On the Three-Dimensional Orthogonal Drawing of Series-Parallel Graphs (Extended Abstract)

Satoshi Tayu, Kumiko Nomura, and Shuichi Ueno

Department of Communications and Integrated Systems, Tokyo Institute of Technology, Tokyo 152-8550-S3-57, Japan

Abstract—It has been known that every 6-graph has a 3-bend 3-D orthogonal drawing, while it has been open whether every 6graph has a 2-bend 3-D orthogonal drawing. For the interesting open question, it is known that every 5-graph has a 2-bend 3-D orthogonal drawing, and every outerplanar 6-graph without triangles has a 0-bend 3-D orthogonal drawing. We show in this paper that every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing.

I. INTRODUCTION

We consider the problem of generating orthogonal drawings of graphs in the space. The problem has obvious applications in the design of 3-D VLSI circuits and optoelectronic integrated systems [7], [11].

Throughout this paper, we consider simple connected graphs G with vertex set V(G) and edge set E(G). We denote by $d_G(v)$ the degree of a vertex v in G, and by $\Delta(G)$ the maximum degree of a vertex of G. G is called a k-graph if $\Delta(G) \leq k$. It is well-known that every graph can be drawn in the space so that its edges intersect only at their ends. Such a drawing of a graph G is called a 3-D drawing of G. A 3-D orthogonal drawing of G is a 3-D drawing such that each edge is drawn by a sequence of contiguous axis-parallel line segments. Notice that a graph G has a 3-D orthogonal drawing with no more than b bends per edge is called a b-bend 3-D orthogonal drawing.

Eades, Symvonis, and Whitesides [4], and Papakostas and Tollis [10] showed that every 6-graph has a 3-bend 3-D orthogonal drawing. Eades, Symvonis, and Whitesides [4] also posed an interesting open question of whether every 6-graph has a 2-bend 3-D orthogonal drawing. Wood [14] showed that every 5-graph has a 2-bend 3-D orthogonal drawing. Nomura, Tayu, and Ueno [9] showed that every outerplanar 6-graph has a 0-bend 3-D orthogonal drawing if and only if it contains no triangle as a subgraph, while Eades, Stirk, and Whitesides [3] proved that it is \mathcal{NP} -complete to decide if a given 5-graph has a 0-bend 3-D orthogonal drawing.

We show in this paper the following theorem.

Theorem 1: Every series-parallel 6-graph has a 2-bend 3-D orthogonal drawing.

The proof of Theorem 1 is constructive and provides a polynomial time algorithm to generate such a drawing for a series-parallel 6-graph.

It is still open whether every 6-graph has a 2-bend 3-D orthogonal drawing. It is also open whether every seriesparallel 6-graph has a 1-bend 3-D orthogonal drawing. For the two-dimensional case, Biedl and Kant [2], and Liu, Morgana, and Simeone [8] showed that every planar 4-graph has a 2-bend 2-D orthogonal drawing with only exception of the octahedron. Moreover, Kant [6] showed that every planar 3-graph has a 1-bend 2-D orthogonal drawing with the only exception of K_4 . Tayu, Nomura, and Ueno [12] showed that every series-parallel 4-graph has a 1-bend 2-D orthogonal drawing. Nomura, Tayu, and Ueno [9] showed that every outerplanar 3-graph has a 0-bend 2-D orthogonal drawing if and only if it contains no triangle as a subgraph. On the other hand, Garg and Tamassia [5] proved that it is \mathcal{NP} complete to decide if a given planar 4-graph has a 0-bend 2-D orthogonal drawing. Battista, Liotta, and Vargiu [1] showed that the problem can be solved in polynomial time for planar 3-graphs and series-parallel graphs.

II. SERIES-PARALLEL GRAPHS

A series-parallel graph is defined recursively as follows.

- (1) A graph consisting of two vertices joined by a single edge is a series-parallel graph. The vertices are the *terminals*.
- (2) If G_1 is a series-parallel graph with terminals s_1 and t_1 , and G_2 is a series-parallel graph with terminals s_2 and t_2 , then a graph G obtained by either of the following operations is also a series-parallel graph:
 - (i) Series-composition: identify t_1 with s_2 . Vertices s_1 and t_2 are the terminals of G.
 - (ii) Parallel-composition: identify s_1 and s_2 into a vertex s, and t_1 and t_2 into t. Vertices s and t are the terminals of G.

