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Abstract. This paper shows that it is NP-hard to generate a minimum
complete test set for stuck-at faults on the wires of a reversible circuit. We
also show non-trivial lower bounds for the size of a minimum complete
test set.

1 Introduction

Reversible circuits, which permute the set of input vectors, have potential ap-
plications in nanocomputing [3], low power design [1], digital signal processing
[6], and quantum computing [4]. This paper shows that given a reversible circuit
C, it is NP-hard to generate a minimum complete test set for stuck-at faults
which fix the values of wires in C to either 0 or 1. This is the first result on the
complexity of fault testing for reversible circuits, as far as the authors know. We
also show non-trivial lower bounds for the size of a minimum complete test set.

A gate is reversible if the Boolean function it computes is bijective. If a re-
versible gate has k input and output wires, it is called a k × k gate. A circuit
is reversible if all gates are reversible and are interconnected without funout or
feedback. If a reversible circuit has n input and output wires, it is called an n×n
circuit.

We shall focus our attention to detecting faults in a reversible circuit C which
cause wires to be stuck-at-0 or stuck-at-1. Let W (C) be the set of all wires of C.
W (C) consists of all output wires of C and input wires to the gates in C. W (C)
is the set of all possible fault locations in C. For an n × n reversible circuit C, a
test is an input vector in {0, 1}n. A test set is said to be complete for C if it can
detect all possible single and multiple stuck-at faults on W (C). Patel, Hayes, and
Markov [5] showed that for any reversible circuit C, there exists a complete test
set for C. Let τ(C) be the minimum cardinality of a complete test set for C.

We first show that it is NP-hard to compute τ(C) for a given reversible circuit
C. Let MTS (Minimum Test Size) be a problem of deciding if τ(C) ≤ B for a
given reversible circuit C and integer B. We show in Section 3 that MTS is
NP-complete.

Patel, Hayes, and Markov [5] showed a general upper bound for τ(C) as
follows. They showed that

τ(C) = O(log |W (C)|) (1)
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for any reversible circuit C. We show the first non-trivial existential lower bound
for τ(C). We show in Section 4 that there exists a reversible circuit C such that

τ(C) = Ω(log log |W (C)|). (2)

A k-CNOT gate is a (k +1)× (k +1) reversible gate. It passes some k inputs,
referred to as control bits, to the outputs unchanged, and inverts the remaining
input, referred to as target bit, if the control bits are all 1. The 0-CNOT gate is
just an ordinary NOT gate. A CNOT gate is a k-CNOT gate for some k. Some
CNOT gates are shown in Fig. 1, where a control bit and target bit are denoted
by a black dot and ring-sum, respectively. A CNOT circuit is a reversible circuit
consisting of only CNOT gates. A k-CNOT circuit is a CNOT circuit consisting
of only k-CNOT gates. Any Boolean function can be implemented by a CNOT
circuit since the 2-CNOT gate can implement the NAND function.

t t

(a) 0-CNOT gate.

t c ⊕ t
cc

(b) 1-CNOT gate.

t (c1 ∧ c2) ⊕ t

c1c1
c2c2

(c) 2-CNOT gate.

Fig. 1. CNOT gates

Chakraborty [2] showed that

τ(C) ≤ n (3)

if C is an n × n CNOT circuit with no 0-CNOT or 1-CNOT gate. We show in
Section 5 that there exists an n × n 2-CNOT circuit C such that

τ(C) = Ω(log n). (4)

It is an interesting open problem to close the gaps between the upper bounds
(1) and (3), and our lower bounds (2) and (4), respectively.

2 Complete Test Sets

A wire w of a reversible circuit C is said to be controllable by a test set T if
the value of w can be set to both 0 and 1 by T . A set of wires S ⊆ W (C) is
said to be controllable by T if each wire of S is controllable by T . The following
characterization for a complete test set is shown in [5].

Theorem I. A test set T for a reversible circuit C is complete if and only if
W (C) is controllable by T . ��



814 S. Tayu, S. Ito, and S. Ueno

3 NP-Completeness of MTS

The purpose of this section is to prove the following:

Theorem 1. MTS is NP-complete.

Proof. A minimum complete test set T for a reversible circuit C can be verified
in polynomial time, since |T | = O(log |W (C)|) by (1). Thus MTS is in NP.

