT gate is a (k+1) x (k+ 1) reversible gate. It passes some k inputs,
referred to as control bits, to the outputs unchanged, and inverts the remaining
input, referred to as target bit, if the control bits are all 1. The 0-CNOT gate is
just an ordinary NOT gate. A CNOT gate is a k-CNOT gate for some k. Some
CNOT gates are shown in Fig. [l where a control bit and target bit are denoted
by a black dot and ring-sum, respectively. A CNOT circuit is a reversible circuit
consisting of only CNOT gates. A k-CNOT circuit is a CNOT circuit consisting
of only k-CNOT gates. Any Boolean function can be implemented by a CNOT
circuit since the 2-CNOT gate can implement the NAND function.

Cl —&— (C1
c c 2 —e—
t —d— ¢ t K cht t —d— (aaNc2) Dt
(a) 0-CNOT gate. (b) 1-CNOT gate. (c) 2-CNOT gate.

Fig. 1. CNOT gates

Chakraborty [2] showed that

7(C)<n (3)

if C'is an n x n CNOT circuit with no 0-CNOT or 1-CNOT gate. We show in
Section [f] that there exists an n x n 2-CNOT circuit C such that

7(C) = 2(log n). (4)

It is an interesting open problem to close the gaps between the upper bounds
@) and @), and our lower bounds (2l and (@), respectively.

2 Complete Test Sets

A wire w of a reversible circuit C' is said to be controllable by a test set T if
the value of w can be set to both 0 and 1 by T. A set of wires S C W(C) is
said to be controllable by T if each wire of S is controllable by T'. The following
characterization for a complete test set is shown in [5].

Theorem I. A test set T for a reversible circuit C is complete if and only if
W(C) is controllable by T. O
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3 NP-Completeness of MTS

The purpose of this section is to prove the following:

Theorem 1. MTS is NP-complete.

Proof. A minimum complete test set T for a reversible circuit C' can be verified
in polynomial time, since |T'| = O(log |W(C)|) by (@). Thus MTS is in NP.

We show a polynomial time reduction from 3SAT, a well-known NP-complete
problem, to MTS. Let @ = (x1,, 22, ...,2,) and

(x) = /\ Pj

be a Boolean function in conjunctive normal form in which each clause p; has
3 literals for j € [m] = {1,2,...,m}. For a Boolean variable z, literals z and x
are denoted by 2 and !, respectively.

We use generalized CNOT gates for simplicity. A generalized k-CNOT gate
has k control bits x1,...,x, and a target bit . The output of the target bit is
defined as

(" ANx A ANapk) Bt

A control bit x; is said to be positive if a; = 1, and negative if o; = 0. Notice
that a CNOT gate is a generalized CNOT gate with no negative control bit.
Notice also that a negative control bit is equivalent to a positive control bit with
a 0-CNOT gate on the input and output wires. A generalized CNOT [k-CNOT)
circuit is a reversible circuit consisting of only generalized CNOT [k-CNOT]
gates.
We first construct a generalized CNOT gate G for each clause p;. Let
pj =z Vait Vi,

where o;; € {0,1} and z;; € {z;|i € [n]} for | € [3]. We construct a generalized
3-CNOT gate G for p; as follows. The gate G; has 3 control bits 1, 2, ;3,
and a target bit ¢. A control bit zj; is defined to be positive if o;; = 0, and
negative if 0j; = 1. For an n x n circuit C' and an input vector v € {0,1}", we
denote by C'(v) the output vector of C' for v. The following lemma is immediate
from the definition of G.

Lemma 1. G;(zj1,zj2,x;3,t) = (xj1, T2, T3, p; B1). O

Lemma [[lmeans that G; changes the target bit ¢ for input vector (z;1, z;2, z;3,
t) if and only if p;(z;1,x;2,2;3) = 0. As an example, for a Boolean function:

P(x1, 22, 23) = p1 A po2,
p1 =21 VayVas, and (5)
,02:.731\/332 \/3337
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Fig. 2. Generalized 3-CNOT gates and 6-CNOT circuit

generalized 3-CNOT gates G; and G2 are shown in Fig. and (b), where a
negative control bit is denoted by an empty circle.