III. 3-D EMBEDDINGS AND ORTHOGONAL DRAWINGS

The three-dimensional (3-D) grid \mathcal{G} is an (infinite) graph consisting of \mathbb{Z}^3 , the set of grid-points in 3-D space with integer coordinates, together with the axis-parallel edges connecting neighboring grid-points. The grid-points are also considered as vectors. The 3-D embedding $\langle \phi, \rho \rangle$ of a graph G is defined by a one-to-one mapping $\phi : V(G) \to V(\mathcal{G}) = \mathbb{Z}^3$, together with a mapping ρ that maps each edge $(u, v) \in E(G)$ onto a path $\rho(u, v)$ in \mathcal{G} that connects $\phi(u)$ and $\phi(v)$. A path P in \mathcal{G} is called a k-bend path if P contains k bends.

Let $\mathcal{D}^+ = \{(1,0,0), (0,1,0), (0,0,1)\}, \mathcal{D}^- = \{(-1,0,0), (0,-1,0), (0,0,-1)\}, \text{ and } \mathcal{D} = \mathcal{D}^+ \cup \mathcal{D}^-.$ A vector in \mathcal{D} is called a direction.

Let $\langle \phi, \rho \rangle$ be a 3-D embedding of a graph G, and $(u, v) \in E(G)$. If g is a grid-point adjacent with $\phi(u)$ in path $\rho(u, v)$ in \mathcal{G} , there exists a direction $d \in \mathcal{D}$ such that $g = \phi(u) + d$.

We denote such d by $\alpha_u^{\rho}(e)$. It is easy to see the following lemma.

Lemma 1: If $\rho(u, v)$ is a 2-bend path, $\rho(u, v)$ is uniquely determined by $\phi(u)$, $\phi(v)$, $\alpha^{\rho}_{u}(e)$, and $\alpha^{\rho}_{u}(e)$.

Figure 1 shows a 2-bend path $\rho(u, v)$ determined by $\phi(u) =$ $(0,0,0), \phi(v) = (3,2,1), \alpha^{\rho}_{u}(e) = (0,0,1), \text{ and } \alpha^{\rho}_{v}(e) =$ (-1, 0, 0).

$$(0, 2, 1) \xrightarrow{\boldsymbol{\alpha}_{v}^{\rho}(e)} \phi(v) = (3, 2, 1)$$

$$(0, 0, 1) \xrightarrow{\boldsymbol{\alpha}_{u}^{\rho}(e)} \phi(u) = (0, 0, 0)$$

Fig. 1. Example of a 2-bend path $\rho(u, v)$.

Two grid-points g and g + (a, b, c) are said to be in the general position if $abc \neq 0$. Let $g_0, g_1 = g_0 + (x_1, y_1, z_1)$, and $g_2 = g_0 + (x_2, y_2, z_2)$ be grid-points in the general position. Then, we define $g_1 \preceq_{g_0} g_2$ if $|w_1| < |w_2|$ or $w_1w_2 < 0$ for any $w \in \{x, y, z\}$. A 3-D embedding $\langle \phi, \rho \rangle$ of G is called a $p_z > q_z$. Let δ and γ be some sufficiently large and small τ -embedding if all of the following conditions are satisfied:

Condition A: If $u \neq v$ then $\phi(u)$ and $\phi(v)$ are in the general position,

Condition B: For any distinct edges $e, e' \in E(G)$ incident to a vertex $u, \alpha_u^{\rho}(e) \neq \alpha_u^{\rho}(e'),$

Condition C: $\rho(e)$ is a 2-bend path for any $e \in E(G)$,

Condition D: For any edges $e_1 = (u, v_1)$ and $e_2 = (u, v_2)$ incident to a vertex u, (D-1) or (D-2) below holds;

(D-1) $\alpha_{u}^{\rho}(e_{1}) = \pm \alpha_{v_{2}}^{\rho}(e_{2});$ **(D-2)** $\phi(v_1) \preceq_{\phi(u)} \phi(v_2)$ or $\phi(v_2) \preceq_{\phi(u)} \phi(v_1)$.