We show a polynomial time reduction from 3SAT, a well-known NP-complete
problem, to MTS. Let x = (x1, , x2, . . . , xn) and

φ(x) =
m∧

j=1

ρj

be a Boolean function in conjunctive normal form in which each clause ρj has
3 literals for j ∈ [m] = {1, 2, . . . , m}. For a Boolean variable x, literals x and x
are denoted by x0 and x1, respectively.

We use generalized CNOT gates for simplicity. A generalized k-CNOT gate
has k control bits x1, . . . , xk and a target bit t. The output of the target bit is
defined as

(xα1
1 ∧ xα2

2 ∧ · · · ∧ xαk

k ) ⊕ t.

A control bit xi is said to be positive if αi = 1, and negative if αi = 0. Notice
that a CNOT gate is a generalized CNOT gate with no negative control bit.
Notice also that a negative control bit is equivalent to a positive control bit with
a 0-CNOT gate on the input and output wires. A generalized CNOT [k-CNOT]
circuit is a reversible circuit consisting of only generalized CNOT [k-CNOT]
gates.

We first construct a generalized CNOT gate Gj for each clause ρj . Let

ρj = x
σj1
j1 ∨ x

σj2
j2 ∨ x

σj3
j3 ,

where σjl ∈ {0, 1} and xjl ∈ {xi|i ∈ [n]} for l ∈ [3]. We construct a generalized
3-CNOT gate Gj for ρj as follows. The gate Gj has 3 control bits xj1, xj2, xj3,
and a target bit t. A control bit xjl is defined to be positive if σjl = 0, and
negative if σjl = 1. For an n × n circuit C and an input vector v ∈ {0, 1}n, we
denote by C(v) the output vector of C for v. The following lemma is immediate
from the definition of Gj .

Lemma 1. Gj(xj1, xj2, xj3, t) = (xj1, xj2, xj3, ρj ⊕ t). ��

Lemma 1 means that Gj changes the target bit t for input vector (xj1, xj2, xj3,
t) if and only if ρj(xj1, xj2, xj3) = 0. As an example, for a Boolean function:

ψ(x1, x2, x3) = ρ1 ∧ ρ2,
ρ1 = x1 ∨ x2 ∨ x3, and
ρ2 = x1 ∨ x2 ∨ x3,

⎫
⎬

⎭ (5)
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(c) 6-CNOT circuit C(ψ).

Fig. 2. Generalized 3-CNOT gates and 6-CNOT circuit

generalized 3-CNOT gates G1 and G2 are shown in Fig. 2(a) and (b), where a
negative control bit is denoted by an empty circle.

We next construct a (2n + 1)× (2n + 1) generalized 6-CNOT circuit C(φ) for
φ. For x = (x1, , x2, . . . , xn), y = (y1, , y2, . . . , yn) ∈ {0, 1}n, and t ∈ {0, 1}, let
x = (x1, x2, . . . , xn) and (x, y, t) = (x1, , x2, . . . , xn, y1, , y2, . . . , yn, t). Let G′

j be
a copy of Gj with control bits x′

j1, x
′
j2, x

′
j3, and a target bit t for any j ∈ [m].

For any j, h ∈ [m], Gjh is a generalized 6-CNOT gate with control bits xj1, xj2,
xj3, x

′
h1, x

′
h2, x

′
h3, and a target bit t. A control bit xjl[x′

hl] is positive in Gjh if
and only if xjl[x′

hl] is positive in Gj [G′
h]. We construct a (2n + 1) × (2n + 1)

generalized 6-CNOT circuit C(φ) which is a cascade consisting of m2 gates Gjh

(j, h ∈ [m]). As an example, C(ψ) for the Boolean function ψ defined in (5) is
shown in Fig. 2(c). We have the following by Lemma 1.

Lemma 2. Gjh

(
(x, x′, t)

)
=

(
x, x′,

(
ρj(x) ∧ ρh(x′)

)
⊕ t

)
. ��

Lemma 2 implies that Gjh changes the target bit if and only if ρj(x) = 0 and
ρh(x′) = 0.

We now show that φ is satisfiable if and only if τ(C(φ)) ≤ 2. For a gate G
of C, G[v] is the output vector of G generated by an input vector v of C. Also,
w[v] is the value of a wire w in C generated by v.

Lemma 3. A test set T = {v1, v2} of a generalized CNOT circuit C with no
0-CNOT gate is complete if and only if T satisfies the following conditions:

(i) v2 = v1, and

(ii) G[vi] = vi (i ∈ [2]) for every gate G of C.