We next construct a (2n+ 1) x (2n+ 1) generalized 6-CNOT circuit C(¢) for
¢. For @ = (z1,,22,...,24), Yy = (Y1,,Y2,---,Yn) € {0,1}™, and ¢ € {0,1}, let
T = (x1,29,...,2,) and (x,y,t) = (x1,, T2, ..., Tn,Y1,,Y2,- -, Yn, ). Let G; be
a copy of G with control bits %, 25, 2%3, and a target bit ¢ for any j € [m].
For any j, h € [m], G, is a generalized 6-CNOT gate with control bits 1, z 2,
Tj3, L)y, Tho, Thy, and a target bit . A control bit zj;[z),] is positive in G, if
and only if z;[x},] is positive in G;[G},]. We construct a (2n + 1) x (2n + 1)
generalized 6-CNOT circuit C(¢) which is a cascade consisting of m? gates G,
(4, h € [m]). As an example, C(¢) for the Boolean function 1) defined in () is
shown in Fig. We have the following by Lemma [

Lemma 2. G, ((z,2',t)) = (:ar:,:c’7 (pj(:c) A ph(:c’)> EBt). |

Lemma [ implies that Gjj, changes the target bit if and only if p;(z) = 0 and
pr(x’) = 0.

We now show that ¢ is satisfiable if and only if 7(C'(¢)) < 2. For a gate G
of C, G[v] is the output vector of G generated by an input vector v of C. Also,
w(v] is the value of a wire w in C' generated by v.

Lemma 3. A test set T = {v1,v2} of a generalized CNOT circuit C' with no
0-CNOT gate is complete if and only if T satisfies the following conditions:

(i) v2 =1, and
(il) Glv;] = v; (i € [2]) for every gate G of C.

Proof. Tt is easy to see that if T satisfies (i) and (ii), then W (C) is controllable
by T'. Thus T is complete for C' by Theorem [l

Suppose T is complete for C. Then W (C) is controllable by T by Theorem [Il
Since the input wires of C' are controllable by T', we have vo = v1. Thus, T sat-
isfies (i). Suppose T does not satisfy (ii), that is G[v;] # v; for some generalized
k-CNOT gate G and some i, say ¢ = 1. That is, if wy; and wy, are the input and
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output wires of the target bit of G, we have

Wio[v1] = wii[v1]. (6)
Since the input wires of G' are controllable by T', we have

Win[v2] = win [v1] (7)
for every input wire w;, of G. Thus we conclude that

wii|v2] = wyi[v1]. (8)

By (@), (@), and k£ > 1, there exists an input wire w;, of control bit of G such
that wiy[v2] = 1 if wyy, is a negative control bit, and wj,[v2] = 0 otherwise. This
implies that

wto[’vz] = wti[’vz]- (9)
By (@), @), and (@), we have
wto[vl] = UJto['UQ],

which means that wy, is not controllable by T', a contradiction. Thus T satisfies (ii).
O

Now, we are ready to prove the following.
Lemma 4. ¢ is salisfiable if and only if 7(C(¢)) < 2.

Proof. 1t is easy to see from Lemmas [ and B that if ¢(x) = 1 for some
x € {0,1}", then a test set {(x,x,0), (z,z,1)} is complete for C(¢). Thus,
T(C(9)) <2.

Notice that 7(C) > 2 for any reversible circuit C' by Theorem [l Suppose
T(C(¢)) = 2, and let T be a complete test set of size two. By Lemma[B T =
{(x,y,0), (x,y,1)} for some x,y € {0,1}". Also by Lemma Bl Gx[(z,y,0)] =
(z,y,0) and Gjp[(x,y,1)] = (x,y,1) for any j, k € [m]. Thus by Lemma 2]

p;i(x) A pn(y) = 0 and p;(x) A pr(y) =0
for any j, h € [m], that is,

pi(x)V pr(y) =1 and pj(z) V pr(y) =1
for any j,h € [m]. If p;j(x) = 1 for any j € [m], then ¢(x) = 1, and ¢ is
satisfiable. If p;j(x) = 0 for some j € [m], then py(y) =1 for any h € [m]. Thus
o(y) =1, and ¢ is satisfiable. O

Since C'(¢) can be constructed in polynomial time, we complete the proof of the
theorem. O
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4 Lower Bounds for 1-CNOT Circuits

The purpose of this section is to prove the following:
Theorem 2. There exists a 1-CNOT circuit C' such that
7(C) = N(loglog [W(C))). O

Before proving the theorem, we need some preliminaries.