It follows from Condition B that G has a τ -embedding only if G is a 6-graph. The purpose of this section is to show the following theorem.

Theorem 2: A τ -embedding of a 6-graph G induces a 2bend 3-D orthogonal drawing of G.

Proof (Sketch): The theorem is proved by Lemma 1 together with the following two lemmas.

Lemma 2: Let $\langle \phi, \rho \rangle$ be a 3-D embedding of G satisfying Conditions A through C. If edges e_1 and e_2 have no common ends, paths $\rho(e_1)$ and $\rho(e_2)$ are disjoint.

Omitted in the extended abstract. Proof:

Lemma 3: Let $\langle \phi, \rho \rangle$ be a 3-D embedding of G satisfying Conditions A through C. If any adjacent edges $e_1 = (u, v_1)$ and $e_2 = (u, v_2)$ satisfy Condition D, $\rho(e_1)$ and $\rho(e_2)$ are internally disjoint.

Proof: Omitted in the extended abstract.

IV. PROOF OF THEOREM 1 (SKETCH)

Let G be a series-parallel 6-graph with terminals s and t. Before proving the theorem, we need some preliminaries.

IV-A. 9-CUBIC 3-D EMBEDDINGS

Let $p = (p_x, p_y, p_z)$ and $q = (q_x, q_y, q_z)$ be grid-points in the general position, and let $g_{\min}^{(w)}(p,q) = \min\{p_w,q_w\}$ and

 $g_{\max}^{(w)}(p,q) = \max\{p_w, q_w\}$ for each $w \in \{x, y, z\}$. A 3-D subgrid $Q_{p,q}$ induced by a set of grid points $\{(i_x, i_y, i_z) | g_{\min}^{(x)}(p,q)\}$ $\leq i_x \leq g_{\max}^{(x)}(p,q), g_{\min}^{(y)}(p,q) \leq i_y \leq g_{\max}^{(y)}(p,q), g_{\min}^{(z)}(p,q)$ $\leq i_z \leq g_{\max}^{(z)}(p,q)$ is called a *center-cube* for p and q. Let q = p + (a, b, c). For each $\sigma \subseteq \{x, y, z\}$, define grid points g_{σ} as follows:

$$\begin{array}{rcl} g_{\emptyset} &=& p, \\ g_{\{x\}} &=& p+(a,0,0), \\ g_{\{y\}} &=& p+(0,b,0), \\ g_{\{z\}} &=& p+(0,0,c), \\ g_{\{x,y\}} &=& p+(a,0,c), \\ g_{\{y,z\}} &=& p+(a,0,c), \\ g_{\{z,x\}} &=& p+(a,0,c), \mbox{ and } \\ g_{\{x,y,z\}} &=& p+(a,b,c) =& q. \end{array}$$

Each g_{σ} corresponds to a corner of $Q_{p,q}$. Figure 2 (a) shows an example of $Q_{p,q}$ and g_{σ} when $p_x < q_x$, $p_y > q_y$, and integers, respectively, and let

$$X_{\sigma} = \begin{cases} \{i_x | \gamma \leq i_x \leq g_{\min}^{(x)}(p,q)\} & \text{if} \quad x \in \sigma, \\ \{i_x | g_{\max}^{(x)}(p,q) \leq i_x \leq \delta\} & \text{if} \quad x \notin \sigma, \end{cases}$$
$$Y_{\sigma} = \begin{cases} \{i_y | \gamma \leq i_y \leq g_{\min}^{(y)}(p,q)\} & \text{if} \quad y \in \sigma, \\ \{i_y | g_{\max}^{(y)}(p,q) \leq i_y \leq \delta\} & \text{if} \quad y \notin \sigma, \end{cases}$$
$$Z_{\sigma} = \begin{cases} \{i_z | \gamma \leq i_z \leq g_{\min}^{(z)}(p,q)\} & \text{if} \quad z \in \sigma, \\ \{i_z | g_{\max}^{(z)}(p,q) \leq i_z \leq \delta\} & \text{if} \quad z \notin \sigma. \end{cases}$$

For each $\sigma \subseteq \{x, y, z\}$, $Q_{p,q}^{\sigma}$ is a 3-D subgrid induced by a vertex set $\{(i_x, i_y, i_z) | i_x \in X_{\sigma}, i_y \in Y_{\sigma}, i_z \in Z_{\sigma}\}$. A 3-D grid $Q_{p,q}^{\sigma}$ is called a *corner-cube* for p and q. We define that $\mathcal{V}_{p,q} = V(Q_{p,q}) \cup \bigcup_{\sigma \subseteq \{x,y,z\}} V(Q_{p,q}^{\sigma})$. Figure 2 (b) illustrates an example of $Q_{p,q}$ and corner cubes $Q_{p,q}^{\sigma}$.