Proof. It is easy to see that if T satisfies (i) and (ii), then W (C) is controllable
by T . Thus T is complete for C by Theorem I.

Suppose T is complete for C. Then W (C) is controllable by T by Theorem I.
Since the input wires of C are controllable by T , we have v2 = v1. Thus, T sat-
isfies (i). Suppose T does not satisfy (ii), that is G[vi] 
= vi for some generalized
k-CNOT gate G and some i, say i = 1. That is, if wti and wto are the input and
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output wires of the target bit of G, we have

wto[v1] = wti[v1]. (6)

Since the input wires of G are controllable by T , we have

win[v2] = win[v1] (7)

for every input wire win of G. Thus we conclude that

wti[v2] = wti[v1]. (8)

By (6), (7), and k ≥ 1, there exists an input wire win of control bit of G such
that win[v2] = 1 if win is a negative control bit, and win[v2] = 0 otherwise. This
implies that

wto[v2] = wti[v2]. (9)

By (6), (8), and (9), we have

wto[v1] = wto[v2],

which means thatwto is not controllable by T , a contradiction.Thus T satisfies (ii).
��

Now, we are ready to prove the following.

Lemma 4. φ is satisfiable if and only if τ(C(φ)) ≤ 2.

Proof. It is easy to see from Lemmas 2 and 3 that if φ(x) = 1 for some
x ∈ {0, 1}n, then a test set {(x, x, 0), (x, x, 1)} is complete for C(φ). Thus,
τ(C(φ)) ≤ 2.

Notice that τ(C) ≥ 2 for any reversible circuit C by Theorem I. Suppose
τ(C(φ)) = 2, and let T be a complete test set of size two. By Lemma 3, T =
{(x, y, 0), (x, y, 1)} for some x, y ∈ {0, 1}n. Also by Lemma 3, Gjh[(x, y, 0)] =
(x, y, 0) and Gjh[(x, y, 1)] = (x, y, 1) for any j, k ∈ [m]. Thus by Lemma 2,

ρj(x) ∧ ρh(y) = 0 and ρj(x) ∧ ρh(y) = 0

for any j, h ∈ [m], that is,

ρj(x) ∨ ρh(y) = 1 and ρj(x) ∨ ρh(y) = 1

for any j, h ∈ [m]. If ρj(x) = 1 for any j ∈ [m], then φ(x) = 1, and φ is
satisfiable. If ρj(x) = 0 for some j ∈ [m], then ρh(y) = 1 for any h ∈ [m]. Thus
φ(y) = 1, and φ is satisfiable. ��

Since C(φ) can be constructed in polynomial time, we complete the proof of the
theorem. ��



Fault Testing for Reversible Circuits 817

4 Lower Bounds for 1-CNOT Circuits

The purpose of this section is to prove the following:

Theorem 2. There exists a 1-CNOT circuit C such that

τ(C) = Ω(log log |W (C)|). ��

Before proving the theorem, we need some preliminaries.

4.1 Preliminaries

The level of a wire of a reversible circuit is defined as follows. The input wires
of the circuit are at level 0, and the output wires of a gate are at one plus the
highest level of any of input wires of the gate. In cases where an input wire of
a gate is at level i and the output wires are at level j > i + 1, we say the input
wire is at all levels between i and j − 1 inclusively.

It is easy to see the following lemmas.

Lemma 5. If C3 is a reversible 2 × 2 circuit consisting of just one 1-CNOT
gate, then τ(C3) = 3. ��

Lemma 6. If B is a 2 × 2 1-CNOT circuit shown in Fig. 3, then B(v) = v for
any v ∈ {0, 1}2 . ��

Fig. 3. 2 × 2 1-CNOT circuit B

Lemma 7. If C is an n×n 1-CNOT circuit with g gates, then |W (C)| = n+2g.
��

4.2 Proof of Theorem 2

We prove the theorem by constructing such circuits. Let Ch (h ≥ 3) be a 1-CNOT
circuit defined as follows. Let C3 be a 1-CNOT circuit consisting of just one 1-
CNOT gate. For h ≥ 4, Ch is recursively defined as follows. Let C