4.1 Preliminaries

The level of a wire of a reversible circuit is defined as follows. The input wires
of the circuit are at level 0, and the output wires of a gate are at one plus the
highest level of any of input wires of the gate. In cases where an input wire of
a gate is at level ¢ and the output wires are at level j > ¢ + 1, we say the input
wire is at all levels between ¢ and j — 1 inclusively.

It is easy to see the following lemmas.

Lemma 5. If C5 is a reversible 2 x 2 circuit consisting of just one 1-CNOT

gate, then 7(Cs) = 3. O
Lemma 6. If B is a 2 x 2 1-CNOT circuit shown in Fig.[3, then B(v) = v for
any v € {0,1}? . O

Fig.3. 2 x 2 1-CNQOT circuit B

Lemma 7. IfC is annxn 1-CNOT circuit with g gates, then |W (C)| = n+2g.
O

4.2 Proof of Theorem

We prove the theorem by constructing such circuits. Let C}, (b > 3) be a 1I-CNOT
circuit defined as follows. Let C3 be a 1-CNOT circuit consisting of just one 1-

CNOT gate. For h > 4, C}, is recursively defined as follows. Let C'(O) C}(Lljl, cee

C’}(f’{ U be @p—1 + 1 copies of Cp,_1, where @)1 = |W(Cj_1)|. Construct an
nh—1 X np—1 1-CNOT circuit Dj,_; by concatenating C’}(Ll)l,C’}(LQ)17 . C}(Lw’l”l),
Where np—1 is the number of input wires of Cj,_1. Let W( ) = {w , cee

wwh L} for 0 < k < wy,_1 such that if the level of w( is not greater than the level
of w](
1-CNOT circuit B shown in Fig. Bl for each wire of C}(fll, i € [wp—-1], such that
the wire of Cf(fll is the control bit and wgo)is the target bit of the 1-CNOT gates.
As an example, D3 and C}y are shown in Fig. @l and Fig. Bl respectively.

), then ¢ < j. C}, is constructed from Dy, and C}(Lojl by inserting a copy of
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Fig. 4. 1-CNOT circuit D3
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Fig.5. 4 x 4 1-CNOT circuit Cy

Let g5, be the number of gates in Cj,. From the definition of C},, we have
ny =22 (10)
for h > 3. We also have

gh = (@h-1+ 1) gh—1 + 2w;_,
= (nh—1+29n—1+ 1) gn—1 + 2(np—1 + 2gn—1)* (11)
= 10971 + gn—1(9nn—1 + 1) +2nj_, (12)

for h > 4, where (1)) follows from Lemma [l Since each input wire of Cj, is an
input wire of a gate, and every 1-CNOT gate has two input wires, we have

n, < 2gp, (13)
for h > 3.
Lemma 8. h = 2(loglog |[W(Ch)|).
Proof. By [I2)) and ([I3)), we have
gn < 36951 + gh—1 < 37951
It follows that 37g, < (37gn_1)?, and so
log g, + log 37 < 2(log gn—1 + log 37) < 2"~3(log g5 + log 37).
Thus, we have

log gn < 2"73(0 + log 37). (14)
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By Lemma [[ and ([I3]), we have ), = ny, + 295, < 4g, for h > 4, and so
loglog ), < logloggy +1 < h —3+loglog37+1
by (). Thus we conclude that

h = £2(loglog wy,).

Lemma 9. 7(C}) > h.

Proof. The proof is by induction on h. 7(C3) = 3 by Lemmal[l Suppose 7(Cp_1)
> h—1. We will show that 7(C},) > h. Suppose contrary that 7(Cj) = h—1. Let

T = {v1,v3,...,v5_1} be a complete test set for Cp, and v; = (vl(l),vl(2)) for
vl(l),'vl(Q) €{0,1}" (Il € [h—1]). Let T = {v1,v2,...,vp—2}, and T} = {vgk),
vgk), . ,vgi)Q} for k € [2].