Fig. 2. Cubes for p and q.

Let $\langle \phi, \rho \rangle$ be a 3-D embedding of a series-parallel 6-graph G with terminals s and t, and let D_s and D_t be sets of directions such that $|D_s| = d_G(s)$ and $|D_t| = d_G(t)$. Then, $\langle \phi, \rho \rangle$ is said to be 9-cubic for $\langle D_s, D_t \rangle$ if $\phi(V(G)) \subseteq \mathcal{V}_{\phi(s),\phi(t)}, D_s =$ $\{\boldsymbol{\alpha}_{s}^{\rho}(e)|e \in E_{G}(s)\},\$ and $D_{t} = \{\boldsymbol{\alpha}_{t}^{\rho}(e)|e \in E_{G}(t)\},\$ where $E_G(v)$ is the set of edges incident to v in G.

IV-B. FEASIBLE PAIR

For two vectors $\boldsymbol{a} = (a_x, a_y, a_z)$ and $\boldsymbol{b} = (b_x, b_y, b_z)$, we define that $\boldsymbol{a} * \boldsymbol{b} = (a_x b_x, a_y b_y, a_z b_z)$. We denote by $\boldsymbol{a} \cdot \boldsymbol{b}$ the inner product of a and b. A vector $r \in \{-1,1\}^3$ is called a diagonal direction. For a diagonal direction r, let \mathcal{D}_r^+ = $\{(1,0,0)*r,(0,1,0)*r,(0,0,1)*r\}$ and $\mathcal{D}_r^- = \mathcal{D} - \mathcal{D}_r^+$. It should be noted that $d{*}r \in \mathcal{D}^+$ if and only if $d \in \mathcal{D}_r^+$ and $d \cdot r =$ 1. Also, $d * r \in \mathcal{D}^-$ if and only if $d \in \mathcal{D}^-_r$ and $d \cdot r = -1.$

For any $D_1, D_2 \subseteq \mathcal{D}, \langle D_1, D_2 \rangle$ is said to be *non-admissible* if $D_1 = \{d\}$ and $D_2 = \{-d\}$ for some $d \in \mathcal{D}$. Otherwise, $\langle D_1, D_2 \rangle$ is said to be *admissible*.

For $D_1, D_2 \subseteq \mathcal{D}$ and a diagonal direction $\boldsymbol{r}, \langle D_1, D_2 \rangle$ is said to be *inner-directed* for r if there exist directions $d_s \in D_s \cap \mathcal{D}_r^+$ and $d_t \in D_t \cap \mathcal{D}_r^-$ such that $d_s \cdot d_t = 0$, and $\langle D_s - \{d_s\}$, $D_t - \{d_t\}\rangle$ is admissible.

For a series-parallel 6-graph with terminals s and t, a diagonal direction r, and $D_s, D_t \subseteq \mathcal{D}, \langle D_s, D_t \rangle$ is said to be *feasible* for G and r if all of the following conditions are satisfied:

(1) $|D_s| = d_G(s)$,

(2) $|D_t| = d_G(t)$,

(3) $\langle D_s, D_t \rangle$ is inner-directed for r if $(s, t) \in E(G)$, and

(4) $\langle D_s, D_t \rangle$ is admissible if $(s, t) \notin E(G)$.

It should be noted that if $\langle D_s, D_t \rangle$ is feasible for some G and $r \in \{-1,1\}^3$ then $\langle D_s, D_t \rangle$ is also admissible.

It is easy to see the following.