(0)
h−1, C

(1)
h−1, . . . ,

C
(�h−1)
h−1 be 	h−1 + 1 copies of Ch−1, where 	h−1 = |W (Ch−1)|. Construct an

nh−1 × nh−1 1-CNOT circuit Dh−1 by concatenating C
(1)
h−1, C

(2)
h−1, . . . , C

(�h−1)
h−1 ,

where nh−1 is the number of input wires of Ch−1. Let W (C(k)
h−1) = {w

(k)
1 , w

(k)
2 , . . . ,

w
(k)
�h−1} for 0 ≤ k ≤ 	h−1 such that if the level of w

(k)
i is not greater than the level

of w
(k)
j , then i ≤ j. Ch is constructed from Dh−1 and C

(0)
h−1 by inserting a copy of

1-CNOT circuit B shown in Fig. 3 for each wire of C
(i)
h−1, i ∈ [	h−1], such that

the wire of C
(i)
h−1 is the control bit and w

(0)
i is the target bit of the 1-CNOT gates.

As an example, D3 and C4 are shown in Fig. 4 and Fig. 5, respectively.
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Fig. 4. 1-CNOT circuit D3
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Fig. 5. 4 × 4 1-CNOT circuit C4

Let gh be the number of gates in Ch. From the definition of Ch, we have

nh = 2h−2 (10)

for h ≥ 3. We also have

gh =
(
	h−1 + 1

)
gh−1 + 2	2

h−1

=
(
nh−1 + 2gh−1 + 1

)
gh−1 + 2(nh−1 + 2gh−1)2 (11)

= 10g2
h−1 + gh−1(9nh−1 + 1) + 2n2

h−1 (12)

for h ≥ 4, where (11) follows from Lemma 7. Since each input wire of Ch is an
input wire of a gate, and every 1-CNOT gate has two input wires, we have

nh ≤ 2gh (13)

for h ≥ 3.

Lemma 8. h = Ω(log log |W (Ch)|).

Proof. By (12) and (13), we have

gh ≤ 36g2
h−1 + gh−1 ≤ 37g2

h−1.

It follows that 37gh ≤ (37gh−1)2, and so

log gh + log 37 ≤ 2(log gh−1 + log 37) ≤ 2h−3(log g3 + log 37).

Thus, we have

log gh ≤ 2h−3(0 + log 37). (14)



Fault Testing for Reversible Circuits 819

By Lemma 7 and (13), we have 	h = nh + 2gh ≤ 4gh for h ≥ 4, and so

log log 	h ≤ log log gh + 1 ≤ h − 3 + log log 37 + 1

by (14). Thus we conclude that

h = Ω(log log 	h).

��

Lemma 9. τ(Ch) ≥ h.

Proof. The proof is by induction on h. τ(C3) = 3 by Lemma 5. Suppose τ(Ch−1)
≥ h−1. We will show that τ(Ch) ≥ h. Suppose contrary that τ(Ch) = h−1. Let
T = {v1, v2, . . . , vh−1} be a complete test set for Ch, and vl = (v(1)

l , v
(2)
l ) for

v
(1)
l , v

(2)
l ∈ {0, 1}nh−1 (l ∈ [h− 1]). Let T ′ = {v1, v2, . . . , vh−2}, and T ′

k = {v
(k)
1 ,

v
(k)
2 , . . . , v

(k)
h−2} for k ∈ [2].

Since τ(Ch−1) ≥ h − 1 by the inductive hypothesis, W (Ch−1) is not control-
lable by T ′

k, k ∈ [2]. Thus there exists i such that w
(0)
i in C

(0)
h−1 is not controllable

by T ′
2. There also exists j such that w

(i)
j in Dh−1 is not controllable by T ′

1. Thus,
we have

(w(i)
j [v(1)

l ], w(0)
i [v(2)

l ]) = (w(i)
j [v(1)

m ], w(0)
i [v(2)

m ]) (15)

for any vl, vm ∈ T ′.
Let G be the left 1-CNOT gate of a copy of B whose control bit is at w

(i)
j

and target bit is at w
(0)
i , wc be the input wire of control bit of G, and wt be the

input wire of target bit of G. Then by Lemma 6,

(wc[vl], wt[vl]) = (w(i)
j [v(1)

l ], w(0)
i [v(2)

l ]) (16)

for any vl ∈ T ′. By (15) and (16), we have

(wc[vl], wt[vl]) = (wc[vm], wt[vm]) (17)

for any vl, vm ∈ T ′. By Lemma 5 and (17), we conclude that W (G) is not
controllable by T = T ′∪{vh−1}, a contradiction. Thus, we have τ(Ch) ≥ h. ��

From Lemma 8 and 9, we obtain the theorem.