Since 7(Cp—1) > h — 1 by the inductive hypothesis, W(C}j_1) is not control-

lable by T}, k € [2]. Thus there exists ¢ such that wZ(O) in C}(Lojl is not controllable

by T4. There also exists j such that wﬁi)

we have

in Dj,—1 is not controllable by T7. Thus,

Mo, wl” ) = (o], wi® ) (15)

(w! : @

for any v, v,,, € T". '
Let G be the left 1-CNOT gate of a copy of B whose control bit is at w]@

and target bit is at wgo)’ w, be the input wire of control bit of G, and w; be the

input wire of target bit of G. Then by Lemma [G]
i (1 0)r (2
(wefor], welor]) = (] o) w{” [w}]) (16)
for any v; € 7. By ([I3) and (IG]), we have

(welvi], wi[vi]) = (welvm], wilvm]) (17)

for any v;,v,,, € T'. By Lemma [l and ([I7), we conclude that W (G) is not
controllable by T' = T"U{vj_1}, a contradiction. Thus, we have 7(Cj,) > h. O

From Lemma [§] and [@ we obtain the theorem.

5 Lower Bounds for 2-CNOT Circuits

The purpose of this section is to prove the following.

Theorem 3. There exists annxn 2-CNOT circuit C such that 7(C) = 2(logn).

Proof. We need the following two lemmas, which can be easily seen.



820 S. Tayu, S. Ito, and S. Ueno

o s
@ @ @
s s s
(a) 3x3 2-CNOT circuit Es. (b) 3 x 3 2-CNOT circuit F.

Fig. 6. 3 x 3 2-CNOT circuits F3 and F

Lemma 10. If E5 is a 3x3 2-CNOT circuit shown in Fig.[6(a), then T(E3) = 3.
O

Lemma 11. If F is a 3 x 3 2-CNOT circuit shown in Fig. then F(v) =
for any v € {0,1}3. |

We prove the theorem by constructing such circuits. Let Ej, (h > 3) be a 2-CNOT
circuit defined as follows. Let E3 be a 2-CNOT circuit shown in Fig. For h >
4, Ej, is recursively defined as follows. Let E}(Lzll for 0 <7 < wyp_1 and E;Lj;kl) for
J, k € [wh—_1] be copies of Ej,_1, where w1 = |[W(Ep_1)|. Construct an nj_1 X
np_1 2-CNOT circuit Hy, 1 by concatenating E}(lel, E}(i)l, . ,E,(f’i’l), and con-

struct an np_1 X np—1 2-CNOT circuit J,_1 by concatenating E£1’1)7 E§1’2), cee

Eil’wh'_l)7E§27l),E(272) ’E£2,wh,—1) E(wh—l’wh,—l)

2 g yoeey My )

Where np_1 is the number of input wires of £}, 1 Let W(E; EW ") =A{w; Q) wg . ,

wl) .} and W(Eéj_kl)) = {ng’k), wéj’k) wwh 1} such that if the level of w; ()

(*)

is not greater than the level of w;"’, then ¢ < j. E}, is constructed from Jj,_1,

Hy 1, and E( 1 by inserting a copy of F' for each wire w,(C “9) with i,5,k € [mh-1]

such that w(w) of E( ’J) in Jn_1 is the top bit of the copy of F, w]@ of E}(fll in

H),_1 is the middle bit of the copy of F, and w'® of E{”)| is the bottom bit of
the copy of F.

From the definition of E}, we have n, = 3h—2

, and so the following.

Lemma 12. h = 2(logny). O
Lemma 13. 7(E}) > h.

Proof (Sketch). The proof is by induction on h. 7(E3) = 3 by Lemma
Suppose T(Ep_1) > h — 1. We will show that 7(E}) > h. Suppose contrary
that 7(Ep) = h— 1, and let T = {vy,va,...,v,_1} be a complete test set for
Ey,. Since 7(Ep—1) > h — 1, W(Exr_1) is not controllable by 77 = {v1,va,...
vp—2}. Thus there exist 4, j,k € [twp—1] such that none of wgo), w](i)7 and w,(j’j)
is controllable by T". It follows that if F; ;; is a copy of F' with the top bit on
w,(j’]), and E; j is a copy of E consisting of the left three gates of F; ;x, then
W(E,; ;) is not controllable by Lemmas [I0] and [[1] a contradiction. Thus, we

have 7(Ep) > h. O
From Lemmas [I2] and I3 we obtain the theorem. O
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6 Concluding Remarks

It should be noted that () is merely an existential upper bound. It is an inter-
esting open problem to find a polynomial time algorithm to construct a complete
test set of such size.

We can show that 7(Ej) = 2(loglog [W(E})|), though the proof is rather
complicated.
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