Lemma 4: For any series-parallel 6-graph G and any diagonal direction $r \in \{-1,1\}^3$, there exist $D_s, D_t \subseteq \mathcal{D}$ such that $\langle D_s, D_t \rangle$ is feasible for G and r.

IV-C. PROOF

For any grid-points p and q = p + (a, b, c) in the general position, a diagonal direction (a/|a|, b/|b|, c/|c|) is denoted by $R_{p,q}$. Now, we are ready to show the following.

Theorem 3: For a series-parallel 6-graph G with terminals s and t, a diagonal direction r, and $D_s, D_t \subseteq \mathcal{D}$ such that $\langle D_s, D_t \rangle$ is feasible for G and r, there exists a 9-cubic τ embedding $\langle \phi, \rho \rangle$ of G such that $\{ \boldsymbol{\alpha}_s^{\rho}(e) | e \in E_G(s) \} = D_s$, $\{\boldsymbol{\alpha}_t^{\rho}(e)|e \in E_G(t)\} = D_t$, and $\boldsymbol{R}_{\phi(s),\phi(t)} = \boldsymbol{r}$.

The proof of Theorem 3 is shown in the next section. $\rho^{(2)}$. Theorem 1 follows from Theorems 2 and 3, and Lemma 4.

V. PROOF OF THEOREM 3 (SKETCH)

The theorem is proved by induction on |E(G)|.

If |E(G)| = 1, G is a graph consisting of only one edge (s,t) and so $|D_s| = |D_t| = 1$. Since $(s,t) \in E(G)$ and $\langle D_s, D_t \rangle$ is feasible for G and a diagonal direction r, $\langle D_s, \rangle$ $D_t \rangle = \langle \{ \boldsymbol{d}_s \}, \{ \boldsymbol{d}_t \} \rangle$ is inner-directed for r. Without loss of generality we assume that $\boldsymbol{r}=(1,1,1), \, \boldsymbol{d}_s=(1,0,0),$ and $d_t = (0, -1, 0)$. Define a 3-D embedding $\langle \phi, \rho \rangle$ of G as follows: $\phi(s) = (0, 0, 0), \ \phi(t) = (1, 1, 1), \ \text{and} \ \rho(s, t)$ is a path connecting $\phi(s)$ and $\phi(t)$, and passing through (1,0,0)and (1,0,1) as shown in Fig. 3. It is easy to see that $\langle \phi, \rho \rangle$ is a 9-cubic τ -embedding of G.

$$\phi(s) = (0,0,0) \qquad \qquad \phi(t) = (1,1,1) \qquad \qquad \phi(s) = (0,0,0) \qquad \qquad \phi(s) = \mathbf{d}_s$$

Fig. 3. 9-cubic τ -embedding of G.

Let $|E(G)| \ge 2$, and suppose that the theorem is valid for every series-parallel 6-graph with less than |E(G)| edges. We distinguish two cases.

V-A. CASE 1: PARALLEL-COMPOSITION

We consider the case when G is a parallel-composition of series-parallel graphs G_1 and G_2 . We denote the terminals of G_1 and G_2 by s and t. We further distinguish two cases.

Case 1-1 $(s, t) \in E(G)$.

Without loss of generality, we assume that G_1 consists of exactly one edge (s,t) and G_2 is the graph obtained from G by deleting the edge (s,t). Then, $\langle D_s, D_t \rangle$ is inner-directed for r since $\langle D_s, D_t \rangle$ is feasible for G and r. We can prove the following.

Lemma 5: There exist $d_s \in D_s$ and $d_t \in D_t$ such that $\langle \{\boldsymbol{d}_s\}, \{\boldsymbol{d}_t\} \rangle$ is feasible for G_1 and \boldsymbol{r} , and $\langle D_s - \{\boldsymbol{d}_s\}, \langle \boldsymbol{d}_t \rangle \rangle$ $D_t - \{d_t\}$ is feasible for G_2 and r.

Thus, by the induction hypothesis, G_1 has a 9-cubic τ embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for r. Also, G_2 has a 9-cubic τ embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for r.

We can prove that we can construct a 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \phi^{(2)} \rangle$ $\rho^{(2)}$.

Case 1-2 $(s,t) \notin E(G)$.

We can prove the following.