5 Lower Bounds for 2-CNOT Circuits

The purpose of this section is to prove the following.

Theorem 3. There exists an n×n 2-CNOT circuit C such that τ(C) = Ω(log n).

Proof. We need the following two lemmas, which can be easily seen.
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(a) 3×3 2-CNOT circuit E3. (b) 3 × 3 2-CNOT circuit F .

Fig. 6. 3 × 3 2-CNOT circuits E3 and F

Lemma 10. If E3 is a 3×3 2-CNOT circuit shown in Fig. 6(a), then τ(E3) = 3.
��

Lemma 11. If F is a 3 × 3 2-CNOT circuit shown in Fig. 6(b), then F (v) = v
for any v ∈ {0, 1}3. ��

We prove the theorem by constructing such circuits. Let Eh (h ≥ 3) be a 2-CNOT
circuit defined as follows. Let E3 be a 2-CNOT circuit shown in Fig. 6(a). For h ≥
4, Eh is recursively defined as follows. Let E

(i)
h−1 for 0 ≤ i ≤ 	h−1 and E

(j,k)
h−1 for

j, k ∈ [	h−1] be copies of Eh−1, where 	h−1 = |W (Eh−1)|. Construct an nh−1 ×
nh−1 2-CNOT circuit Hh−1 by concatenating E

(1)
h−1, E

(2)
h−1, . . . , E

(�h−1)
h−1 , and con-

struct an nh−1 ×nh−1 2-CNOT circuit Jh−1 by concatenating E
(1,1)
1 , E

(1,2)
1 , . . . ,

E
(1,�h−1)
1 , E

(2,1)
2 , E

(2,2)
2 , . . . , E

(2,�h−1)
2 , . . . , E

(�h−1,�h−1)
�h−1 ,

where nh−1 is the number of input wires of Eh−1. Let W (E(i)
h−1) = {w

(i)
1 , w

(i)
2 , . . . ,

w
(i)
�h−1} and W (E(j,k)

h−1 ) = {w
(j,k)
1 , w

(j,k)
2 , . . . , w

(j,k)
�h−1} such that if the level of w

(∗)
i

is not greater than the level of w
(∗)
j , then i ≤ j. Eh is constructed from Jh−1,

Hh−1, and E
(0)
h−1 by inserting a copy of F for each wire w

(i,j)
k with i, j, k ∈ [	h−1]

such that w
(i,j)
k of E

(i,j)
h−1 in Jh−1 is the top bit of the copy of F , w

(i)
j of E

(i)
h−1 in

Hh−1 is the middle bit of the copy of F , and w
(0)
i of E

(0)
h−1 is the bottom bit of

the copy of F .
From the definition of Eh, we have nh = 3h−2, and so the following.

Lemma 12. h = Ω(log nh). ��

Lemma 13. τ(Eh) ≥ h.

Proof (Sketch). The proof is by induction on h. τ(E3) = 3 by Lemma 10.
Suppose τ(Eh−1) ≥ h − 1. We will show that τ(Eh) ≥ h. Suppose contrary
that τ(Eh) = h − 1, and let T = {v1, v2, . . . , vh−1} be a complete test set for
Eh. Since τ(Eh−1) ≥ h − 1, W (Eh−1) is not controllable by T ′ = {v1, v2, . . .

vh−2}. Thus there exist i, j, k ∈ [	h−1] such that none of w
(0)
i , w

(i)
j , and w

(i,j)
k

is controllable by T ′. It follows that if Fi,j,k is a copy of F with the top bit on
w

(i,j)
k , and Ei,j,k is a copy of E consisting of the left three gates of Fi,j,k, then

W (Ei,j,k) is not controllable by Lemmas 10 and 11, a contradiction. Thus, we
have τ(Eh) ≥ h. ��
From Lemmas 12 and 13, we obtain the theorem. ��
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6 Concluding Remarks

It should be noted that (1) is merely an existential upper bound. It is an inter-
esting open problem to find a polynomial time algorithm to construct a complete
test set of such size.

We can show that τ(Eh) = Ω(log log |W (Eh)|), though the proof is rather
complicated.
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