Lemma 6: D_v can be partitioned into $D_v^{(1)}$ and $D_v^{(2)}$ for $v \in \{s,t\}$ such that $\langle D_s^{(1)}, D_t^{(1)} \rangle$ is feasible for G_1 and r and $\langle D_s^{(2)}, D_t^{(2)} \rangle$ is feasible for G_2 and r.

Thus, by the induction hypothesis, G_i (i = 1, 2) has a 9cubic τ -embedding $\langle \phi^{(i)}, \rho^{(i)} \rangle$ for $\langle D_s^{(i)}, D_t^{(i)} \rangle$ and r.

We can prove that we can construct a 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \phi^{(2)} \rangle$

V-B. CASE 2: SERIES-COMPOSITION

We consider the case when G is a series-composition of series-parallel graphs G_1 and G_2 . Without loss of generality, we denote the terminals of G_1 by s and u, and those of G_2 by u and t.

Since $\langle D_s, D_t \rangle$ is admissible, there exist $d_s \in D_s$ and $d_t \in$ D_t satisfying $d_s \neq -d_t$. We further distinguish three cases. Case 2-1 $d_s \in \mathcal{D}_r^+$ and $d_t \in \mathcal{D}_r^-$.

We can prove the following.

Lemma 7: There exist disjoint sets $D_u^{(s)}$ and $D_u^{(t)}$ of directions such that $\langle D_s, D_u^{(s)} \rangle$ is feasible for G_1 and r and $\langle D_u^{(t)}, Q_u^{(t)} \rangle$ D_t is feasible for G_2 and r.

Thus, by the induction hypothesis, G_1 has a 9-cubic τ -embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for $\langle D_s, D_u^{(s)} \rangle$ and r, and G_2 has a 9-cubic τ -embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for $\langle D_u^{(t)}, D_t \rangle$ and r.

We can prove that we can construct a 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$.

Case 2-2 $d_s \in \mathcal{D}_r^+$ and $d_t \in \mathcal{D}_r^+$ or $d_s \in \mathcal{D}_r^-$ and $d_t \in \mathcal{D}_r^-$.

It should be noted that $d_s \cdot r = d_t \cdot r$. Let $r_s = r$ if $d_s \cdot r = 1$ and $r_s = -r$ otherwise, and let $r_u = -r_s$. We can prove the following.

Lemma 8: There exist disjoint sets $D_u^{(s)}$ and $D_u^{(t)}$ of directions such that $\langle D_s, D_u^{(s)} \rangle$ is feasible for G_1 and r_s and $\langle D_u^{(t)}, D_t \rangle$ is feasible for G_2 and r_u .

Thus, by the induction hypothesis, G_1 has a 9-cubic τ embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for $\langle D_s, D_u^{(s)} \rangle$ and r_s , and G_2 has a 9-cubic τ -embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for $\langle D_u^{(t)}, D_t \rangle$ and r_u .

We can prove that we can construct a 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$.

Case 2-3 $d_s \in \mathcal{D}_r^-$ and $d_t \in \mathcal{D}_r^+$.

Let $r_s = r + 2d_s$ and $r_u = -r_s$. It should be noted that $r_s \in \{-1, 1\}^3$, since $d_s \cdot r = -1$. We can prove the following.

Lemma 9: There exist disjoint sets $D_u^{(s)}$ and $D_u^{(t)}$ of directions such that $\langle D_s, D_u^{(s)} \rangle$ is feasible for G_1 and r_s and $\langle D_u^{(t)}, D_t \rangle$ is feasible for G_2 and r_u .

Thus, by the induction hypothesis, G_1 has a 9-cubic τ embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ for $\langle D_s, D_u^{(s)} \rangle$ and r_s , and G_2 has a 9-cubic τ -embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ for $\langle D_u^{(t)}, D_t \rangle$ and r_u .

We can prove that we can construct a 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$.

This completes the proof of Theorem 3.

VI. EXAMPLES

A series-parallel 6-graph G shown in Fig. 4(a) is a parallelcomposition of series-parallel 6-graphs G_1 and G_2 shown in Fig. 4(b) and (c), respectively. Given $D_s = \{(-1,0,0), (0,0,-1)\}, D_t = \{(-1,0,0), (0,-1,0)\}$, and a diagonal direction $\mathbf{r} = (-1,1,1)$, there exist $\mathbf{d}_s = (-1,0,0)$ and $\mathbf{d}_t = (0,-1,0)$ such that $\langle \{\mathbf{d}_s\}, \{\mathbf{d}_t\} \rangle$ is feasible for G_1 and \mathbf{r} , and $\langle \{(0,0,-1)\}, \{(-1,0,0)\} \rangle$ is feasible for G_2 and \mathbf{r} by Lemma 5.

A 9-cubic τ -embedding $\langle \phi^{(1)}, \rho^{(1)} \rangle$ of G_1 for $\langle \{d_s\}, \{d_t\} \rangle$ and r is shown in Fig. 4(e), and a 9-cubic τ -embedding $\langle \phi^{(2)}, \rho^{(2)} \rangle$ of G_2 for $\langle \{(0, 0, -1)\}, \{(-1, 0, 0)\} \rangle$ and r is shown in Fig. 4(f). We obtain a 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G for $\langle D_s, D_t \rangle$ and r from $\langle \phi^{(1)}, \rho^{(1)} \rangle$ and $\langle \phi^{(2)}, \rho^{(2)} \rangle$ as shown in Fig. 4(g). The 9-cubic τ -embedding $\langle \phi, \rho \rangle$ of G induces a 2bend 3-D orthogonal drawing of G by Theorem 2.

REFERENCES

- G. Battista, G. Liotta, and F. Vargiu, "Spirality and optimal orthogonal drawings," SIAM J. Comput., vol. 27, pp. 1764–1811, 1998.
- [2] T. Biedl and G. Kant, "A better heuristic for orthogonal graph drawings," *Computational Geometry*, vol. 9, pp. 159–180, 1998.

Fig. 4. Example of parallel-composition.

- [3] P. Eades, C. Strik, and S. Whitesides, "The techniques of komologorov and bardzin for three-dimensional orthogonal graph drawing," *Information Processing Letters*, vol.60, pp. 97–103, 1996.
- [4] P. Eades, A. Symvonis, and S. Whitesides, "Three-dimensional orthogonal graph drawing algorithms," *Discrete Applied Mathematics*, vol.103, pp. 55–87, 1996.
- [5] A. Garg and R. Tamassia, "On the computational complexity of upward and rectilinear planarity testing," *SIAM J. Comput.*, vol. 31, pp. 601–625, 2001.
- [6] G. Kant, "Drawing planar graphs using the canonical ordering," *Algorithmica*, vol. 16, pp. 4–32, 1996.
- [7] F. T.Leighton and A. L.Rosenberg, "Three-dimensional circuit layouts," SIAM J. Comput., vol.15, pp. 793–813, 1986.
- [8] Y. Liu, A. Morgana, and B. Simeone, "A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid," *Discrete Applied Mathematics*, vol. 81, pp. 69–91, 1998.
- [9] K. Nomura, S. Tayu, and S. Ueno, "On the orthogonal drawing of outerplanar grphas," *IEICE Trans. Fundamentals*, pp. 1583–1588, 2005.
- [10] A. Papakostas and I. G.Tollis, "Algorithm for incremental orthogonal grpah drawing in three dimensions," *J. Graph Algorithms and Applications*, vol.3, pp. 81–115, 1999.
- [11] S. T.Obenaus and T. H.Szymanski, "Embedding of star graphs into optical meshes without bends," *J. Parallel Distrib. Comput.*, vol.44, pp. 97–106, 1997.
- [12] S. Tayu, K. Nomura, and S. Ueno, "On the Two-Dimensional Orthogonal Drawing of Series-Parallel Graphs," *Proc. IEEE International Symposium on Circuits and Systems ISCAS'06*, pp. 1796 –1799, 2006.
 [13] J. Valdes, R. Tarjan, and E. Lawler, "The recognition of series parallel
- [13] J. Valdes, R. Tarjan, and E. Lawler, "The recognition of series parallel digraphs," SIAM J. Comput., vol.11, pp. 298–313, 1982.
- [14] D.R. Wood, "Optoimal three-dimensional orthogonal graph drawing in the general position model," *Theoretical Computer Science*, vol.299, pp. 151–178, 2003.